
HEP-CCE

High Energy Physics
Center for Computational Excellence

Portable Parallelization Strategies

HEP-CCE Closeout All
Dec 18 2023

Charles Leggett, Meifeng Lin
for HEP-CCE



HEP-CCE

CUDA Kokkos SYCL HIP OpenMP alpaka std::par

NVIDIA 
GPU

codeplay hipcc nvc++

AMD GPU hipSYCL hipcc

Intel GPU oneAPI oneAPI:dpl

x86 CPU oneAPI gcc

FPGA

2

Software and Hardware Support Matrix in 2019



HEP-CCE

CUDA Kokkos SYCL HIP OpenMP alpaka std::par

NVIDIA 
GPU hipcc

nvc++
LLVM, Cray 

GCC, XL
nvc++

AMD GPU openSYCL
intel/llvm hipcc

AOMP
LLVM
Cray

Intel GPU oneAPI
intel/llvm

CHIP-SPV: 
early prototype

Intel OneAPI 
compiler prototype oneapi::dpl

x86 CPU
oneAPI

intel/llvm
openSYCL

via HIP-CPU 
Runtime

nvc++
LLVM, CCE, 

GCC, XL

FPGA via Xilinx 
Runtime

prototype
compilers 

(OpenArc, Intel, 
etc.) 

protytype via
 SYCL

3

Software and Hardware Support Matrix in 2023



HEP-CCEHEP Testbeds
FastCaloSim
● ATLAS parameterized LAr calorimeter simulation
● 3 simple kernels (large workspace reset, main simulation, stream compaction)
● 1-D and 2-D jagged arrays
● small data transfer d->h at end of each event

Patatrack
● CMS pixel detector reconstruction
● 40 kernels of varying complexity and lengths (many are short)

○ good test for latency, concurrency, asynchronous execution, memory pools

Wirecell Toolkit
● LArTPC signal simulation
● 3 kernels: rasterization, scatter-add, FFT convolution

p2r
● CMS "propagate-to-R" track reconstruction in a single kernel

4



HEP-CCETestbed Completion Status
Ported representative testbeds from ATLAS, CMS and DUNE to each portability 
layer.

Evaluated each porting experience according to a number of different objective 
and subjective metrics. 

5

Kokkos SYCL OpenMP Alpaka std::par

Patatrack Done Done* WIP Done* Done 
compiler bugs

Wirecell Done Done Done no Done

FastCaloSim Done Done Done Done Done

P2R done Done OpenACC Done Done



HEP-CCEMetrics

● Ease of Learning
● Code conversion

○ From CPU to GPU and between 
different APIs

● Extent of modifications to existing code
○ Control of main, threading/execution 

model
● Extent of modifications to the Data Model
● Extent of modifications to the build 

system
● Hardware Mapping

○ Current and promised future support 
of hardware

6

● Feature Availability
● Interoperability

○ Interaction with external libraries, 
thread pools, C++ standards

● Address needs of large and small 
workflows

● Long term sustainability and code 
stability
○ Backward/forward compatibility 

of API and e.g. CUDA
● Compilation time
● Run time/Performance
● Ease of Debugging
● Aesthetics

6



HEP-CCEMetrics Evaluations

7



HEP-CCEFastCaloSim Summary
Moderate complexity enabled rapid exploration of all portability layers

● hides weaknesses from more complex workflows
Good performance with all APIs (after tuning) for longer job configurations

● overheads from Kokkos initialization / kernel launch
● challenges from jagged arrays
● remarkable performance from std::par

○ very beneficial interactions with NVIDIA
● external library dependencies exposed issues with some API and build systems
● serial runtime with portability layers faster than original CPU implementation
● very good support from Kokkos and SYCL developers
●

8

lo
w

er
 is

 b
et

te
r

lo
w

er
 is

 b
et

te
r



HEP-CCEWirecell Toolkit
Three major steps of LArTPC simulation 

● Rasterization: depositions ⟶ patches (small 2D 
array, ~20×20)

○ # depo ~100k for cosmic ray event
● Scatter adding: patches ⟶ grid (large 2D array, 

~10k×10k)
● FFT: convolution with detector response 

Summary 
● Restructured the code to expose more parallelism
● Wrappers to use optimized vendor libraries 
● Ported to CUDA (partial), Kokkos, SYCL, OpenMP 

and std::par implementations 
● Developed a stand-alone testing framework (without 

LArSoft dependence) 
● Validated and benchmarked Kokkos, SYCL and 

OpenMP implementations; Achieved similar 
performance with different portability layers. 

9

Speedup in DepoTransform compared to original CPU on NVIDIA 
V100, AMD Radeon Pro VII, and AMD Ryzen 24-core CPU with 
Kokkos, SYCL and OpenMP

Experience and Lessons Learned:
● Finding the parallelizable kernels is key to achieve 

acceleration
● Once the first programming model was implemented (which 

helped solve many issues related to the dependencies, data 
structures, data layout etc.),. implementations with other 
programming models became quite straightforward. 

● Different programming models have different pain points and 
require different tuning to achieve the best performance. In this 
test case, we were able to achieve similar performance with 
Kokkos, SYCL and OpenMP. More issues with stdpar. 

Higher is better



HEP-CCEp2r Summary
p2r is a relatively lightweight benchmark
● Performs core math of track reconstruction (track propagation and Kalman updates)
● Easy to port 
● Easy to experiment with features/data-layout 

Lessons learned:
● Alpaka/Kokkos give close-to-native performance in NVIDIA/AMD GPUs and CPU
● SYCL/std::par performance are significantly behind despite sharing very similar implementation 

10

AMD MI-100 GPU Intel Xeon Gold 6336Y CPUNVIDIA A100 GPU



HEP-CCEPatatrack Summary
Most complex use case: CMS pixel detector reconstruction from raw data to pixel 
tracks and vertices, multithreaded mock framework and build system

● closest approximation of integration in an experiment framework without actually doing it
● 40 kernels divided in 5 “framework modules” using rich set of CUDA features

Lessons learned
● Best performance on CPU, and NVIDIA and AMD GPUs with Alpaka
● Kokkos currently difficult to work with in a concurrent application, overheads
● SYCL (Intel oneAPI implementation): compilation problems, overheads
● std::par: compilation problems, crashes, leads to many more kernels (expect poor performance)
● OpenMP Target offload: compilation problems, data movement is concern

11



HEP-CCERandom Number Generators
High quality random number generators are integral to HEP, especially essential 
to simulation.

Developed extension to oneMKL to target AMD, NVIDIA and Intel GPU device 
specific RNG via SYCL using a uniform interface
● demonstrated near native performance
● integrated into Intel oneAPI libraries

Developed header-only wrapper that supports multiple 
random number distribution engines
● uniform, normal, Gaussian distributions
● cuRand, rocRand, random123
● NVIDIA, AMD GPUs, Intel GPUs WIP
● single and multithreaded CPU execution w/ OpenMP

12

NVIDIA A100

AMD Vega56



HEP-CCEKokkos Evaluation
● Higher level of abstraction than CUDA
● Requires explicit initialization and finalization of runtime
● Separate compilation of library for different backends and features

○ implications for code distribution
● Can mix and match native and Kokkos kernels in same application

● Good performance for simple and long running kernels
○ hides overheads from initialization of data structures and kernel launches

● No native support for jagged arrays
● Concurrent kernels only with CUDA backend and CUDA specific features

○ concurrent calls to serial backend safe, but not efficient
● Poor interoperability with external concurrency mechanisms and thread pools (eg 

TBB)
● Built-in FFTs and RNGs, but no common API to vendor optimized libraries
● Most "portable" of all technologies - easiest to get app running on new platform
● Very good developer support

13



HEP-CCEAlpaka Evaluation
● Verbose API, sparse documentation, steep learning curve

○ responsive and helpful developers
● Very small user community
● Need either to wrap kernels in callable objects or to use lambdas, heavy use 

of typedefs
○ compiler error messages hard to decipher

● For memory transfers between host and device one can use either alpaka 
buffers (takes ownership of the allocation) or alpaka views (to copy already 
allocated memory)
○ Our attempts to use alpaka views inside FastCaloSim led to random crashes
○ Patatrack didn't have these issues

● Extensive configurability with CMake
● Can mix in native kernels and libraries in same application
● Performance comparable to native

14



HEP-CCESYCL Evaluation

15

● Requires different compilers for different backends
○ oneAPI (Intel), llvm/sycl (Intel,NVIDIA,AMD), openSYCL (Intel,NVIDIA,AMD)

● Simplified code design as associates data dependencies with kernels for 
automatic data migration
○ can get better performance with explicit transfers

● No current support for concurrent kernels with any backend
○ though in theory supported by the standard

● Significant changes in SYCL language specification over time

● Good interoperability with external concurrency layers like TBB, OMP, MPI

● Mostly seamless integration with build systems

● Near native performance (cf CUDA / HIP)
○ except for p2r

● Strongly supported by Intel



HEP-CCEOpenMP Target Offload Evaluation
● Widest difference of opinion in people's porting experience

○ some found it very easy to change serial code
○ some experienced large challenges

● Significant variation between performance characteristics of different 
compilers
○ compiler options
○ tuning of threads/teams

● Specialized operations unsupported (scan, memset) or much less performant 
(atomics) than CUDA

● Documentation is sparse, especially for more advanced features

● Debugging and profiling very challenging due to extra OpenMP code 
infrastructure and architecture-specific plugins loaded at initialization 

16



HEP-CCEstd::par / nvc++ Evaluation

17

● Pure C++ - no learning curve (beyond using STL algorithms)
○ slightly convoluted indexed container access with C++17
○ automatic data migration triggered by page faults

● Not equivalent to CUDA/SYCL/Kokkos
○ no low level controls
○ not intended to be a CUDA replacement - rather a stepping stone to parallelism

● Support for NVIDIA GPUs (nvc++), Intel GPUs (oneAPI::dpl), and multicore 
CPUs (nvc++, g++)

● nvc++ is still immature
○ bugs (can't compile ROOT yet)
○ need workarounds to compile parts of projects w/ g++, parts with nvc++
○ any offloaded data must be allocated by code compiled with nvc++
○ compilation much slower than g++
○ unusual memory transfer speeds from AMD CPUs

● Very good performance for longer kernels that translate well into Thrust
● Path towards C++ standards based implementation of GPU offloading

○ C++26 std::exec (schedulers, senders, receivers), etc



HEP-CCEImpacts on HEP
Final stage of CCE/PPS is reporting back to experiments
● Not yet there, but have made multiple interim reports
● ACAT, CHEP, HSF, IRIS-HEP

Already affected what HEP experiments are doing in both short and medium term
● CMS's choice of Alpaka
● ATLAS Run4 milestones
● DUNE signal processing kernels on GPUs
● Contributions to Snowmass21 process

Continue to interact with HEP experiments as we enter phase II of CCE
● Focussed meetings and workshops with stakeholder experiments
● Continued engagement with broader HEP community

18



HEP-CCEConclusions
There is no "one size fits all" solution. Different applications will have different 
optimal solutions.
● We have identified pain points with each portability layer
● Allows us to offer useful guidance to experiments depending on their use 

cases

Both software and hardware continue to rapidly evolve.
● Need to monitor GPU ecosystems and update recommendations as needed
● Emergence of C++ language level standards in the next 5 years may be a 

game changer

See increasing use of ML solutions for previously purely "algorithmic" tasks and 
vendor shifts to ML optimized hardware.
● Will expose a whole new set of issues

19



HEP-CCELast Steps

Need to complete paper that summarizes our work!
● https://www.overleaf.com/read/zjkvrgwxkfwp#b98623
● almost there - still a little left to do

Much of our work will continue in Phase II "PAW"
● But we will shift focus from portable applications to portable workflows
● Disseminate knowledge gained in Phase I to rest of the HEP community
● Use our testbeds, now "mini-apps" to test facilities 

20

https://www.overleaf.com/read/zjkvrgwxkfwp#b98623


HEP-CCECast of Characters
Current Members
● Mohammad Atif (BNL)
● Meghna Bhattacharya (FNAL)
● Mark Dewing (ANL)
● Zhihua Dong (BNL)
● Julien Esseiva (LBNL)
● Matti Kortelainen (FNAL)
● Martin Kwok (FNAL)
● Alexei Strelchenko (FNAL)
● Vakhtang Tsulaia (LBNL)
● Brett Viren (BNL)
● Tianle Wang (BNL)
● Haiwang Yu (BNL)

Past Members
● Vincent Pascuzzi (IBM)
● Kwangmin Yu (BNL)

Technical Leads
● Oliver Gutsche (FNAL), Charles Leggett (LBLN), Meifeng Lin (BNL)

21



HEP-CCE

fin

22


