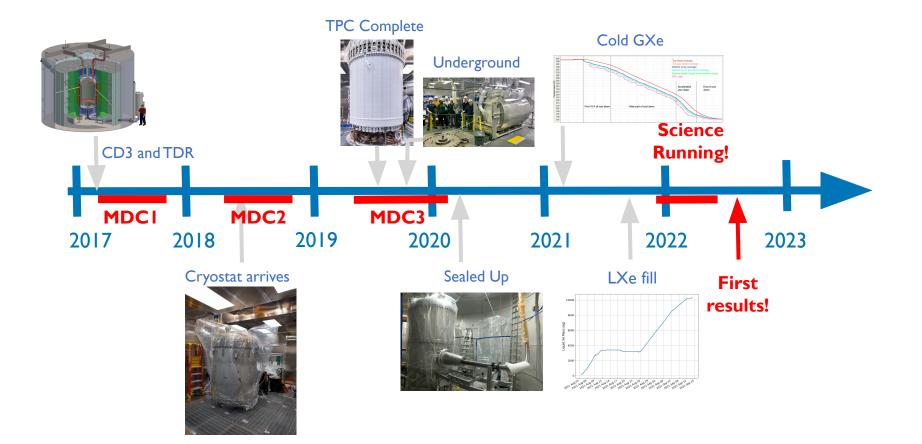

LUX-ZEPLIN: data-intensive search for Dark Matter

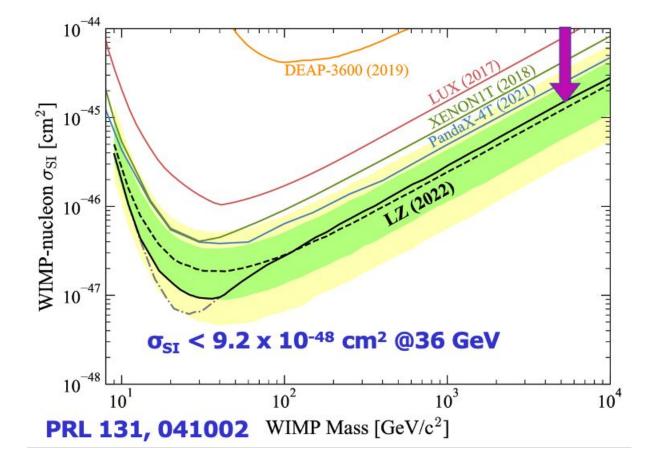
Maria Elena Monzani

HEP-CCE All-Hands Mtg. Dec. 19 2023

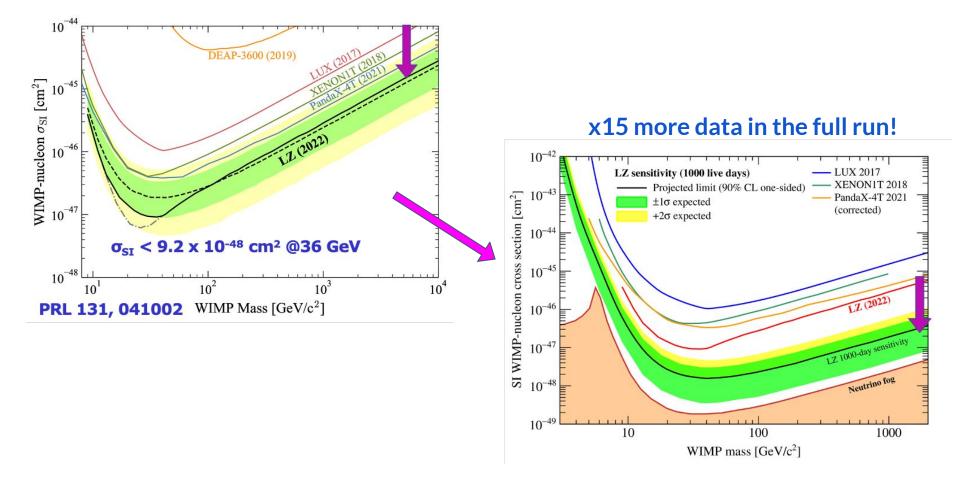
The LUX-ZEPLIN (LZ) Dark Matter Experiment


LZ is a 10-ton Liquid Xenon TPC

- Located underground at SURF, South Dakota
- Initial science run data in winter/spring 2022
- Set world-record WIMP sensitivity in July 2022
- (5 weeks turnaround between run and results)!
- LZ data is stored and processed at NERSC


Data Throughput (order of magnitude)

- Fermi-LAT (>2008): 0.3 PB/year
- LZ (2021-2028+): 3.5 PB/year, 7+ years
- ATLAS (>2010): 3.2 PB/year (raw)
- PS: extreme "needle in a haystack" problem!


Construction and Data Taking Timeline

World-leading WIMP sensitivity (July 10, 2022)

An extension through 2028 was endorsed by P5

LZ: Offline Computing and Software

Data is staged at SURF and transferred to the remote data centers

- Fully redundant data center design (each site can run data processing and simulation production... and store a complete copy of all the data)!
- Data rate: ~3 PB/year, including raw, reconstructed, calibrations, etc.
- All detector data are processed automatically 24/7 at the USDC.
- Data can be reprocessed on-demand based on calibrations and analysis.
- Reconstructed and simulated data is then made available to all analyzers.

Temporary Storage:

Reconstructed & simulated data can be analyzed at either data center

- NERSC and GridPP have diverging CPU architectures. All LZ software & analysis tools can run seamlessly on either architecture.
- System choice is based on user preference, but several team members have become proficient at both supercomputers and distributed computing.

US Data Center (USDC):

- Prompt Processing
- Long-term Archiving

Nersc

UK Data Center (UKDC):

Data Reprocessing Sims Production

Distributed CPUs!

UK Computing for Particle Physics

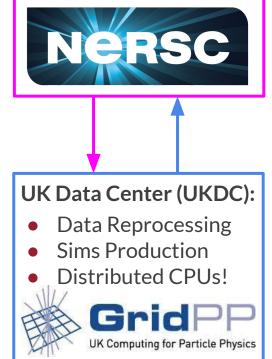
• Supercomputers!

Offline Requirements and Design Principles

Store all raw & reconstructed data from LZ

- 2 "live" copies of all raw & reconstructed data at NERSC and UKDC
- 1 "tape" archive of all raw data at NERSC before bias mitigation
- At least 1 backup of all versions of reconstructed data at NERSC

Process detector data early and often


- Automatic prompt-processing at USDC upon data reception
- Redundant capabilities to reprocess/simulate multiple times based on calibration/analysis results (rerun 1 year of data in 1 month)

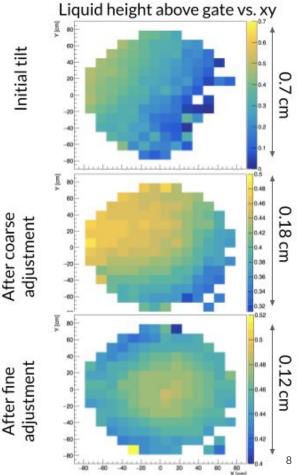
Time is of the essence! Rapid (<1 day) turnaround

- Very limited computing resources are available at SURF (RAID array for storage and "first look" online quality monitoring tool)
- Full-scale detector health assessment happens at NERSC. Quasi-real-time analysis feedback during commissioning

US Data Center (USDC):

- Prompt Processing
- Long-term Archiving
- Supercomputers!

Resilience, Reliability, Robustness


Superfacility uptime: uptime of LZ x uptime of NERSC services

- Downtime is expensive:
 - Defensive Engineering
 - Reputation with Science partners
- We use so many part of NERSC, downtime or degradation anywhere (DTNs, CFS, Slurm, SPIN, etc.) impacts entire workflow

Impact on commissioning, operations, calibration, detector health

- Example: SURF underground days are Mon-Thu or Tue-Fri
- We performed the leveling of the detector on a Mon-Thu week
- However, there was a scheduled Cori outage that Wed
- We needed to be able to look at/analyze data every night
- (heroic effort from NERSC to keep us running on Gerty that week)

TPC leveling campaign

Sustainability of LZ computing to 2028+

Portable workflows

- Goal: maximize uptime, guarantee fast turnaround (<1 day)
- Plan: a "backup" system in the US to mitigate NERSC downtime

Optimizing data storage

- Portable workflows require exposing/exporting the dataset
- Robustness of data movement to UKDC is a crucial need

Scaling up HEP AI/ML applications

• Extreme "needle in a haystack" problem for DM identification

Accelerating HEP simulations

- Simulation time is dominated by raytracing of optical photons
- Offload raytracing to the GPU (crucial to design G3 experiment)

1. Workflow Portability Pilot


Multiple options for alternate data center (s) on the US

- ANL: hoping similar interfaces and protocols to NERSC
- FermiGrid: simplify the data movement issues with GridPP
- SLAC S3DF: same architecture as Perlmutter (AMD Milan)
 - Additional benefit: synergies with DESC and LCLS-II

2023 October 20, Maria Elena Monzani

1. Workflow Portability Pilot

Multiple options for alternate data center (s) on the US

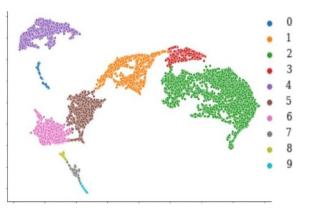
- ANL: hoping similar interfaces and protocols to NERSC
- FermiGrid: simplify the data movement issues with GridPP
- SLAC S3DF: same architecture as Perlmutter (AMD Milan)
 - Additional benefit: synergies with DESC and LCLS-II

2. Data Storage/Data Movement

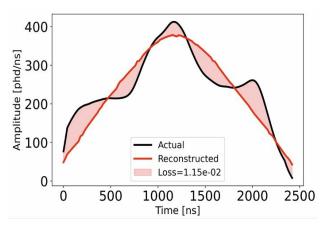
Data Movement is a vulnerability in our infrastructure

- Expose all datasets via xrootd, to support portable workflow
- If pilot is successful, automate "exposure" of datasets
- Upgrade data movement framework from SPADE to Rucio
- Improve integration with GridPP (diverging IM, certificates)

3. Scaling up HEP AI/ML applications


Extreme needle in a haystack problem:

- Identify a handful of DM events (if nature cooperates)
- Expected background is of order ~5-10 billion events
- Background rejection problem with a rarity of order 10⁻⁹
- Ideal playground for the development of novel ML algorithms
- Rare/unmodeled backgrounds can spoil bias mitigation schema


Approach: anomaly detection at the 10⁻⁹ sensitivity

- Collaboration with Stanford ICME (School of Engineering)
- Tools: event clustering and resilient-VAEs (in recursive mode)
- Challenge: train ML models on the waveform (multi-PB dataset)
- There are currently no machines with a multi-PB scale RAM

UMAP + DBSCAN (credit: Maris Arthurs)

VAE on full WF (credit: Tyler Anderson)

What will happen after LZ? LZ taking data through 2028. Analysis through 2030? P5 endorsed an "ultimate" Dark Matter experiment 10^{-41} 10^{-5} 10^{-42} Dark matter-nucleon cross section [cm] 10^{-43} 10⁻⁴³ 10^{-44} 10^{-45} 10^{-46} 10^{-46} 10^{-6} 10^{-7} 10^{-8} 10⁻⁹ q SBC 1 ton*v 10^{-10} 10-11 10-12 10^{-48} Xe neutrino fog 10^{-49} 10-13 10^{0} 101 10^{2} 103 Dark matter mass [GeV/c²]

Science Experiments 2034 Timeline 2024 LHC LZ, XENONnT NOvA/T2K SBN DESI/DESI-II Belle II SuperCDMS Rubin/LSST & DESC Mu2e DarkSide-20k HL-LHC DUNE Phase I CMB-S4 CTA G3 Dark Matter § IceCube-Gen2 DUNE FD3 DUNE MCND Higgs factory § DUNE FD4 § Spec-S5 § Mu2e-II Multi-TeV § DEMONSTRATOR LIM

4. Accelerating HEP Simulations

LZ taking data through 2028. Analysis through 2030? -

P5 endorsed an "ultimate" Dark Matter experiment

- Multi-purpose observatory for a multitude of dark matter models, neutrinoless double beta decay, and astrophysical neutrinos
- Fully probe WIMP parameter space into the neutrino fog (50-100 tonne experiment)
- A x10 scale-up from LZ: will need accurate simulations to design the "ultimate" experiment
- This level of accuracy requires raytracing on the GPU, which is needed in the next ~few years

Science Experiments		
Timeline	2024	2034
LHC		
LZ, XENONnT		
NOvA/T2K		
SBN		
DESI/DESI-II		
Belle II		
SuperCDMS		
Rubin/LSST & DESC		
Mu2e		
DarkSide-20k		
HL-LHC		
DUNE Phase I		
CMB-S4		
СТА		
G3 Dark Matter §		
IceCube-Gen2		
DUNE FD3		
DUNE MCND		
Higgs factory §		
DUNE FD4 §		
Spec-S5 §		
Mu2e-II		
Multi-TeV §		DEMONSTRATOR
LIM		DEWONSTRATOR

Science Experiments

Let's work together! (pretty please?)

We are a "small experiment" with a "large dataset"

- Long-range sustainability plan is not itself sustainable...
- ...unless we collaborate with other teams and experiments
- ...and potentially with computing centers beyond NERSC

Excellent alignment of LZ needs with HEP-CCE themes

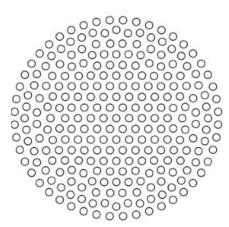
- Workflow portability is crucial to LZ's realtime needs
- Data storage/data movement upgrades are also needed
- Ideal testbed for ML at scale (full multi-PB raw dataset)
- Raytracing on the GPU needed for G3 detector design

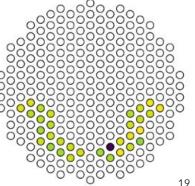
The LZ Collaboration at SURF in 2019 (220 NERSC users)

Thanks to our sponsors and participating institutions!

U.S. Department of Energy Office of Science

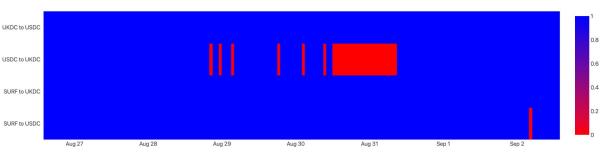
Science and Technology Facilities Council

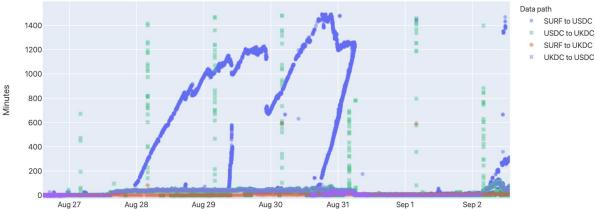

Backup slides: SPIN & detector pictures


Extensive use of SPIN-based services

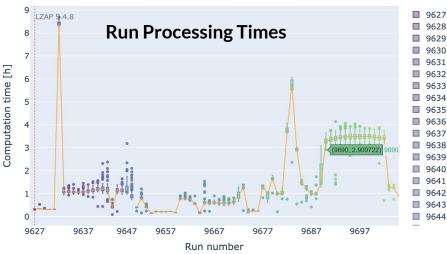
Supporting both production tools and user access!

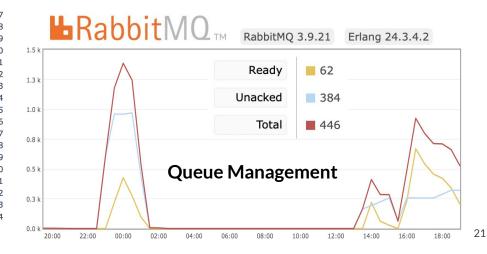
- Data transfer (SPADE)
- Job submission engine (PSQUARED)
- Monitoring data movement and processing (SPADE/PSQUARED)
- Offline event viewer
- PREM (Offline Data Quality Monitor)
- Databases, database mirrors, and associated web service interfaces
- Data Catalog and its interfaces
- Code Quality and Software Release validation
- Web Services use SAML/NGINX authentication tools

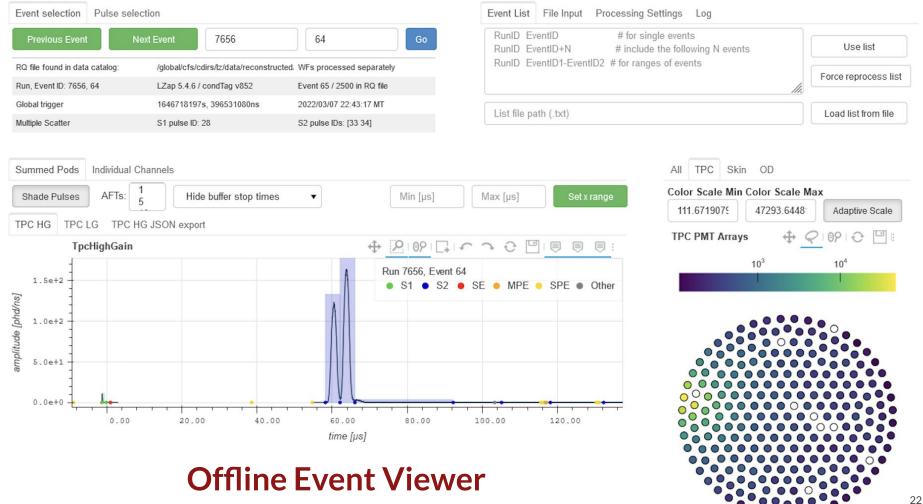



Monitoring Data Movement

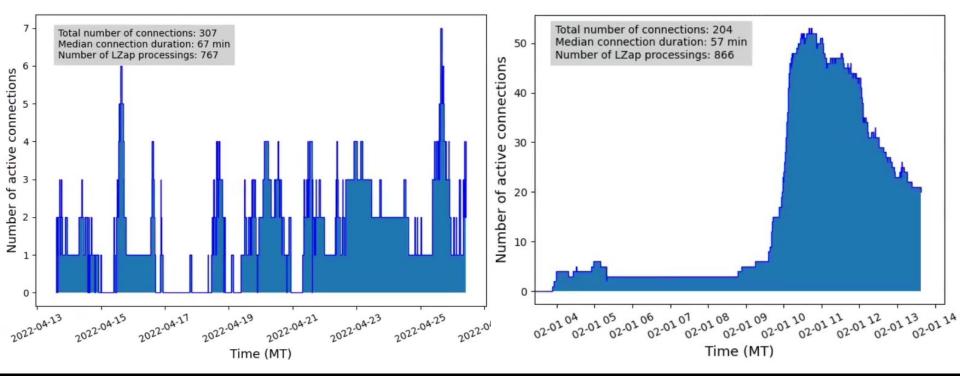
Heartbeat Monitoring


Data Transfer Latency





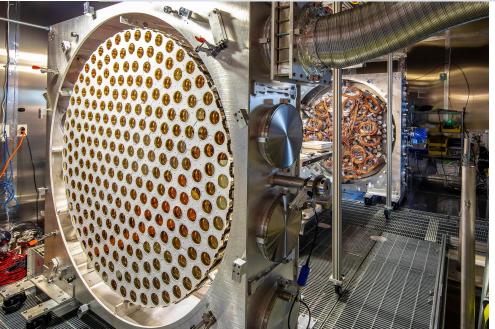
Monitoring Prompt Processing



The Offline Event Viewer is Extremely Popular in LZ!

LET'S LOOK AT

SOME WAVEFORMS



Please enjoy some pretty pictures from LZ detector construction

1 million 1

A COLOR

T

1 Mile