
Daphne v2A at CIEMAT

Antonio Verdugo, Ignacio López de Rego

CIEMAT

Warm Electronics Meeting 26th October 2023

Goals

• First goal – FPGA Design:

- Design and Implement a Self-Trigger algorithm.

- Design and Implement a Waveform`s Primitive Calculation algorithm.

- Minimize, as much as possible, HW resources used in the FPGA.

• Second goal - Adapt Daphne for PMTs data acquisition:

Self-trigger & Primitive Calculation ALGORITHM (1)
Motivation

• Self-trigger:

- Only packages with useful information are sent  Reducing data flow compared with
streaming mode.

• Basic Waveform’s Primitive Calculation:

- Basic information of the signal is sent in the headers of the package.

- Global PDS trigger can be done based on that specific information  At an early stage it is
not necessary to analyze every single waveform at the DAQ.

DAPHNE DAQ

Self-trigger & Primitive Calculation ALGORITHM (2)

 ADC FILTERED DATA: Moving average of 2 ADC RAW DATA SAMPLES

 Reduces High Frequency noise.

 BASELINE:

 Based on cumulative average over previous N (4) samples.

 Stop baseline calculation if peak is detected.

 AMPLITUDE = Filtered Data – Baseline.

 SLOPE = Amplitude last simple – Amplitude previous sample.

 PEAK DETECTION: Threshold over the slope.

ADC
RAW
DATA

ADC
FILTERED

DATA

BASELINE

AMPLITUDE SLOPE
-

+

TRIGGER

CONDITIONS
PRIMITIVES

PEAK

DETECTION

CALCULATE: YES / NO

Operation parameters (from slow control)

Actualized value each CLK cycle

Peak Detection

Self-trigger & Primitive Calculation ALGORITHM (3)
Trigger Condition & Primitive Calculation

NO

DETECTION

DETECTIONSEND DATA

Peak Detection = True / Self -Trigger

Baseline recovery

1 clk cycle

 TRIGGER CONDITION: When a Peak is detected in NO DETECTION State.

 NO DETECTION State:

 Peak detection variables calculation (Baseline Calculation).

 DETECTION State :

 Peak detection variables calculation (Baseline remains constant)

 Waveform`s Primitive Calculation.

 Peak detection does not generate a self-trigger signal.

 SEND DATA State: Waveform’s Primitve Data available.

Self-trigger & Primitive Calculation ALGORITHM (4)
Waveform’s Primitives

• Real-time calculation of different parameters (trigger primitives) from the SiPM's
waveform:

- Peak Time

- Amplitude (at peak-time)

- Width (signal width above threshold)

- Charge (area above baseline)

- Number of Peaks detected (before baseline recovery)

• In order to reduce HW resources (Raw units)

- Time (Peak Time, Width): Relative to trigger timestamp, number of bins / samples.

- Amplitude: ADC counts

- Charge: ADC*tics

Self-trigger & Primitive Calculation ALGORITHM (5)
Achievements and future plans

Achievements

• Design a Self-Trigger & Primitive Calculation Algorithm.

• Test the algorithm with Python Scripts using real data from CIEMAT´s PDE measurement setups.

• Implement and Simulate (Post-Synthesis timing simulation) a 1 channel “Self-Trigger & Primitive Calculation” block in the FPGA

- HW Resources: 246 LUT and 247 FF

• Test the 1 channel “Self-Trigger & Primitive Calculation” block in Daphne v2A firmware.

- The block was placed in Daphne TOP Module just to test functionality. Several Spybuffers were created in order to follow different algorithm variables
(Baseline, Amplitude, peak detections…)

Future plans

• Test the “Self-Trigger & Primitive Calculation” using the real output FIFOs and collecting data from Daphne Streaming frame format  It is required to add extra
header to fit all waveform’s primitives

• Implement a block to check trigger coincidences between channels.

Self-trigger & Primitive Calculation ALGORITHM (6)
Post-synthesis timing simulation  SiPM

Self-trigger & Primitive Calculation ALGORITHM (7)
Post-synthesis timing simulation  X-Arapuca (SuperCell)

• Proposal for installing 24 PMTs from ProtoDUNE-DP in ProtoDUNE-VD.

• An interface module between the PMT signals and Daphne will be required for
signal conversion.

- Impedance and signal conversion is required from single-ended to differential.

- If required, we could also implement a trigger based on the coincidence of several

PMTs.

10

Summary

9

• We propose installing 24 PMTs from ProtoDUNE-DP in ProtoDUNE-VD.

• Goals: monitoring, photon detection efficiency measurement and study of

scintillation light.

• Successful PMT operation in ProtoDUNE-DP: stable and understood

performance.

• Simple installation as everything is still in place. Only need to define DAQ

(interfaces and time synchronization) and validate layout.

Adapt Daphne for PMTs data acquisition (1)
Motivation

- Protoboard  Transformer

- Transformer: Mini-Circuits TC2-1T+  Reduces crosstalk between channels

• Single-ended to Differential

• Impedance conversion

11

Adapt Daphne for PMTs data acquisition (2)
Interface Daphne - PMT

12

Adapt Daphne for PMTs data acquisition (3)
Achievements and future plans

Achievements

• Design a circuit that meets the required specifications.

• Prototype and test the designed circuit.

Future plans

• Tune the circuit to obtain better response.

• PCB layout design.

• Implement a block to check trigger coincidences between channels.

13

Adapt Daphne for PMTs data acquisition (4)
Signal acquisition with our Self-Trigger algorithm

Thanks for your attention!

14

Peak Detection - BACKUP

Baseline calculation is based in calculating cumulative average.

ഥ𝒙 =
σ𝒙𝒊
𝒏

→ 𝒙𝒊+𝟏 = ഥ𝒙𝒊 +
𝒙𝒊+𝟏 − ഥ𝒙𝒊
𝒏 + 𝟏

𝒙𝒊+𝟏 = ഥ𝒙𝒊 +
𝒙𝒊+𝟏−ഥ𝒙𝒊

𝟐𝑵

FILTERED DATA BASELINE AMPLITUDE SOLPE PEAK

DETECTION

Initial condition:

𝐹0 = 𝑥0
Algorithm:

𝐹𝑖+1 =
𝑥𝑖 + 𝑥𝑖+1

2

Initial condition:

𝐵0 = 𝑥0
Algorithm:

If 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
𝐵𝑖+1 = 𝐵𝑖

Else

𝐵𝑖+1

= 𝐵𝑖 +
𝐹𝑖+1 − 𝐵𝑖

8

Initial condition:

𝐴0 = 0
Algorithm:

𝐴𝑖+1 = 𝐹𝑖+1 − 𝐵𝑖+1

Initial condition:

𝑆0 = 0
Algorithm:

𝑆𝑖+1 = 𝐴𝑖+1 − 𝐴𝑖

Initial condition:

𝑃0 = 𝑓𝑎𝑙𝑠𝑒
Algorithm:

If 𝑆𝑖+1 < −10
𝑃0 = 𝑓𝑎𝑙𝑠𝑒

Else

𝑃0 = 𝑡𝑟𝑢𝑒

Waveform’s Primitive Calculation- BACKUP

While DETECTION State

PULSE WITH TIME TO PEAK MAX AMPLITUDE CHARGE NUMBER OF

PEAKS

Initial condition:

𝑊0 = 0
Algorithm:

𝑊𝑖+1 = 𝑊𝑖 + 1

Initial condition:

𝑇𝑃0 = 0
Algorithm:

If 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑖+1 < 𝑀𝐴𝑖

𝑇𝑖+1 = 𝑊𝑖+1

Else

𝑇𝑖+1 = 𝑇𝑖

Initial condition:

𝑀𝐴0 = 0
Algorithm:

If 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑖+1< 𝑀𝐴𝑖
𝑀𝐴𝑖+1
= 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑖+1

Else

𝑀𝐴𝑖+1 = 𝑀𝐴𝑖

Initial condition:

𝐶0 = 0
Algorithm:

𝐶𝑖+1 = 𝐶𝑖
+ 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑖+1

Initial condition:

𝑁𝑃0 = 0
Algorithm:

If 𝑃𝑒𝑎𝑘_𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
𝑁𝑃𝑖+1 = 𝑁𝑃𝑖 + 1

Else

𝑁𝑃𝑖+1 = 𝑁𝑃𝑖

