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What is the origin of the tiny
excess of matter over anti-matter?



The Matter-Antimatter (Baryon) Asymmetry
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No “Standard Model” of Baryogenesis!
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“In so far as a scientific statement
speaks about reality,

it must be falsifiable:
And in so far as it is not falsifiable

it does not speak about reality”

- - Q‘
o y |
it B
- 4
! ' St
by -
{ .
— f
=
. = "
\ -
R

> 4
S Karl Popper(1902-1994)

Karl Popper, “Logik der Forschung” (1934)
“The Logic of Scientific Discovery”

(Supersymmetric) Electro-Weak Baryogenesis:

a falsifiable theory




Electro-Weak Baryogenesis

(1) Out of equilibrium regions

(bubble walls)

(2) CP-violating interactions
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(3) B-viol. Sphalerons produce
net baryon number pgin the
regions of unbroken phase

pg diffuses in the broken EW phase
region, and freezes in
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Pg is not washed out if sphaleron transitions
are strongly suppressed in the br. phase T
(i.e. if the PT is strongly first order)
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Electro-Weak Baryogenesis: Physical Concepts
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Electro-Weak Baryogenesis: Probes
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Electro-Weak Baryogenesis: Probes
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Electro-Weak Baryogenesis
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Electro-Weak Baryogenesis
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Electro-Weak Baryogenesis
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Outline

* The fate of sfermion (e.g. stop) sources

* Accidental SUSY baryogenesis and dark matter

* A (next-to-minimal) model that does everything

Kozaczuk, Profumo, Ramsey-Musolf and Wainwright, 2012
Kozaczuk, Profumo and Wainwright, 2012 and 2013



Sfermion sources?

tanf=10, A =100 GeV, u=1000 GeV
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Sfermion sources?

* Stop (and sbottom, at large tanf}) resonant sources
are ruled out by EDM searches

e Statement robust to >>factor 10 systematics in Y,

* Resonant stau sources OK, but extremely finely tuned
(Higgs connection? light staus could enhance h=>vy)

Kozaczuk, Profumo, Ramsey-Musolf, Wainwright, 2012
Carena, Gori, Shah, Wagner and Wang, 2012



SUSY Electro-Weak Baryogenesis Sources
must be fermionic (resonant higgsino-gaugino)

Cirigliano, Profumo, Ramsey-Musolf, 2006



SUSY Electro-Weak Baryogenesis:
the connection with Dark Matter

T | M
: LM, : 2,1
T b e e e e e
™1 EWB
7
S
S " DM
I I:::::::::::ﬁt
M, : My, :
il e === ===~ (a@): EWB and DM are “unrelated”
(a) (b) (b): EWB-DM connection

Kozaczuk and Profumo



Electro-Weak Baryogenesis and Dark Matter

Direct _ 8, < [Higgsino fract] x [Gaugino fract ]
Detection
Indirect Large annihilation rate into gauge bosons:

Detection lots of gamma rays, neutrinos




Electro-Weak Baryogenesis and Dark Matter
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Electro-Weak Baryogenesis and Dark Matter

Neutrino Telescopes, AMSB (M2:M1/3), tanf=40
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Accidental SUSY and Electro-Weak Baryogenesis
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Gherghetta et al, 2011; Kozaczuk, Profumo and Wainwright, 2012



Accidental SUSY and Electro-Weak Baryogenesis
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A model that does everything

Reg3
Einasto

b [deg]
[y
=

p. -.l
-1 {
v i
¥

E? ® [GeV cm ™25 'sr ]

* Line with right cross section * OK with direct detection

e Suppressed GR continuum ¢ OK with SUSY searches

* Right Higgs mass * OK with EDM searches

e Strongly first order EWPT * OK with direct DM searches

Weniger, 2012; Kozaczuk, Profumo and Wainwright 2013



A model that does everything
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A model that does everything
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A model that does everything

Tunneling
Direction
in field space
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Effective potential at critical temperature
(all NMSSM degrees of freedom included!)

Kozaczuk, Profumo and Wainwright, 2013



CosmoTransitions

CosmoTransitions is a package of python modules written by Carroll (a.k.a. Max) Wainwright to analyze finite (and zero) temperature cosmological phase transitions with multiple scalar fields. It
essentially contains three distinct parts: modules for calculating the bounce solutions of nucleating bubbles during phase transitions, a module for analyzing the phase structure of a theory, and an
abstract class that makes it easy to implement a specific theoretic model.

CosmoTransitions is free to download. If you use it in scientific work, please cite arXiv:1109.4189. It makes extensive use of SciPy, NumPy, and uses MatplotLib for plotting. The easiest way to
get these is to download and install the Enthought python distribution.

If you have questions or comments, please feel free to email me.

Downloads

Current version:
CosmoTransitions package v1.0.2 (released August 10, 2012) --- This version fixes a critical bug/typo in the finite-temperature potential calculations in generic_potential.py.

Older versions:
CosmoTransitions package v1.0.1 (released April 2,2012)
CosmoTransitions package v1.0 (released September 21, 2011)

Wainwright, 2012



Conclusions

SUSY EWB alive — as long as something explains
how the EWPT can be made strongly first order

Sfermion sources are dead

Multiple probes are closing in, especially
EDM, direct dark matter detection






Theory issue: gauge dependence in effective potential
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