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Structure Formation: Key Issues

Focus of this talk

• Inputs
• Basic theory mostly under control, some work always needed, but no 

show-stoppers (apparently)
• Gastrophysics issues very serious, predictive modeling hopeless?
• Development of simulation-based error-controlled phenomenology 

needed (multiple probe cross-cuts)
• Drivers 

• Precision cosmology from surveys (understand/control systematics)
• ‘Smoking gun’ systems (indirect DM searches, extreme statistics)

• Enabling ‘technology’
• Next-generation HPC systems (‘exascale’)
• Data-intensive computing
• Statistical inverse problems 
• Analysis software frameworks          
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Role of Computational Cosmology

• Three Roles of Cosmological Simulations
• Basic ‘theory’ of (nonlinear) cosmological probes, incl. errors

• Production of high-fidelity ‘mock skys’ for end-to-end tests of the 
observation/analysis chain

• Essential component of analysis toolkits

• Simulation and Analysis Challenges
• Large dynamic range simulations; control of subgrid modeling 

and feedback mechanisms (combine with observations)

• Design and implementation of complex analyses on large 
datasets; new fast (approximate) algorithms

• Solution of large statistical inverse problems of scientific 
inference (many parameters, ~10-1000’s?)
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Precision Cosmology: Big Data Meets Supercomputing 
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Simulation and Analysis Requirements
• Resolution: 

• To the extent that very small scales will not be treated in large simulations, the physics will 
need to be resolved to ~kpc scales (or a little less), global dynamic range is likely to be about 
10 million to 1 (~exaflop performance and ~100 PB ‘RAM’, many exa/zettabytes of storage)

• Mass resolutions in large simulations can reach as low as 10^6-10^7 solar masses (but time 
evolution will be a mess), simulations in the ~100 trillion -1 quadrillion particle class, 
(equivalent of) multi-billion core-hours per simulation (both N-body and hydro)

• Accuracy requirements have not been treated seriously enough so far, need to be addressed

• Simulation modes: 
• Smaller number of ‘extreme’ runs for specific goals

• Large number of ‘workhorse’ runs for simulation campaigns (systematics studies, inference 
engines, covariance estimation, --)

• High-resolution, physics-rich simulations to build sub-grid models (will this require special 
hardware?)

• Analysis: 
• Multiple probes and cross-correlations, need to build integrated analysis framework that has 

HPC and data-intensive computing components, how to best incorporate legacy components?

• Next-generation tools for statistical inverse problems and optimization

• Critical issue: development of human resources (find/support people with multiple talents)
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Where is Conventional Supercomputing Headed?
• Not faster, but ‘bigger’: 

• Much more parallelism but at sharply reduced memory/compute core; complex/heterogeneous nodes; 
nontrivial memory/network hierarchy; serious I/O issues (e.g., local checkpoints)

• End of ‘weak scaling’ as we know it; major penalty for complex data structures

• Time evolution codes will suffer as more physics is added, new exploits of concurrency are needed

CM-5/1024: 
100 GFlops

RAM = 32 GB

Sequoia = 20 PFlops
RAM = 1.5 PB

20 Years= 5 Orders 
of Magnitude

• Other important things 

• Programming model space 
is very murky 

• A “data analysis cloud” with 
dynamically allocatable 
resources will complement 
the supercomputer

• Ability to run very large 
simulation campaigns on 
supercomputers

• Power-awareness, fault-
tolerance, whose 
responsibility?

• To design codes for the 
future must know soon 
what codes have to do! It 
will not just happen --

?

20
25
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A Flavor of the Hardware Complexity Challenge
BQC:
- 16 cores
- 205 GFlops, 16 GB
- 32 MB L2, crossbar at 
400 GB/s (memory 
connection is 40 GB/s)
- 5-D torus at 40 GB/s
Xeon Phi:
- 60 cores
- 1 TFlops, 8 GB
- 32 MB L2, ring at 300 GB/s 
(connects to cores and 
memory)
- 8 GB/s to host CPU

Average performance speed-up on ~10 applications codes on Titan is 
~2 (ranging from 1.few to 7), but of Titan’s 27 PFlops, only 2.5 PFlops 
are in the CPU! What can we learn from this?

16GB

16GB

Roadrunner

• HPC Myths
• The magic compiler
• The magic programming 

model/language (DSL)
• Special-purpose 

hardware
• Co-Design?

• Dealing with (current and 
future) HPC Reality
• Follow the architecture
• Know the boundary 

conditions
• There is no such thing 

as a ‘code port’
• Think out of the box
• Put the best team 

together
• Coordinate efforts
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• New Cosmological N-Body 
Framework
• Designed for extreme 

performance AND portability, 
including heterogeneous 
systems

• Supports multiple 
programming models

• Memory efficient
• In situ analysis framework
• Production science code

Meeting the Challenge: HACC on the BG/Q
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Fast In Situ Analysis

Analysis Tools

HACC 
Simulation

Analysis Tools
Configuration

Simulation
Inputs

k-d Tree 
Halo 
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N-point
Functions
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• Data Reduction: A trillion 

particle simulation with 100 
analysis steps has a storage 
requirement of ~4 PB -- in situ 
analysis reduces it to ~200 TB

• I/O Chokepoints: Large data 
analyses difficult because I/O 
time > analysis time, plus 
scheduling overhead 

• Fast Algorithms: Analysis 
time is only a fraction of a full 
simulation timestep

• Ease of Workflow: Large 
analyses difficult to manage in 
post-processing
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Cosmic Calibration: Solving the Inverse Problem

• Challenge: To extract cosmological 
constraints from observations in the nonlinear 
regime, need to run Markov Chain Monte 
Carlo; input: 10,000 - 100,000 different models

• Brute Force: Hopeless (‘curse of 
dimensionality’ -- n^d)

• Current Strategy: Fitting functions, e.g. for 
P(k), accurate at 10% level, not good enough!

• CS/ML Solution: Precision emulators and 
discrepancy functions (systematic 
uncertainties)

Run suite of simulations 
(40,100,1000...) at chosen 

parameter values

Design optimal simulation 
campaign over large 

parameter range

Statistics Package 
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Modeling, MCMC) 
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Summary: Computational Cosmology Ecosystem
Supercomputers 

for simulation 
campaigns 

Data-Intensive Scalable
Computing Systems for 

interactive analysis

Results 
from 

simulation 
runs, in situ 

analysis 

PDACS
Low-cost local 

computing 
environment 

Data 
Sources 

• Simulation Campaigns: 
• Hundreds to thousands of large-scale simulations 

needed to build emulators and understand error 
covariances 

• Large numbers of parameters, combination of 
multiple simulation strategies

• UQ issues: discrepancy functions, new Monte Carlo 
implementations, covariance across probes

• Data/Analytics Issues: 
• Development of high-performance in situ and post-

processing viz/analysis frameworks 

• Joint analysis of data and simulations

• Analysis Services (e.g., PDACS): 
• Community interaction with large-scale simulation 

data archives/databases (w/ universities and Labs)

• Repository of data and tools; access to 
computational resources and data transfer services, 
carry out complex analysis workflows 
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Snowmass Action Items?
• Simulation/Theory Requirements: 

• What are the science cases (need to collect/organize)? What sorts of (large) simulations are 
needed? What are the requirements imposed by the science? Is there a prioritized timeline? 
What are the things we may not have thought of?

• What is required of the community for progress? How large and interactive is the research 
community? Who will help build/test the analysis framework(s)?

• Resource estimates (people, underlying science, hardware, software, how do we do this?)

• Simulation Methods Development: 
• Are pure gravity codes almost ‘done’? How to add a systematic subgrid component (needed 

or not)?

• What should we do in ‘hydro’ space (cosmic frontier meets traditional astronomy/
astrophysics -- e.g., clusters/groups, CMB, galaxy clustering, lensing, etc.)?

• Build in inputs, including observational inputs, to achieve a more formal component for 
quantifying modeling errors (historically, errors have always been underestimated, 
sometimes seriously so)

• Infrastructure
• Integrated repositories of data and tools; access to computational resources and data 

transfer services, carry out complex analysis workflows 

• Plan for exploits of future computational system/network ecology
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