Implementation of new beam focusing systematics within the PRISM Analysis

loana Caracas on behalf of DUNE – PRISM working group

DUNE LBL Meeting

30.10.2023

Incorporation of beam focusing uncertainties (v3r5p9 release of G4LBNE) within PRISM Analysis

• Focusing uncertainties:

2

- the position, geometry, and composition of the beamline components (horns, target, decay pipe, etc)
- the current or water layer in each horn
- the geometry of the incident proton beam
- Previous flux focusing systematics (Nov 17) are incomplete and include only 2 horns
- New (not present in the previous releases) uncertainties:
 - tilt of target, horns, decay pipe
 - horns' inner conductor deformations
 - major updates to the decay pipe geometry and positioning

Parameter	1 σ Shift	Notes
Proton Beam Transverse Y	0.5 mm	Interaction Position
Proton Beam Transverse V	0.5 mm	Lindated to 0.5 mm from 4.5 mm in TDR
Proton Beam Angle X	$\delta \theta = 70 \text{ urad}$	Proton Beam Angle on target
Toton Beam Angle A	$\Phi = 0, \pi$	Target Interaction Point fixed to center of target
Proton Beam Angle Y	$\delta \theta = 70 \mu rad$ $\Phi = \pm \pi/2$	Turget interaction Found interaction center of turget
Proton Beam Radius	10% (0.27 mm)	Updated from 1% in the TDR. Change X&Y sigmoid simultaneously
Target Density	2% (0.0356 g/cm ³)	Approximate target degredation
Upstream Target Degredation	5 mm loss	Assume complete loss of target on upstream end; basically a shorter target (by dz) shifted downstream by the loss dz
Target Displace Transverse X	0.5 mm	
Target Displace Transverse Y	0.5 mm	
Target Tilt Transverse X	0.5 mm	
Target Tilt Transverse Y	0.5 mm	
Target Length	1.5 mm (0.01%)	Arbitrarily assumed tolerance
Horn Currents	1% (3 kA)	Simoultaneously change to all 3 Horns; nominal = 300 kA
Horn Water Layer Thickness	0.5 mm	Simultaneous change to all 3 Homs; nominal = 1 mm. Cannot go below 0
Horn A Displace Transverse X	0.5 mm	
Horn A Displace Transverse Y	0.5 mm	
Horn A Displace Longitudinal Z	2.0 mm	
Horn A Tilt Transverse X	0.5 mm	Upstream and downstream ends shifted in opposite
Horn A Tilt Transverse Y	0.5 mm	directions by tolerance value
Horn A Eccentricity X induced B Field	0.035 mm	field in y in field-free region. NuMI Hom 1 tolerance assumed
Horn A Ellipticity X Induced B Field	0.120mm	Elliptical deformation of inner conductor; induced quadrupole field in x-y in field-free region; NuMI Hom1 tolerance assumed
Horn B Displace Transverse X	0.5 mm	
Horn B Displace Transverse Y	0.5 mm	
Horn B Displace Longitudinal Z	3.0 mm	
Horn B Tilt Transverse X	0.5 mm	Upstream and downstream ends shifted in opposite
Horn B Tilt Transverse Y	0.5 mm	directions by tolerance value
Horn B Ellipticity X Induced B Field	0.180 mm	NuMI Horn 2 tolerance assumed
Horn C Displace Transverse X	0.5 mm	
Horn C Displace Transverse Y	0.5 mm	
Horn C Tilt Transverse X	0.5 mm	
Horn C Tilt Transverse V	0.5 mm	
Horn C Eccentricity X Induced B Field	0.07 mm	NuMI horn 2 tolerance assumed
Horn C Ellipticity X Induced B Field	0.180 mm	NuMI horn 2 tolerance assumed
Decay Pipe Radius	2.0 cm	Changed from 10 cm: nominal = 2 m
Decay Pipe Length	2.5 cm	Same as elongating, since the distance between decay
Decay Pipe Displace Transverse X	2.5 cm	pipe aportean is intea
Decay Pipe Displace Transverse Y	2.5 cm	
Decay Pipe Tilt X DSOA	2.5 cm	Downstream (DS) end fixed to remain on axis
Decay Pipe Tilt Y DSOA	2.5 cm	
Decay Dine Elliptical Cross section X (A)	2.5 cm	Ellingo with A (Y avid) or P (y avid) regard by
Decay Pipe Elliptical Cross section X (A)	2.5 cm	tolerance, while other dimension fixed to nominal radius
Decay Pipe Geo B Field	1	Scale-factor value to 1 is 1σ tolerance. Mapped from NuMI decay pipe geo B-field measurements
Decay Pipe Segmented Bowing X	2.5 cm	Decay Pipe segmented in 3 equal pieces; central
Decay Pipe Segmented Bowing X	2.5 cm	piece transverse shifted by tolerance
Decay ripe beginemen bowing A	2.5 UII	

New Flux Systematics – September 2021

September 2021: 45 flux parameters (beam systs)

→ Investigate the effect each individual parameter has on the PRISM oscillation analysis

10 IMPORTANT (influence the sensitivity substantially)

8 SEMI (influence the oscillation fit much less)

27 NEGLIGIBLE (negligible effect on the oscillation fit)

 Analysis variable is reconstructed neutrino energy: EnuReco

3

 $\rightarrow\,$ all of the presented results are obtained by using EnuReco unless stated otherwise

IMPORTANT

- 1σ shift = 0.5 mm

Decay Pipe Geo BField

5

- 1σ shift = 1: scale factor value of 1 is 1σ tolerance (mapped from NuMI Decay Pipe Geo Bfield measurements)

- 1σ shift = 0.5 mm

6

Ioana Caracas | Implementation of new flux focusing systematics within the PRISM Analysis

ICINE DUNE

NEGLIGIBLE

New Flux Systematics (Sept 21) – Important parameters

10 IMPORTANT parameters: influence the sensitivity substantially

- HornADisplaceTransverseX

- HornBDisplaceTransverseX
- HornCDisplaceTransverseX
- HornAEccentricityXInducedBField
- HornCEccentricityXInducedBField
- HornATiltTransverseX
- HornCurrent
- HornWaterLayerThickness
- ProtonBeamTransverseX
- TargetUpstreamDegredation
- New uncertainties (not present in TDR): Horn C Displace Transverse, Eccentricity X (both A and C), Horn Tilt (horn A) target upstream degredation

IMPORTANT

- 1σ shift = 0.5 mm

Ioana Caracas | Implementation of new flux focusing systematics within the PRISM Analysis

- 1 σ shift = 0.5 mm, $v_{\mu} \rightarrow v_{\mu}$ channel
- look at both FD and ND fractional ratios versus energy when the the flux parameter of interest is shifted by 1 σ

FD HornADisplaceTransverseX + 1σ

ND HornADisplaceTransverseX + 1σ

IMPORTANT

- 1 σ shift = 0.5 mm, $v_{\mu} \rightarrow v_{\mu}$ channel

- PRISM linear combination (ND) fractional shift is much higher than the oscillated FD one + different energy dependence between ND and FD
 → impact on the oscillation parameters sensitivity
- uncertainties of < 1% (small difference between nominal and 1 σ shifted prediction) → why such a high sensitivity reduction?

- 1 σ shift = 0.5 mm, $v_{\mu} \rightarrow v_{\mu}$ channel

 \rightarrow investigate sensitivity reduction and systematic shifts corresponding to best χ^2 at each scan parameter

11 Ioana Caracas | Implementation of new flux focusing systematics within the PRISM Analysis

- 1 σ shift = 0.5 mm, $v_{\mu} \rightarrow v_{\mu}$ channel

 \rightarrow investigate sensitivity reduction and systematic shifts corresponding to best χ^2 at each scan parameter

IMPORTANT

12 Ioana Caracas | Implementation of new flux focusing systematics within the PRISM Analysis

- \rightarrow why is a -3 σ syst. shift preferred as the best fit?
- χ^2 calculation is using Asimov data (PRISM pred Asimov data), with PRISM pred for different scan parameters
- For a scan parameter of $\sin^2\theta_{23} = 0.4$ the PRISM prediction corresponding to -3σ (value preferred by χ^2) shift is fitting the data (Asimov-like) much better than the nominal PRISM prediction

13 Ioana Caracas | Implementation of new flux focusing systematics within the PRISM Analysis

- \rightarrow why is a -3 σ syst. shift preferred as the best fit?
- χ^2 calculation is using Asimov data (PRISM pred Asimov data), with PRISM pred for different scan parameters
- For a scan parameter of $\sin^2\theta_{23} = 0.4$ the PRISM prediction corresponding to -3σ (value preferred by χ^2) shift is fitting the data (Asimov-like) much better than the nominal PRISM prediction

- → why is the sensitivity reduced so much given the small fractional shifts?
- χ^2 calculation is using Asimov data (PRISM pred Asimov data), with PRISM pred for different scan parameters
- For a scan parameter of $\sin^2 \theta_{23} = 0.4$ the PRISM prediction corresponding to -3σ (value preferred by χ^2) shift is fitting the data (Asimov-like) much better than the nominal PRISM prediction

→ Sensitivity reduction due to higher uncertanties (3σ vs 1σ) and much better (lower χ^2) PRISM prediction at 3 σ for the given scan parameter (sin²θ₂₃ = 0.4) compared to the nominal

 \rightarrow limit systematics shift to +/- 1 σ in the fit

Sensitivity $v_{\mu} \rightarrow v_{\mu}$

• much smaller sensitivity reduction (specifically at the edges) when limiting the syst shifts to $+/-1\sigma$

Sensitivity $v_{\mu} \rightarrow v_{\mu}$

• limit systematics shift to different σ ranges in the fit

Open questions...

• Horn systematics

- Eccentricity X Induced Bfield \rightarrow why so high uncertainty values? (up to 3% for both horn A and horn C horn B systematics missing for this parameter)
- Target Upstream Degredation (5 mm loss at 1 σ)
 - Uncertainties up to 50% for on-axis at $E \approx 4 GeV \rightarrow$ is this realistic?
- Decay Pipe Geomagnetic field
 - Relatively high uncertainties: up to 1.5%
 - What is the assumption for uncertainty calculation? ("Scale-factor of 1 is 1-σ tolerance. Mapped from NuMI Decay Pipe Geo B-Field Measurements")

So far...

- Successfully **implemented new beam focusing systematics** (v3r5p9 release of G4LBNE) **within the PRISM Analysis software**
 - energy binning issue solved: uncertainties vs off axis vs energy look smooth and result in correct oscillation fits shape for all parameters
 - no additional biases when true neutrino energy is used
- Identified 10 IMPORTANT parameters which reduce the PRISM sensitivity significantly
 - understand why the sensitivity is reduced so much for certain scan parameters

Still TO DO:

- look at all important parameters and confirm the results obtained from Horn A Displace Transverse X
- talk to the beam group and try to better understand the provided systematics as well as a way of further reducing them

So far...

- Successfully **implemented new beam focusing systematics** (v3r5p9 release of G4LBNE) **within the PRISM Analysis software**
 - energy binning issue solved: uncertainties vs off axis vs energy look smooth and result in correct oscillation fits shape for all parameters
 - no additional biases when true neutrino energy is used
- Identified 10 IMPORTANT parameters which reduce the PRISM sensitivity significantly
 - understand why the sensitivity is reduced so much for certain scan parameters

Still TO DO:

- look at all important parameters and confirm the results obtained from Horn A Displace Transverse X
- talk to the beam group and trying to better understand the provided systematics as well as a way of further reducing them

ANY ideas are more than welcome :)

Thank you very much!

- 1σ shift = 0.5 mm
- look at both FD and ND fractional ratios versus energy when the the flux parameter of interest is shifted by 1 σ

FD HornADisplaceTransverseX + 1o

ND HornADisplaceTransverseX + 1σ

- 1σ shift = 0.035 mm: NuMi Horn 1 tolerance assumed (off axis deformation of inner conductor)

• Parameter previously (Nov17 – TDR) not studied (i.e no syst shift) → significant influence on the sensitivity

- 1σ shift = 0.035 mm: NuMi Horn 1 tolerance assumed (off axis deformation of inner conductor)

- 1σ shift = 0.035 mm: NuMi Horn 1 tolerance assumed (off axis deformation of inner conductor)

HornAEccentricityXInducedBField

- 1σ shift = 0.07 mm: NuMi Horn 2 tolerance assumed (off axis deformation of inner conductor)

Sensitivity $v_{\mu} + \overline{v_{\mu}} + v_{e} + \overline{v_{e}}$ Sensitivity $v_{\mu} + \overline{v_{\mu}} + v_{e} + \overline{v_{e}}$ ∼× ⊽ 140 35 ${\scriptstyle \Delta}~\chi^2$ HornCEccentricityXInducedBField HornCEccentricityXInducedBField No Systs No Systs 30 120 Exposure = 336 kt-MW-Yrs Exposure = 336 kt-MW-Yrs 25 100 Fit obtained from **Etrue** as Fit obtained from **Etrue** as variable analysis 20 variable analysis 80 15 60 10 40 20 2.4 2.42 2.46 2.48 2.5 2.44 0.45 0.5 0.55 0.6 0.65 0.4 $\Delta m_{32}^2 (10^{-3})$ $\sin^2 \theta_{23}$

- 1σ shift = 0.07 mm: NuMi Horn 2 tolerance assumed (off axis deformation of inner conductor)

IMPORTANT

ND HornCEccentricityXInducedBField + 1σ

27 Ioana Caracas | Implementation of new flux focusing systematics within the PRISM Analysis

- 1σ shift = 0.07 mm: NuMi Horn 2 tolerance assumed (off axis deformation of inner conductor)

- 1σ shift = 0.07 mm: NuMi Horn 2 tolerance assumed (off axis deformation of inner conductor)

- Results obtained by using true energy **Etrue** as analysis variable

Fractional shift HornCEccentricityXInducedBField+ 1σ

30

- 1σ shift = 5 mm loss: assume complete loss of target on upstream end (a shorter target by dz shifted downstream by the loss dz)

• Results when using true energy **Etrue** as analysis variable

- 1σ shift = 5 mm loss: assume complete loss of target on upstream end (a shorter target by dz shifted downstream by the loss dz)

FD TargetUpstreamDegredation + 1σ

ND TargetUpstreamDegredation + 10

- 1σ shift = 5 mm loss: assume complete loss of target on upstream end (a shorter target by dz shifted downstream by the loss dz)

- results when using true energy **Etrue** as analysis variable

Fractional shift TargetUpstreamDegredation + 1o

TargetUpstreamDegredation

IGI

- 1σ shift = 5 mm loss: assume complete loss of target on upstream end (a shorter target by dz shifted downstream by the loss dz)

IGI

- 1σ shift = 5 mm loss: assume complete loss of target on upstream end

Target Upstream Degredation vs HornCurrent

 \rightarrow fractional error obtained from the flux files (original energy binning)

High fractional uncertainties (up to 50%) for TargetUpstreamDegredation parameter are coming from the original root files (not a re-binning issue)

Horn A Displace Transverse X → comparison to Nov17 systs

ICIN DUNE

Ioana Caracas | Implementation of new flux focusing systematics within the PRISM Analysis

