

NuGraph2

A graph network for particle reconstruction

V Hewes (she/they) NuGraph workshop 13th November 2023

Neutrino physics

 Neutrinos are neutral leptons, so we do not observe them directly.

Neutrino physics

- Neutrinos are neutral leptons, so we do not observe them directly.
 - Instead, we search for the visible particles that are produced when they interact.

Neutrino physics

- Neutrinos are neutral leptons, so we do not observe them directly.
 - Instead, we search for the visible particles that are produced when they interact.

Liquid Argon TPCs

- Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily utilised detector technology in neutrino physics.
 - At FNAL: MicroBooNE, Icarus, SBND.
 - Future: DUNE (70kT LArTPC deep underground, plus near detector).

Liquid Argon TPCs

- Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily utilised detector technology in neutrino physics.
 - At FNAL: MicroBooNE, Icarus, SBND.
 - Future: DUNE (70kT LArTPC deep underground, plus near detector).
- Charged particles ionize liquid argon as they travel.
- Ionisation electrons drift due to HV electrode field, and are collected by anode wires.
- Wire spacing ~3mm –
 high-resolution detector.

MicroBooNE open dataset

- The work presented here today utilises simulated neutrinos from MicroBooNE's Open Data Release (link).
 - Simulated neutrino interactions with cosmic data overlays.

MicroBooNE open dataset

- The work presented here today utilises simulated neutrinos from MicroBooNE's Open Data Release (link).
 - Simulated neutrino interactions with cosmic data overlays.
- This network architecture was originally developed in the context of the DUNE Far Detector geometry.
 - Motivation: reconstructing complex and high-multiplicity atmospheric and v_{τ} interactions.

MicroBooNE open dataset

- The work presented here today utilises simulated neutrinos from MicroBooNE's Open Data Release (link).
 - · Simulated neutrino interactions with cosmic data overlays.
- This network architecture was originally developed in the context of the DUNE Far Detector geometry.
 - Motivation: reconstructing complex and high-multiplicity atmospheric and v_{τ} interactions.
- This network architecture is developed to have broad applicability, without being tied to any particular detector geometry.
 - NuGraph2 is a general-purpose particle reconstruction tool.
 - Developed for use in neutrino detectors, but can be deployed for other types of physics interactions!

 Exa.TrkX is a collaboration developing next-generation Graph Neural Network (GNN) reconstruction for HEP:

 Exa.TrkX is a collaboration developing next-generation Graph Neural Network (GNN) reconstruction for HEP:

Energy Frontier

- Expand on HEP.TrkX's prototype GNN for HL-LHC.
- Incorporate into ATLAS's simulation and validation chain.

 Exa.TrkX is a collaboration developing next-generation Graph Neural Network (GNN) reconstruction for HEP:

Energy Frontier

- Expand on HEP.TrkX's prototype GNN for HL-LHC.
- Incorporate into ATLAS's simulation and validation chain.

Intensity Frontier

- Explore viability of HEP.TrkX network for neutrino physics.
- Develop GNN-based reconstruction for Liquid Argon TPCs.

 Exa.TrkX is a collaboration developing next-generation Graph Neural Network (GNN) reconstruction for HEP:

Energy Frontier

- Expand on HEP.TrkX's prototype GNN for HL-LHC.
- Incorporate into ATLAS's simulation and validation chain.

Intensity Frontier

- Explore viability of HEP.TrkX network for neutrino physics.
- Develop GNN-based reconstruction for Liquid Argon TPCs.

Construct graph where each node is a detector hit

Node features: wire index, time tick, charge integral & RMS

Perform convolutions on edge scores to form a set of class-wise probabilities

Propagate **node features** across edges, weighting by **edge scores**

0 iterations

0 iterations

0 iterations

Imagine that one graph node holds some **key information** that's crucial for understanding the event

0 iterations

Imagine that one graph node holds some **key information** that's crucial for understanding the event

1 iterations

1 iterations

1 iterations

Imagine that one graph node holds some **key information** that's crucial for understanding the event

1 iterations

Imagine that one graph node holds some **key information** that's crucial for understanding the event

2 iterations

Context information from each graph node is dispersed through the graph with each iteration.

NuGraph1

- First proof-of-concept model achieved 84% accuracy in **classifying graph edges**.
 - Reasonable performance on showers, struggled to correctly identify type of track.
 - See <u>arxiv:2103.06233</u>.

NuGraph1

- First proof-of-concept model achieved 84% accuracy in **classifying graph edges**.
 - Reasonable performance on showers, struggled to correctly identify type of track.
 - See arxiv:2103.06233.

- First proof-of-concept model achieved 84% accuracy in classifying graph edges.
 - Reasonable performance on showers, struggled to correctly identify type of track.
 - See <u>arxiv:2103.06233</u>.

- First proof-of-concept model achieved 84% accuracy in classifying graph edges.
 - Reasonable performance on showers, struggled to correctly identify type of track.
 - See <u>arxiv:2103.06233</u>.

- First proof-of-concept model achieved 84% accuracy in classifying graph edges.
 - Reasonable performance on showers, struggled to correctly identify type of track.
 - See arxiv:2103.06233.

•

Second-generation model incorporates a wide range of improvements over first proof-of-concept.

- Second-generation model incorporates a wide range of improvements over first proof-of-concept.
- Move from edge classification to node (ie. hit) classification.
 - Graph edge classification for track forming is a natural choice for LHC detectors, where sequential layers provide a natural constraint on edges.
 - Dense LArTPC environment provides no such constraints, and number of edges explodes.

- Second-generation model incorporates a wide range of improvements over first proof-of-concept.
- Move from edge classification to node (ie. hit) classification.
 - Graph edge classification for track forming is a natural choice for LHC detectors, where sequential layers provide a natural constraint on edges.
 - Dense LArTPC environment provides no such constraints, and number of edges explodes.
- Introduce more sophisticated semantic labelling which considers a wider variety of particle types, ie. EM showers, Michel electrons, diffuse EM activity.

- Second-generation model incorporates a wide range of improvements over first proof-of-concept.
- Move from edge classification to node (ie. hit) classification.
 - Graph edge classification for track forming is a natural choice for LHC detectors, where sequential layers provide a natural constraint on edges.
 - Dense LArTPC environment provides no such constraints, and number of edges explodes.
- Introduce more sophisticated semantic labelling which considers a wider variety of particle types, ie. EM showers, Michel electrons, diffuse EM activity.
- Build a model which classifies all views simultaneously, instead of classifying each detector views as an independent event.
 - Furthermore, allow information exchange between 2D views to break degeneracies.

NuGraph2 outputs

 The primary goal of NuGraph2 is to classify each detector hit according to particle type.

NuGraph2 outputs

- The primary goal of NuGraph2 is to classify each detector hit according to particle type.
- Use five semantic categories:
 - MIP: Minimum ionising particles (muons, pions etc)
 - HIP: Highly ionising particles (protons, nucleons etc)
 - EM showers
 - Michel electrons
 - Diffuse activity (Compton scatters, neutrons etc)

NuGraph2 outputs

- The primary goal of NuGraph2 is to classify each detector hit according to particle type.
- Use five semantic categories:
 - MIP: Minimum ionising particles (muons, pions etc)
 - HIP: Highly ionising particles (protons, nucleons etc)
 - EM showers
 - Michel electrons
 - Diffuse activity (Compton scatters, neutrons etc)
- Also perform hit filtering to remove hits that are not part of the primary physics interaction.

 NuGraph2's core convolution engine is a selfattention message passing network utilising a categorical embedding.

- NuGraph2's core convolution engine is a selfattention message passing network utilising a categorical embedding.
 - Each particle category is provided with a separate set of embedded features, which are convolved independently.

- NuGraph2's core convolution engine is a selfattention message passing network utilising a categorical embedding.
 - Each particle category is provided with a separate set of embedded features, which are convolved independently.
 - Context information is exchanged between different particle types via a categorical cross-attention mechanism.

- NuGraph2's core convolution engine is a selfattention message passing network utilising a categorical embedding.
 - Each particle category is provided with a separate set of embedded features, which are convolved independently.
 - Context information is exchanged between different particle types via a categorical cross-attention mechanism.
- Each message-passing iteration consists of two phases, the **planar** step and the **nexus** step:

- NuGraph2's core convolution engine is a selfattention message passing network utilising a categorical embedding.
 - Each particle category is provided with a separate set of embedded features, which are convolved independently.
 - Context information is exchanged between different particle types via a categorical cross-attention mechanism.
- Each message-passing iteration consists of two phases, the **planar** step and the **nexus** step:
 - Pass messages internally in each plane.

- NuGraph2's core convolution engine is a selfattention message passing network utilising a categorical embedding.
 - Each particle category is provided with a separate set of embedded features, which are convolved independently.
 - Context information is exchanged between different particle types via a categorical cross-attention mechanism.
- Each message-passing iteration consists of two phases, the **planar** step and the **nexus** step:
 - Pass messages internally in each plane.
 - Pass messages up to 3D nexus nodes to share context information.

This iterative two-step message-passing engine

forms the backbone of the NuGraph2 architecture.

- This **iterative two-step message-passing engine** forms the backbone of the NuGraph2 architecture.
- An **initial encoding step** generates a learned embedding for each graph node.

- This **iterative two-step message-passing engine** forms the backbone of the NuGraph2 architecture.
- An **initial encoding step** generates a learned embedding for each graph node.
- The output of the message-passing engine can be forwarded into any number of decoders for a variety of tasks.

- This **iterative two-step message-passing engine** forms the backbone of the NuGraph2 architecture.
- An **initial encoding step** generates a learned embedding for each graph node.
- The output of the message-passing engine can be forwarded into any number of decoders for a variety of tasks.
 - In this talk, we present two tasks: semantic hit segmentation and background filtering.

- This **iterative two-step message-passing engine** forms the backbone of the NuGraph2 architecture.
- An **initial encoding step** generates a learned embedding for each graph node.
- The output of the message-passing engine can be forwarded into any number of decoders for a variety of tasks.
 - In this talk, we present two tasks: semantic hit segmentation and background filtering.
 - This engine can be leveraged for much more than just these two tasks. See the NuGraph3 talk later for more details ;)

Background filtering

•

Performance metrics: recall 0.978, precision 0.977.

Recall matrix

Background filtering

- Performance metrics: recall 0.978, precision 0.977. ٠
- Inference time: 0.12 s/evt on CPU, 0.005s/evt batched on GPU ٠

GPU inference time vs batch size

Precision matrix

Hit classification

- Performance metrics: recall 0.948, precision 0.948.
- Recently improved performance by enhancing v_µ component of dataset, and using recall loss to counteract class imbalance.

Recall matrix

NuGraph2 - V Hewes - 13th November 2023

- 1.0

- 0.8

- 0.6

0.4

0.2

0.0

True filter labels

Predicted filter labels

True semantic labels (filtered by truth)

Predicted semantic labels (filtered by prediction)

True filter labels

Predicted filter labels

True semantic labels (filtered by truth)

Predicted semantic labels (filtered by prediction)

True filter labels

Predicted filter labels

True semantic labels (filtered by truth)

Predicted semantic labels (filtered by prediction)

True filter labels

Predicted filter labels

True semantic labels (filtered by truth)

Predicted semantic labels (filtered by prediction)

Common abstraction for neutrino experiments

• Although the details of many neutrino physics experiments vary, the majority of them share a common paradigm at a high level.

• The **NuML** LArSoft package (<u>github</u>) produces HDF5 files containing tables summarising basic data products.

- The NuML LArSoft package (github) produces HDF5 files containing tables summarising basic data products.
- The ph5concat package (github, conda) merges many event HDF5 files into a single file in parallel.

- The NuML LArSoft package (github) produces HDF5 files containing tables summarising basic data products.
- The ph5concat package (github, conda) merges many event HDF5 files into a single file in parallel.
- The pynuml package (github, pypi, conda) generates truth labels and efficiently preprocesses event HDF5 files into graph datasets.

- The NuML LArSoft package (github) produces HDF5 files containing tables summarising basic data products.
- The ph5concat package (github, conda) merges many event HDF5 files into a single file in parallel.
- The pynuml package (github, pypi, conda) generates truth labels and efficiently preprocesses event HDF5 files into graph datasets.
- The NuGraph package (github, pypi, conda) contains a PyTorch implementation of the network architecture, as well as data loaders for the graph dataset.

- The NuML LArSoft package (github) produces HDF5 files containing tables summarising basic data products.
- The ph5concat package (github, conda) merges many event HDF5 files into a single file in parallel.
- The pynuml package (github, pypi, conda) generates truth labels and efficiently preprocesses event HDF5 files into graph datasets.
- The NuGraph package (github, pypi, conda) contains a PyTorch implementation of the network architecture, as well as data loaders for the graph dataset.
- A conda environment to easily install these packages and all their dependencies is available <u>here</u>.

Summary

- **NuGraph2** is a multi-purpose GNN architecture for reconstructing neutrino interactions in MicroBooNE, DUNE and elsewhere.
 - Efficiently reject background detector hits.
 - Classify detector hits according to particle type.
 - Future: vertexing, clustering, hierarchical graphs!

Summary

- **NuGraph2** is a multi-purpose GNN architecture for reconstructing neutrino interactions in MicroBooNE, DUNE and elsewhere.
 - Efficiently reject background detector hits.
 - Classify detector hits according to particle type.
 - Future: vertexing, clustering, hierarchical graphs!
- NuML toolkit for standardising the process of producing ML inputs from HEP data for general use.
 - Utilised for MicroBooNE's public data release.
 - Open-source, easy-to-install code packages.