HEP-CCE

High Energy Physics Center for Computational Excellence

Detector Simulation

Tom Evans for Celeritas, HEP-CCE

DOE HEP CCE All Hands Dec 18 2023

HEP-CCE Phase 2 – Detector Simulation

- Platform portable geometric tracking
- Optical photons

Specific objectives and deliverables discussed this afternoon

Geometric capabilities - current status

Monte Carlo general particle simulations use VecGeom as the standard package

HEP-CCE

- Adapted from CPU vectorization prototype
- Extended to work for Nvidia CUDA
- Supports Geant4 model construction and tracking
- Optical photons use several approaches
 - Native Geant4 navigation in full event-stepping loop
 - Opticks HEP library (uses Nvidia OptiX[™] ray-tracing engine)
- Drawbacks:
 - No platform portability existing libraries are Nvidia-centric
 - Distinct code bases reduce opportunities to amortize common capabilities
- Objective:
 - Support platform portability across DOE LCFs
 - Unified geometry components that can support multiple applications

Brookhaven **EFermilab**

Geometric modeling in HEP - application objectives

General Monte Carlo navigation **HEP Geometry Applications** Robust boundary crossings (double precision) Error checking Graph-based search and subcell optimations **General Monte** • Ray-tracing for optical photons and visualization Ray-tracing Carlo transport Graph-based multi-surface tracking Track batching Variable-precision Commonalities: optical visualization reconstruction Portability: (Intel, AMD, Nvidia GPUs, multicore) photons

Brookhaven^{*} **Fermilab**

HEP-CCE

- Physics-based simulations require high-precision tracking 0
- Bounding volume hierarchy (BVH) graph-based optimizations Ο
- Many low-level components can be shared Ο
 - High-level APIs will be different depending on application

Geometry packages must support existing HEP model formats and descriptions

Ο

Ο

0

0

Ο

0

Ο

Geometry - benefits to HEP community

- Provide geometric capabilities for spectrum of applications
 - Monte Carlo detector simulation
 - Optical photon ray-tracing
 - Reconstruction tracking
 - Visualization
- Platform portability
 - Support current and future architectures in DOE LCFs
- Community sustainability
 - Interdisciplinary applications beyond HEP
- ORANGE geometry engine
 - New engine developed in Celeritas
 - Tracking based on CSG tree of surfaces constructed from volumes
 - Collaboration to implement surface-based tracking in VecGeom

Optical photon transport - current status

- Critical application spaces:
 - DUNE (art)
 - LZ (BACCARAT)
 - \circ CalVision
- Current approaches:
 - Direct transport using Geant4 generalized navigation engine
 - e.g., BACCARAT spends >95% of CPU time on optical photon transport when using Geant4
 - Full transport replaced with *fast* approximation methods
 - Optimized optical photon transport using Opticks
- Drawbacks:
 - Portability
 - Geant4 capabilities CPU-only
 - Opticks only available on Nvidia architectures
 - Performance for direct simulation

Optical photon transport - application objectives

• Fast throughput for direct transport

- Avoid or accelerate fast approximations (e.g. optical maps in BACCARAT)
- Platform portability
- Ease of integration into existing application frameworks
 - art
 - BACCARAT
 - future luminescent detector applications
- Compatibility with Geant4 geometry models
 - Large detector regions
 - Large detector arrays

Optical photon transport efficiency is closely tied to geometric modeling capabilities

Optical photon transport approaches

- Opticks demonstrated that very high efficiencies can be obtained using GPU ray-tracing
 - >1000x Geant4 direct simulation
- Efficiency gains result from:
 - Specialized optical photon ray-tracing loop
 - Hardware acceleration (BVH traversal)

Optical photon shower (JUNO neutrino detector); S.C. Blyth, *Opticks: GPU Optical Photon Simulation for Particle Physics with Nvidia OptiX*[™], CHEP 2018.

Brookhaven^{*} **Fermilab**

HEP-CCE

Detector simulation throughput

 GPUs cannot be ignored if present of prese 250 80 GPU Nvidia V100 6 CPU **AMD EPYC 7763** 280 64 Perlmutter GPU Nvidia A100 250 108 CPU **AMD EPYC 7453** ^{‡64} 225 Frontier †**4** GPU AMD MI250x 500 220

▓ × 10^{1} ్× Summit (CPU) 10^{0} × Summit (GPU) Frontier (CPU) Frontier (GPU) \times Frontier (G4) Perlmutter (CPU) Perlmutter (GPU) Х Perlmutter (G4) v0.4.1 on perlmu AF<! AFM BFM ZFM ΒF ЧÜ CM CFM ΒM \odot Ν Problem EM only, no SDs *or SMs; [†]Each card has 2 GPUs [‡]One core reserved per GPU

Brookhaven^{*} **Constant** Fermilab

Office of Science