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@ CINGINNATI
Neutrino physics

- Neutrinos are neutral leptons, so we do not
observe them directly.
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@ CINGINNATI
Neutrino physics

Neutrinos are neutral leptons, so we do not
observe them directly.

Instead, we search for the visible particles
that are produced when they interact.
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@ cINCINNAT

Liquid Argon TPCs

- Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily

utilised detector techno

- At FNAL: MicroBooN

ogy in neutrino physics.
E, Icarus, SBND.

- Future: DUNE (70kT LArTPC deep underground, plus near detector).
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Liquid Argon TPCs

Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily

utilised detector techno

At FNAL: MicroBooN

ogy in neutrino physics.
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Future: DUNE (7OKT LArTPC deep underground, plus near detector).
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@ CINCINNATI
MicroBooNE open dataset

- The work presented here today utilises simulated neutrinos from
MicroBooNE's Open Data Release (link).

- Simulated neutrino interactions with cosmic data overlays.
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@ cINCINNAT

- The work presented here today utilises simulated neutrinos from
MicroBooNE's Open Data Release (link).

- Simulated neutrino interactions with cosmic data overlays.

- This network architecture was originally developed in the context of the DUNE
Far Detector geometry.

- Motivation: reconstructing complex and high-multiplicity atmospheric and v+
interactions.

- This network architecture is developed to have broad applicability, without
being tied to any particular detector geometry.

- NuGraph? is a general-purpose particle reconstruction tool.

- Developed for use in neutrino detectors, but can be deployed for other
types of physics interactions!
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Exa.TrkX

@

University of

CINCINNATI

- Exa.TrkXis a collaboration developing
next-generation Graph Neural Network

(GNN) reconstruction for HEP:
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, v University of
@ cINGINNAT
Exa.TrkX

Exa.TrkX is a collaboration developing
next-generation Graph Neural Network
(GNN) reconstruction for HEP:
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@ cINCINNAT
Exa.TrkX

Exa.TrkX is a collaboration developing
next-generation Graph Neural Network
(GNN) reconstruction for HEP:
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@ cINCINNAT
Exa.TrkX

Exa.TrkX is a collaboration developing
next-generation Graph Neural Network
(GNN) reconstruction for HEP:
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@

Graph Neural Networks

University of

CINCINNATI

Construct graph where each node is a detector hit
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, i~ University of
@ CINCINNAT
Graph Neural Networks

‘ ‘ Node features:

wire index, time tick,
charge integral & RMS
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@

Graph Neural Networks

University of

CINCINNATI

o

Form edge features by

L‘_} pulling in features from incoming
and outgoing nodes
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@ cINCINNAT

Graph Neural Networks

\ / Perform convolutions on
edge scores to form a set
of class-wise probabilities
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Graph Neural Networks

University of

CINCINNATI
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Propagate node features across
edges, weighting by edge scores
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, i~ University of
@ CINCINNAT
Graph Neural Networks

Perform convolutions on nodes to
‘ update node features
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@

Graph Neural Networks

University of

CINCINNATI

We can repeat this procedure
‘ teratively to "pass messages"
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@ cINCINNAT

Graph Neural Networks

O iterations

Imagine that one graph node holds

some key information that's
‘ crucial for understanding the event
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@ CINGINNATI
Graph Neural Networks

O iterations
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@ cINCINNAT

Graph Neural Networks

1 iterations
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Graph Neural Networks

1 iterations

Imagine that one graph node holds
some key information that's
crucial for understanding the event
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@ CINGINNATI
Graph Neural Networks

2 iterations

Context information from each

graph node is dispersed through
‘ the graph with each iteration.
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@ CINGINNATI
Graph Neural Networks

After multiple iterations, graph
node features can be convolved to
‘ label graph nodes
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@ cINCINNAT

- First proof-of-concept model achieved 84% accuracy in classifying graph edges.

- Reasonable performance on showers, struggled to correctly identify type of track.
-+ See arxiv:2103.06233.
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True label
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@ cINCINNAT

First proof-of-concept model achieved 84% accuracy in classifying graph edges.
Reasonable performance on showers, struggled to correctly identify type of track.
See arxiv:2103.06233.
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shower
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@ cINCINNAT

First proof-of-concept model achieved 84% accuracy in classifying graph edges.
Reasonable performance on showers, struggled to correctly identify type of track.
See arxiv:2103.06233.

false hower o haronic hadronic, muon, shower,
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True label

shower muon hadronic
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@

University of

CINCINNATI

First proof-of-concept model achieved 84% accuracy in classifying graph edges.

Reasonable performance on showers, struggled to correctly identify type of track.

See arxiv:2103.06233.
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True label

shower muon hadronic

false

@ cINCINNAT

First proof-of-concept model achieved 84% accuracy in classifying graph edges.
Reasonable performance on showers, struggled to correctly identify type of track.
See arxiv:2103.06233.
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@ CINGINNATI
NuGraph2

- Second-generation model incorporates a wide range of improvements over first
proof-of-concept.
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@ cINCINNAT

Incorporates a wide range of improvements over first
proof-of-concept.

- Move from edge classification to node (ie. hit) classification.

- Graph edge classification for track forming is a natural choice for LHC detectors,
where sequential layers provide a natural constraint on edges.

- Dense LArTPC environment provides no such constraints, and number of edges
explodes.
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particle types, ie. EM showers, Michel electrons, diffuse EM activity.
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@ cINCINNAT

Incorporates a wide range of improvements over first
proof-of-concept.

- Move from edge classification to node (ie. hit) classification.

- Graph edge classification for track forming is a natural choice for LHC detectors,
where sequential layers provide a natural constraint on edges.

- Dense LArTPC environment provides no such constraints, and number of edges
explodes.

Introduce more sophisticated semantic labelling which considers a wider variety of
particle types, ie. EM showers, Michel electrons, diffuse EM activity.

- Build a model which classifies all views simultaneously, instead of classifying each

detector views as an independent event.

- Furthermore, allow information exchange between 2D views to break
degeneracies.
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@ cINCINNAT

- The primary goal of NuGraph? is to classify each detector hit
according to particle type.
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@ cINCINNAT
NuGraph2 outputs

- The primary goal of NuGraph? is to classify each detector hit
according to particle type.

- Use five semantic categories:
- MIP: Minimum ionising particles (muons, pions etc)
- HIP: Highly ionising particles (protons, nucleons etc)
- EM showers

- Michel electrons
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@ cINCINNAT
NuGraph2 outputs

- The primary goal of NuGraph? is to classify each detector hit
according to particle type.

- Use five semantic categories:
- MIP: Minimum ionising particles (muons, pions etc)
- HIP: Highly ionising particles (protons, nucleons etc)
- EM showers

- Michel electrons

- Also perform hit filtering to remove hits that are not part of the primary
physics interaction.
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NuGraph?2's core convolution engine is a self-
attention message passing network utilising
a categorical embedding.
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NuGraph?2's core convolution engine is a self-
attention message passing network utilising
a categorical embedding.

Each particle category is provided with a
separate set of embedded features, which
are convolved independently.
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different particle types via a categorical
cross-attention mechanism.
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cross-attention mechanism.

Each message-passing iteration consists of two
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NuGraph?2's core convolution engine is a self-
attention message passing network utilising
a categorical embedding.

Each particle category is provided with a
separate set of embedded features, which
are convolved independently.

- Context information is exchanged between
different particle types via a categorical
cross-attention mechanism.

Each message-passing iteration consists of two
phases, the planar step and the nexus step:

Pass messages internally in each plane.

@ cINCINNAT

Planar block

"

Mean Pooling

Concatenation
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@ cINCINNAT

| . . . Planar block Nexus block
NuGraph?2's core convolution engine is a self-

attention message passing network utilising T Pi T”f
a categorical embedding.

b, b,
Each particle category is provided with a A 3
separate set of embedded features, which e o
are convolved independently.
m di
Context information is exchanged between : ; k
different particle types via a categorical P Ad
cross-attention mechanism. — 1 i
a, X
Each message-passing iteration consists of two 1 s— 1
phases, the planar step and the nexus step: )L W,
Pass messages internally in each plane. ) sum Pooling R
0
Pass messages up to 3D nexus nodes to Mean Pooling *

share context information. Concatenation |
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@ cINCINNAT

This iterative two-step message-passing engine NuGraph2
forms the backbone of the NuGraph2 architecture. - T %

Nexus

t

Planar
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@ cINCINNAT

This iterative two-step message-passing engine NuGraph2
forms the backibone of the NUGraphZ architecture. - T xu

An Initial encoding step generates a learned
embedding for each graph node. |

Nexus

tr

Planar
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@ cINCINNAT

- This iterative two-step message-passing engine NuGraph2
forms the backbone of the NuGraph2 architecture. - sz-"“t ‘-
. | Decoder
- An initial encoding step generates a learned
embedding for each graph node. l|
+ The output of the message-passing engine can be | Nexus
forwarded into any number of decoders for a Tpf’
variety of tasks. Planar
- Encoder
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- This iterative two-step message-passing engine NuGraph2
forms the backbone of the NuGraph?2 architecture. - Tx?“‘ f_
- f‘ Decoder
- An initial encoding step generates a learned
embedding for each graph node. l|
- The output of the message-passing engine can be | e
forwarded into any number of decoders for a Tpf’
variety of tasks. Planar
In this talk, we present two tasks: semantic hit _’f’
segmentation and background filtering. y

0
n;
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- This iterative two-step message-passing engine

forms the backbone of the NuGraph2 architecture.

- An initial encoding step generates a learned
embedding for each graph node.

- The output of the message-passing engine can be
forwarded into any number of decoders for a
variety of tasks.

In this talk, we present two tasks: semantic hit
segmentation and background filtering.

- This engine can be leveraged for much more than
just these two tasks. See the NuGraph3 talk
later for more detalils ;)
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Background filtering

Performance metrics: recall 0.978, precision 0.977.

Recall matrix
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|
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@ CINCINNAT
Background filtering

Performance metrics: recall 0.978, precision 0.977.

Inference time: 0.12 s/evt on CPU, 0.005s/evt batched on GPU

Recall matrix GPU inference time vs batch size
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Hit classification

- Performance metrics: recall 0.948, precision 0.948.

True label

@ cINCINNAT

Recently improved performance by enhancing v, component of dataset, and
using recall loss to counteract class imbalance.
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I
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Recall matrix
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@ CINGINNATI
Example event #1

True filter labels
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@ CINCINNAT
Example event #1

Predicted filter labels
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@ CINGINNATI
Example event #1

True semantic labels (filtered by truth)
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@ CINGINNATI
Example event #1

Predicted semantic labels (filtered by prediction)
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@ CINGINNATI
Example event #2

True filter labels

u Y y
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@ CINCINNAT
Example event #2

Predicted filter labels
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@ CINGINNATI
Example event #2

True semantic labels (filtered by truth)

u V y
105 ¢ h Semantic label
100 o 4 ® shower

30 40 50 60 160165170175180 O 20 40

wire wire wire
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@ CINGINNATI
Example event #2

Predicted semantic labels (filtered by prediction)
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@ CINCINNAT
Example event #3

True filter labels
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@ CINGINNATI
Example event #3

Predicted filter labels
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@ CINGINNATI
Example event #3

True semantic labels (filtered by truth)
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@ CINGINNATI
Example event #3

Predicted semantic labels (filtered by prediction)
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@ CINGINNATI
Example event #4

True filter labels
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Example event #4

Predicted filter labels
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@ CINGINNATI
Example event #4

True semantic labels (filtered by truth)
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@ CINGINNATI
Example event #4

Predicted semantic labels (filtered by prediction)
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Common abstraction @ cINCINNAT
for neutrino experiments

Although the details of many neutrino physics experiments vary, the majority of them
share a common paradigm at a high level.

NOvVA MicroBooNE Shared structure
_____ —¥ Neutrino generator - »e— Neutrino generator . :
>e
(GENIE) (GENIE) Event information
< <
Particle simulation Particle simulation T rticl
(Geant4) (Geant4) rue particles
True light True ionization True energy
depositions electrons deposits
Photoelectrons Pulses on .
on APDs TPC wires Detector hits
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@ CINGINNATI
The NuML ecosystem

- The NuML LArSoft package (github) produces HDF5 files containing tables
summarising basic data products.

NuGraph2 -V Hewes — 13th November 2023 79


https://github.com/vhewes/numl
https://github.com/NU-CUCIS/ph5concat
https://anaconda.org/numl/ph5concat
https://github.com/vhewes/pynuml
https://pypi.org/project/pynuml
https://anaconda.org/numl/pynuml
https://github.com/exatrkx/NuGraph
https://pypi.org/project/nugraph
https://anaconda.org/numl/nugraph
https://anaconda.org/numl/numl

@ CINGINNATI
The NuML ecosystem

- The NuML LArSoft package (github) produces HDF5 files containing tables
summarising basic data products.

- The phbconcat package (github, conda) merges many event HDF5 files into
a single file in parallel.
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- The NuGraph package (github, pypi, conda) contains a PyTorch
implementation of the network architecture, as well as data loaders for the
graph dataset.
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The NuML ecosystem

- The NuML LArSoft package (github) produces HDF5 files containing tables
summarising basic data products.

- The phbconcat package (github, conda) merges many event HDF5 files into
a single file in parallel.

- The pynuml package (github, pypi, conda) generates truth labels and
efficiently preprocesses event HDFb5 files into graph datasets.

- The NuGraph package (github, pypi, conda) contains a PyTorch
implementation of the network architecture, as well as data loaders for the
graph dataset.

- A conda environment to easily install these packages and all their
dependencies is available here.

NuGraph2 -V Hewes — 13th November 2023 83


https://github.com/vhewes/numl
https://github.com/NU-CUCIS/ph5concat
https://anaconda.org/numl/ph5concat
https://github.com/vhewes/pynuml
https://pypi.org/project/pynuml
https://anaconda.org/numl/pynuml
https://github.com/exatrkx/NuGraph
https://pypi.org/project/nugraph
https://anaconda.org/numl/nugraph
https://anaconda.org/numl/numl

, iy University of
@ CINCINNAT
Summary

- NuGraph2 is a multi-purpose GNN architecture for reconstructing
neutrino interactions in MicroBooNE, DUNE and elsewhere.

- Efficiently reject background detector hits.
- Classify detector hits according to particle type.

-+ Future: vertexing, clustering, hierarchical graphs!
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- NuML toolkit for standardising the process of producing ML

inpu

s from HEP data for general use.

.U-

ilised for MicroBooNE's public data release.

- Open-source, easy-to-install code packages.
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