Discovering Long-lived particles at DUNE

Pilar Coloma

Based on arXiv:2309.06492, in collaboration with Justo Martín-Albo and Salvador Urrea (and 2202.03447, in collaboration with Pilar Hernández and Salvador Urrea)

DUNE ND-GAr Meeting - Nov 14th, 2023

Signals at neutrino experiments

- Feebly-interacting particles
 - intense sources needed
 - large detectors needed
- We may search for two types of signals
 - Feeble interactions
 - Long-lived particle decays

Signals at neutrino experiments

- Feebly-interacting particles
 - intense sources needed
 - large detectors needed
- We may search for two types of signals
 - Feeble interactions
 - Long-lived particle decays

this talk

Many works in the literature:

Berryman et al, 1912.07622; Jerhot et al, 2201.05170; Kelly, Kumar & Liu, 2011.05995; Batell, Huang & Kelly, 2304.11189; Brdar et al, 2011.07054; Coloma et al, 2007.03701; Co, Kumar & Liu, 2210.02462; Capozzi et al, 2108.03262; Dev et al, 2104.07681;...

Expected number of decays

$$N_{ev} = N_M BR(M \to \Psi) BR(\Psi \to Vis) \epsilon_{det} \int dS \int dE_{\Psi} \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$$
Number of particles Is the final state observable? Decay probability Dependence with energy and angle
$$M \to \Psi + \dots$$

$$\Psi$$

$$\int d\ell_{det}$$

For related model-independent LLP searches using neutrino facilities see e.g. Arguelles et al, 1910.12839, Coloma, Hernandez, Munoz, Shoemaker, 1911.09129; Coloma, Hernandez, Urrea, 2202.03447; Batell, Huang & Kelly, 2304.11189; Mishra et al, 2211.13253;

•••

Model-independent sensitivity

$$N_{ev} = N_M BR(M \to \Psi) BR(\Psi \to Vis) \epsilon_{det} \int dS \int dE_{\Psi} \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$$

Coloma, Martín-Albo and Urrea, 2309.06492

DUNE near detectors will record ~10⁸ neutrino interactions per year...

Also, the GAr-ND will not be ready until phase II

Few works on LLP at DUNE including backgrounds: Ballett, Boschi & Pascoli, 1905.00284; Breitbach et al, 2102.03383

Backgrounds vs signal

Main signals considered:

- two photons
- two charged leptons
- three pions

Main backgrounds to these searches arise from neutrino interactions

 \rightarrow A priori, can be mitigated with appropriate cuts

More on this in the next talk by Justo Martin-Albo!

Backgrounds

	Selection cut	Signal efficiency		Background rate/yr	
		ND-LAr	ND-GAr	ND-LAr	ND-GAr
$\mu^+\mu^-$	Two μ -like tracks only PID μ and opposite charge sign Transverse momentum $< 0.125 \text{ GeV/c}$ Angle between muons $< 0.7 \text{ rad}$	$1.00 \\ 0.40 \\ 0.40 \\ 0.40$	$1.00 \\ 1.00 \\ 0.99 \\ 0.94$	$3545674 \\ 6226 \\ 99 \\ 0$	$70656 \\ 124 \\ 2 \\ 0$
e^+e^-	Two <i>e</i> -like tracks/showers Reconstructed ALP direction	0.10	$1.00 \\ 0.99$	$9432 \\ 180$	145 15
λλ	Two γ showers only Reconstructed ALP direction Angle between γ showers	0.05 0.05 0.05	0.79 0.79 —	36276 6938 1367	14222 7923
$\pi^+\pi^-\pi^0$	Two μ -like tracks, two γ showers PID π^{\pm} and charge sign Transverse momentum < 0.2 GeV/c Angle between pions < 0.15 rad	0.04 0.04 0.04 0.04 0.04	$\begin{array}{c} 0.81 \\ 0.81 \\ 0.79 \\ 0.69 \end{array}$	2030490 431035 17182 946	$40462 \\ 8589 \\ 342 \\ 19$

Coloma, Martín-Albo and Urrea, 2309.06492

Coloma, Martín-Albo and Urrea, 2309.06492

Main production mechanisms:

- mixing with mesons
- gluon fusion

Main decay channels:

- two photons
- three pions

Cheng, Li and Salvioni, 2110.10691 Aloni, Soreq, Williams, 1811.03474

Coloma, Martín-Albo and Urrea, 2309.06492 (see also Kelly, Kumar and Liu, 2011.05995; Jerhott et al, 2201.05170)

Main production mechanisms:

- Kaon decays: $K \rightarrow \pi a$
- B decays

Main decay channels:

- two charged leptons
- two photons

(results for O_W operator in backup slides)

Coloma, Martín-Albo and Urrea, 2309.06492 (see also Coloma, Hernandez, Urrea, 2202.03447)

Main production mechanisms:

• $D \rightarrow \pi a$

Carmona et al, 2101.07803 Martin-Camalich et al, 2002.04623

Main decay channels:

- two photons
- three pions

Cheng, Li and Salvioni, 2110.10691 Aloni, Soreq, Williams, 1811.03474 $1/f_a(TeV^{-1})$

Coloma, Martín-Albo and Urrea, 2309.06492

Summary

- In this work we have computed the main backgrounds for some of the relevant long-lived particle decay channels
 - our background analysis applies to multiple LLP scenarios: dark photons, axionlike particles, dark scalars,...
 - unlike previously assumed, the two-photon channel is far from being background free, for both LAr-ND and GAr-ND
- We have computed sensitivities both detectors, following a model-independent approach
 - the LAr-ND capabilities are limited for these searches, mostly due to the low efficiencies assumed
 - a Gaseous TPC will be key to ensure an improvement over current limits
- Our results are still preliminary: a full analysis, including reconstruction effects and pile-up, is needed → a PhD student will start working on this soon

Thanks!

Work supported by Grants RYC2018-024240-I, PID2019-108892RB-I00, CEX2020-001007-S, PID2022-142545NB-C21

EUROPEAN UNION European Regional Development Fund

Backup

Decay widths

Branching ratios into mesons

Computed as in Cheng, Li and Salvioni, 2110.10691 (see also Aloni, Soreq, Williams, 1811.03474)

Branching ratios into mesons

Computed as in Cheng, Li and Salvioni, 2110.10691 (see also Aloni, Soreq, Williams, 1811.03474)