Scaling ML follow up

Paolo Calafiura & Walter Hopkins With input from many

Proposed Milestones

- 1. Identify target ML models in collaboration with experiments
- 2. Port, train, and run at least two target models on two different HPC systems
- 3. Compare two data parallel training solutions for at least one target model
- 4. Compare two hyperparameter optimization tools on at least one target model
- 5. Setting up a prototype Inference as-a-service platform on at least one DOE HPC system

Task list sign up sheet

Possible target ML models

Categories:

- Simulation
 - FastCaloGAN -> a lot of human intervention to make the GANs converge. LBANN has multi-generator, multi-discriminator framework that is only possible with scaling.
 - Cosmological simulations, DES adversarial domain adaptation
- Reconstruction
 - Flavor tagging, tracking, DUNE reconstruction
- Analysis
 - Simulation-based inference, LSST image processing
- Resource constrained (FPGA/ASIC) model
 - HPO is more important vs offline models
 - Size of model vs performance
 - Quantization slows down training
 - Smart pixels (6-layer CNN) takes 3 days (tracking related)

Next step: request repos and input data

Future scaling of foundation models

- Generic particle flow
- Calorimeter simulation
- Optimal experimental design

Need to canvas the community to find foundation models

Port, train, and run at least two target models on two different HPC systems

- Find existing open source solutions
 - Documentation and/or simplification of interface
 - Examples: weights and biases (or open source alternative)
- Start with simple model (ParticleNet, a classification GNN*) and scale to one of the larger models
- HPC choice: two different architectures (e.g., ALCF vs NERSC vs OLCF)

*Special use case: GNNs (data and model parallel are intertwined)

Compare two data parallel training solutions for at least one target model

Possible solutions: KubeFlow, LBANN, DeepSpeed, DDP, FSDP (latter two are PyTorch based)

Figure of merits:

- User experience
- Time to convergence
- Resource utilization across CPU, GPU, network, RAM
- Stability of the solution

Compare two hyperparameter optimization tools on at least one target model

Possible HPO tools: DeepHyper, OmniOpt, HypPO, and others TBD

Figure of merits:

- User experience
- Time to convergence
- Resource utilization across CPU, GPU, network, RAM
- Support for frameworks

Setting up a prototype Inference as-a-service platform on at least one DOE HPC system

Candidate framework: SONIC

- TorchServe, TF.Serve only work with PyTorch and TF
- How to make use of HPC resources? Infrastructure practicalities
 - Current framework of asking for servers as latency increases doesn't work with HPC allocations
 - Security system
 - Integrated Research Infrastructure (IRI) could be a solution

Action: get in connect SONIC and NERSC experts