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Neutrino physics

• Neutrinos are neutral leptons, so we do not 
observe them directly.

• Instead, we search for the visible particles 

that are produced when they interact.
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Liquid Argon TPCs

• Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily 
utilised detector technology in neutrino physics.

• At FNAL: MicroBooNE, Icarus, SBND.

• Future: DUNE (70kT LArTPC deep underground, plus near detector).
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Liquid Argon TPCs

• Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily 
utilised detector technology in neutrino physics.

• At FNAL: MicroBooNE, Icarus, SBND.

• Future: DUNE (70kT LArTPC deep underground, plus near detector).

• Charged particles ionize liquid 
argon as they travel.


• Ionisation electrons drift due to 
HV electrode field, and are 
collected by anode wires.


• Wire spacing ~3mm –  
high-resolution detector.
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MicroBooNE open dataset

• The work presented here today utilises simulated neutrinos from 
MicroBooNE's Open Data Release (link).

• Simulated neutrino interactions with cosmic data overlays.


• This network architecture was originally developed in the context of the DUNE 
Far Detector geometry.

• Motivation: reconstructing complex and high-multiplicity atmospheric and ντ 

interactions.


• This network architecture is developed to have broad applicability, without 
being tied to any particular detector geometry.

• NuGraph2 is a general-purpose particle reconstruction tool.

• Developed for use in neutrino detectors, but can be deployed for other 

types of physics interactions!

https://microboone.fnal.gov/documents-publications/public-datasets/
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Exa.TrkX

• Exa.TrkX is a collaboration developing 
next-generation Graph Neural Network 
(GNN) reconstruction for HEP: 


• Energy Frontier 
• Expand on HEP.TrkX's prototype 

GNN for HL-LHC.

• Incorporate into ATLAS's simulation 

and validation chain.


• Intensity Frontier 
• Explore viability of HEP.TrkX network 

for neutrino physics.

• Develop GNN-based reconstruction 

for Liquid Argon TPCs.
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Graph Neural Networks

17

Construct graph where each node is a detector hit
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Graph Neural Networks
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Node features: 
wire index, time tick,


charge integral & RMS
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Graph Neural Networks
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Form edge features by

pulling in features from incoming 

and outgoing nodes
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Graph Neural Networks
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Perform convolutions on

edge scores to form a set


of class-wise probabilities
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Propagate node features across

edges, weighting by edge scores

21

Graph Neural Networks
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Graph Neural Networks

Perform convolutions on nodes to 
update node features
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Graph Neural Networks

We can repeat this procedure 
iteratively to "pass messages"
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Graph Neural Networks

Imagine that one graph node holds 
some key information that's 

crucial for understanding the event

0 iterations
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Graph Neural Networks

Context information from each 
graph node is dispersed through 

the graph with each iteration. 

2 iterations
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Graph Neural Networks

After multiple iterations, graph 
node features can be convolved to 

label graph nodes

33
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NuGraph1
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• First proof-of-concept model achieved 84% accuracy in classifying graph edges.

• Reasonable performance on showers, struggled to correctly identify type of track.

• See arxiv:2103.06233.
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https://arxiv.org/abs/2103.06233


NuGraph2 – V Hewes – 13th November 2023

NuGraph1

36

• First proof-of-concept model achieved 84% accuracy in classifying graph edges.

• Reasonable performance on showers, struggled to correctly identify type of track.

• See arxiv:2103.06233.

36

https://arxiv.org/abs/2103.06233


NuGraph2 – V Hewes – 13th November 2023

NuGraph1

37

• First proof-of-concept model achieved 84% accuracy in classifying graph edges.
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• See arxiv:2103.06233.
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Model output
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• See arxiv:2103.06233.

38

hadronic, muon, shower, false

Ground truth

Model output

https://arxiv.org/abs/2103.06233


NuGraph2 – V Hewes – 13th November 2023

NuGraph1

39

• First proof-of-concept model achieved 84% accuracy in classifying graph edges.

• Reasonable performance on showers, struggled to correctly identify type of track.

• See arxiv:2103.06233.
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• Second-generation model incorporates a wide range of improvements over first 
proof-of-concept.


• Move from edge classification to node (ie. hit) classification.

• Graph edge classification for track forming is a natural choice for LHC detectors, 

where sequential layers provide a natural constraint on edges.

• Dense LArTPC environment provides no such constraints, and number of edges 

explodes.


• Introduce more sophisticated semantic labelling which considers a wider variety of 
particle types, ie. EM showers, Michel electrons, diffuse EM activity.


• Build a model which classifies all views simultaneously, instead of classifying each 
detector views as an independent event.

• Furthermore, allow information exchange between 2D views to break 

degeneracies. 

NuGraph2

4040
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• Second-generation model incorporates a wide range of improvements over first 
proof-of-concept.


• Move from edge classification to node (ie. hit) classification.

• Graph edge classification for track forming is a natural choice for LHC detectors, 

where sequential layers provide a natural constraint on edges.

• Dense LArTPC environment provides no such constraints, and number of edges 

explodes.


• Introduce more sophisticated semantic labelling which considers a wider variety of 
particle types, ie. EM showers, Michel electrons, diffuse EM activity.


• Build a model which classifies all views simultaneously, instead of classifying each 
detector views as an independent event.

• Furthermore, allow information exchange between 2D views to break 
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NuGraph2
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NuGraph2 outputs

• The primary goal of NuGraph2 is to classify each detector hit 
according to particle type.


• Use five semantic categories:

• MIP: Minimum ionising particles (muons, pions etc) 
• HIP: Highly ionising particles (protons, nucleons etc) 
• EM showers 
• Michel electrons 
• Diffuse activity (Compton scatters, neutrons etc) 

• Going forward, will expand to more granular labelling schemes for 
possible μ/π/κ and e/γ separation.
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• The primary goal of NuGraph2 is to classify each detector hit 
according to particle type.


• Use five semantic categories:

• MIP: Minimum ionising particles (muons, pions etc) 
• HIP: Highly ionising particles (protons, nucleons etc) 
• EM showers 
• Michel electrons 
• Diffuse activity (Compton scatters, neutrons etc) 

• Also perform hit filtering to remove hits that are not part of the primary 
physics interaction.

NuGraph2 outputs
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NuGraph2 architecture

• NuGraph2's core convolution engine is a self-
attention message passing network utilising 
a categorical embedding.

• Each particle category is provided with a 

separate set of embedded features, which 
are convolved independently.


• Context information is exchanged between 
different particle types via a categorical 
cross-attention mechanism.


• Each message-passing iteration consists of two 
phases, the planar step and the nexus step:

• Pass messages internally in each plane.

• Pass messages up to 3D nexus nodes to 

share context information.

47
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NuGraph2 architecture

• This iterative two-step message-passing engine 
forms the backbone of the NuGraph2 architecture.


• An initial encoding step generates a learned 
embedding for each graph node.


• The output of the message-passing engine can be 
forwarded into any number of decoders for a 
variety of tasks.

• In this talk, we present two tasks: semantic hit 

segmentation and background filtering.

• This engine can be leveraged for much more than 

just these two tasks. See the NuGraph3 talk 
later for more details ;)
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Background filtering

59

• Performance metrics: recall 0.978, precision 0.977.


• Inference time: 0.12 s/evt on CPU, 0.005s/evt batched on GPU

Recall matrix
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• Performance metrics: recall 0.978, precision 0.977.


• Inference time: 0.12 s/evt on CPU, 0.005s/evt batched on GPU

Recall matrix GPU inference time vs batch size
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Hit classification

61

• Performance metrics: recall 0.948, precision 0.948.


• Recently improved performance by enhancing νμ component of dataset, and 
using recall loss to counteract class imbalance.

Recall matrix Precision matrix



NuGraph2 – V Hewes – 13th November 2023

Example event #1
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Example event #1
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Example event #1
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Example event #2
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Example event #2

67

0 20 40 60
0

50

100

100 200 300 0 50
0

0.2

0.4

0.6

0.8

1
Filter label

Predicted filter labels

wire wire wire

tim
e

u v y



NuGraph2 – V Hewes – 13th November 2023

Example event #2
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Example event #2
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Example event #3
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Example event #3
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Example event #3
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Example event #3
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Example event #4
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Example event #4
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Example event #4
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Example event #4
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Common abstraction 
for neutrino experiments

• Although the details of many neutrino physics experiments vary, the majority of them 
share a common paradigm at a high level.

NOvA
Neutrino generator


(GENIE)

Particle simulation

(Geant4)

True light

depositions

Photoelectrons

on APDs

Neutrino generator

(GENIE)

Particle simulation

(Geant4)

True ionization

electrons

Pulses on

TPC wires

MicroBooNE Shared structure

Event information

True particles

True energy 
deposits

Detector hits

7878
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The NuML ecosystem

• The NuML LArSoft package (github) produces HDF5 files containing tables 
summarising basic data products.


• The ph5concat package (github, conda) merges many event HDF5 files into 
a single file in parallel.


• The pynuml package (github, pypi, conda) generates truth labels and 
efficiently preprocesses event HDF5 files into graph datasets.


• The NuGraph package package (github, pypi, conda) contains a PyTorch 
implementation of the network architecture, as well as data loaders for the 
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• NuGraph2 is a multi-purpose GNN architecture for reconstructing 
neutrino interactions in MicroBooNE, DUNE and elsewhere.

• Efficiently reject background detector hits.

• Classify detector hits according to particle type.

• Future: vertexing, clustering, hierarchical graphs!


• NuML toolkit for standardising the process of producing ML 
inputs from HEP data for general use.

• Utilised for MicroBooNE's public data release.

• Open-source, easy-to-install code packages.
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