BARYON OSCILLATIONS

Nikhil Padmanabhan, Yale Snowmass@SLAC, 3/6/2013

Questions

- Where are we today in BAO experiments?
 - BOSS, WiggleZ
- What is the current portfolio of planned BAO experiments?
 - Where will this leave us?
- What opportunities are there, both on short and long term timescales?
 - Our portfolio needs to include options for lower-cost and near-term experiments as well as larger/future ones →very important that we show our program has science results coming out in a regular schedule (Siegrist, CAA)

Next steps

- Projects
 - Redshift range
 - Probes
 - Eg. 21 cm intensity mapping
- Analysis techniques
 - Are we extracting all the information we can?
 - Error estimation (simulations)
- Systematics
 - Simulations

The Standard Ruler in the Galaxy Correlation Function

Measuring $d_A(z)$ and H(z)

- Transverse scale measures angular diameter distance
- Radial scale measures the Hubble constant
- Internal consistency tests
- H(z) unique amongst dark energy probes
- H(z) important to constrain dark energy at high redshifts

Observables

- Positions on the sky and redshifts
 - 3D map of the Universe
 - Precision redshifts require a spectroscopic survey
- Galaxy surveys are much more than just BAO
 - Redshift space distortions
 - Non-gaussianities
 - Cross-correlations
 - More than just the same survey, same observables

Why BAO?

- Simple measurement
 - Only requires positions
- Underlying theory is simple
 - Mostly linear physics (fluctuations are 1 part in 10⁴)
 - Exquisitely calibrated by the CMB (~1% with WMAP, much better with Planck)
 - 3D feature (hard to mimic)
 - Very large scales >> scales of astrophysical complications
 - Can be treated perturbatively

What is BOSS?

- Baryon Oscillation Spectroscopic Survey
- BAO with galaxies, Lyman-alpha forest
- On going dark energy experiment
 - Funded by DoE, NSF, Sloan Foundation and Participating Institutions
- The definitive low redshift BAO measurement
- 1% distance measurements at z=0.35, 0.6
- First results with 1/3 of the data out!

BOSS surveys a larger volume and redshift range

The BAO Feature clearly detected

Anderson et al, 2012

The BAO Feature clearly detected

BAO measure the expansion history

Anderson et al, 2012

BAO measure the expansion history

Anderson et al, 2012

BAO measure the expansion history

The complementarity of BAO and SN

BOSS as a precursor survey : Observational Systematics

Ross et al, 2012

BOSS as a precursor survey : Analysis Techniques

Anderson et al, 2012

BOSS as a precursor survey : Analysis Techniques

Anderson et al, 2012

BAO Experiments : Past, Present and Future

Survey	Redshift	Years	Precision
2dFGRS	0.2	Completed	detection
SDSS-I/II	0.35	Completed	2%
WiggleZ	0.7	Completed	4%
BOSS	0.35, 0.55, 2.5	2009-2014	1.7% at z=0.57, 3.4% at z=2.3
BOSS	0.35, 0.55, 2.5	2009-2014	1% (0.35, 0.55), 1.5% (2.5)
HETDEX	3.0	2013-2015	1%
eBOSS	0.6-1.0, 1-2, 2-	2014-2020	0.8%-2.0%, 1.5%,
Sumire PFS	0.6-2.4	2017	~1% (6 bins)
MS-DESI	0.2-1.7, 2-3.5	2018-	<1% (multiple bins)
WFIRST	1.5 – 2.5?	??	<1% (multiple bins)
Euclid	0.7 – 2.0	2021	<1% (multiple bins)

BAO Surveys : Future

	BOSS	e-BOSS	MS-DESI	SuMIRe PFS
	2009-2014	2014-2020	2018-	2017-
Telescope	2.5m	2.5m	4m @KPNO or CTIO	8.2 Subaru Tel.
Imaging survey	SDSS	SDSS, WIRO, SCUSS, WISE	PTF, Pan-Starrs, DES?	Hyper SuprimeCam
Redshift	0.2 <z<0.7< td=""><td>0.6<z<2< td=""><td>0.2<z<2+z~2-3.5 (lya)<="" td=""><td>0.6<z<2.4 [oii]<="" td=""></z<2.4></td></z<2+z~2-3.5></td></z<2<></td></z<0.7<>	0.6 <z<2< td=""><td>0.2<z<2+z~2-3.5 (lya)<="" td=""><td>0.6<z<2.4 [oii]<="" td=""></z<2.4></td></z<2+z~2-3.5></td></z<2<>	0.2 <z<2+z~2-3.5 (lya)<="" td=""><td>0.6<z<2.4 [oii]<="" td=""></z<2.4></td></z<2+z~2-3.5>	0.6 <z<2.4 [oii]<="" td=""></z<2.4>
Sky coverage	10000 deg ²	1500-7500 deg ²	14000 deg ²	$\sim 2000 \text{ deg}^2$
Field-of-view	6.7 deg^2	6.7 deg^2	6.7 deg^2	1.8 deg^2
Number of fibers	1000	1000	5000	2400
Wavelength range	360-1000nm	360-1000nm	340-1000nm	400-1300 nm
Spectral resolution	1600-2600	1600-2600	2300-5000	~3000
Target galaxies	LRGs	ELGs+QSOs	LRGs+[OII] emitters	LRGs+[OII] emitters

Kyle Dawson, priv. comm.

MS-DESI is **BIG**

Distance Constraints

Mike Blanton, priv. comm.

Distance constraints

- **MS-DESI** has <1% distance errors
- Probe the expansion history over the widest redshift range

Beyond dark energy

Systematics

More work remains here – simulations

Mehta et al, 2010

Next steps

- Projects
 - Redshift range
 - Probes
 - Eg. 21 cm intensity mapping
- Analysis techniques
 - Are we extracting all the information we can?
 - Error estimation (simulations)
- Systematics
 - Simulations