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A Gamma-Ray Bursts

GJI’" ma-ray

/ Space Telescope
- DISCOVERY & SPECULATION: 1967 — 1991 (Vela

satellites, Ginga, SMM)

« POPULATION STUDIES: 1991 — 1997 (CGRO/BATSE)
Isotropic distribution in the sky => cosmological
origin
Distinction between Long & Short GRBs

Rapid variability => compact source

Non-thermal spectrum => Synchrotron radiation
by a distribution of accelerated electrons

(Tavani, 1995)
Some hint at high energy of a delayed/

temporally extended emission (EGRET)
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 Discovered by BeppoSax (‘97)
— Measurements of the distance
« Swift (2004-%):

Afterglow

— Connection to the “Prompt” emission

— X-Ray Flashes in the afterglow
— Steep-Shallow-Steep decay
— Also short bursts have an afterglow!
— Fading to lower frequencies
* Picture begun more intriguing...
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GRBs as particle accelerators
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Energy  Acceleration Production Absorption
source mechanism mechanism
i E.m. radiation,

neutrinos (?),
Gravitational Waves (?)

Unknown, but maybe:
collapse of massive stars?
coalescence of NS/BH
~10°4-10°° ergs
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Energy Acceleration Production
source mechanism U mechanism

:

Unknown, but maybe:
collapse of massive stars?
coalescence of NS/BH
~10°4-10°° ergs

Shock acceleration is one possibility
(Fermi 1st order acceleration or
Diffusive Shock Acceleration),
although details are unknown

Absorption
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E.m. radiation,

neutrinos (?),
Gravitational Waves (?)
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Energy  Acceleration Production Absorption
source mechanism U mechanism

i E.m. radiation,

neutrinos (?),
Gravitational Waves (?)

Unknown, but maybe: Synchrotron
collapse of massive stars? Inverse Compton
coalescence of NS/BH hadronic

~10%4-10° ergs cascades

Shock acceleration is one possibility
(Fermi 1st order acceleration or
Diffusive Shock Acceleration),
although details are unknown

Cosmic Frontier Workshop - SLAC - March 6-8 Nicola Omodei — Stanford/KIPAC



T e——

- Ty _
+ ‘ '|‘ ‘ !

M

e

space —

Energy  Acceleration Production Absorption
source mechanism U mechanism

i E.m. radiation,

neutrinos (?),
Gravitational Waves (?)

Unknown, but maybe: Synchrotron
collapse of massive stars? Inverse Corr;pton
coalescence of NS/BH hadronic |

~10%4-10° ergs cascades

Shock acceleration is one possibility

(Fermi 1t order acceleration or y—v Intrinsic
Diffusive Shock Acceleration), absorption,
although details are unknown EBL
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E.m. radiation,

FORMATION OF A GAMMA-RAY BURST could begin neUtrInos (?)!
either with the merger of two neutron stars or

[ with the collapse of a massive star. Both these GraVItatlonaI Waves (7)
\ events create a black hole with a disk of material
NEUTRON STARS around it. The hole-disk system, in tume,gumrs

out a jet of material at close to the spe of light.

l ’\’ Shock waves within this material give off radiation. | JET COLLIDES WITH

= High energetic
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Fermi Gamma Ray Space telescope (2008-%)

GBM/Nal : 8 keV - 1 MeV
GBM/BGO: 150 keV- 40 MeV

LAT: 30 MeV - >300 GeV

Gamma-ray Burst Monitor — GBM
Marshall SFC, UAH, MPE

Nal BGO LAT

>1000 GRBs detected by the GBM
At high energy, LAT detected ~40 GRBs in the first 4 years

10 redshift measurements, from z=0.74 (GRB 090328) to
z=4.35 (GRB 080916C)

_E'N(E) MeViiem's)]
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- A— Important results from Fermi-LAT

» A) GRB spectrum in several cases is NOT a simple “Band”
function

— Deviation from the Band function at low energy;

— Additional power-law observed at high energy;

— High energy cut-off measured in the spectrum;

— Extrapolating the Band function from LOW to HIGH ener

really a BAD idea!
GRB 090902B GRB 090926A

Abdo et al. 2009,ApJ, 706L, 138A Ackermann et. al. 2011, Apd 729, 114A

Time-integrated photon spectrum (3.35 - 21635) 1
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Important results from Fermi-LAT

dmma-ray
pace Telesc ope

» B) High-energy emission (observed by the LAT) starts later a
lasts longer then the low-energy emission (observed by the
GBM).

» “Delayed onset” and “Temporally extended” emission
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@ omi Prompt and temporally extended emission

Gamma ray

/ " Space Telescope
* In the prompt phase:

— larger spectral variation (-5 <+ -2) reflecting in a larger
variability of the LC

* In the temporal extended emission:
— spectral index clustered around -2, smoother decay

| L R lll
| | IIIIIII

z -
., = .
‘G %
] '0. .

2

) WELBAALL &
-
bl

(E) [MeV/(cm? s)]

L

TEMPORALLY
EXTENDED

E2
3

é

2

’

Cosmic Frontier Workshop - SLAC - March 6-8 Nicola Omodei — Stanford/KIPAC



o
~A— Important results from Fermi-LAT

Gamma-ray
/ Space Telescope

» C) Energetics: LAT GRBs are among the brightest GRBs

» 4 LAT GRBs (080916C, 090510, 090902B, 090926A) exceptionally
bright [see also Cenko, et al. 2011, Racusin, et al. 2011]
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The highest energy photons

 High-energy events arrive within ~1000 seconds in most of the cases. We
have only 1 case of very late event, suggesting that very late high-energy
emission (as the one observed by EGRET) is rare.

 High-energy events in several cases arrive after the end of the GBM
emission
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e mi Adiabatic relativistic “fireball” expansion?
Gamma-ray
- Space Telescope
e Temporally extended emission, delayed onset, extra-power law component, no
strong variability observed at high energy:

— High-energy gamma-ray emission similar to X-ray or UV emission (attributed
to the afterglow) [See also Ghisellini et al. 2010, Kumar & Barniol Duran 2009;
De Pasquale et al. 2010; Razzaque 2010]

— In the context of the fireball model (as in relativistic blast way from Blandford
and McKee 1976):

e Adiabatic expansion (decay index ~1) rather than radiative (~1.5)

e Bulk Lorentz factor derived from the fireball energetics & deceleration
time (~peak time) is I' ~1000 [derivation in Chevalier & Li 2000, Panaitescu

& Kumar 2000, see alhso_th‘iseIIini et al. 2010]

FORMATION OF A GAMMA-RAY BURST could begin 1
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< A— Constrain the Synchrotron Emission

Gamma-ray
pace le )

* From the detection of high-energy photons:

— What is the maximum photon energy that an electron can produce by
synchrotron taking into account the acceleration time and the cooling
time?

— Computing the maximum energy of an electron (to complete at least 1
Larmour radius) we obtain a stringent constrain on the synchrotron
radiation [see also Kumar et al. 2012 and Saqgi & Nakar 2012]

Esyn max ~ 29.5(1 + 2)~(I'/1000) GeV

— Inverse Compton models (such as SSC) are much less constrained
(depend on the “comptonization” parameters Y)

 Bulk Lorentz factors derived from y-y pair opacity (I' ~200-700 for
GRB090926A [Ackermann et al. 2011], otherwise UL;

shock front
downstream| "estframe | ypstream
<« -

— [

-« <

ﬁdwn 6sh
239

hot cold

slow g fast
LIV Image from M. Lemoine

particles get accelerated as they
bounce back and forth across the shock

wave
Cosmic Frontier Workshop - SLAC - March 6-8 C




GRBs as source of UHECR

* For particles accelerated via Fermi mechanism in a magnetized
plasma, there is a limitation (Hillas 1984):

rp 2.E/ZeB < R
e Dermer & Razzaque (2010) derived the above condition for 2

Fermi-LAT GRBs (and Blazars) showing that GRB have sufficient

energy to accelerate both protons and Fe to >1020 eV
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Some final considerations

* GRBs are powerful particle accelerators and source of high energetic
gamma-rays;
Fermi-LAT has provided additional informations on the nature of this

phenomenon, especially on the temporally extended high-energy
emission and the existence of the extra power-law component;

— In the context of the fireball model: high-energy gamma-rays likely
produced in the early afterglow phase of a relativistic adiabatic
expanding fireball. Synchrotron origin still plausible;

— UHECR can also be produced in GRBs, although the distance of the
source might be a problem;

The large effective area and the large field of view played an important
role for the detection of high-energy GRBs with Fermi-LAT. For future
experiments:

— Ability to observe the entire (un-occulted) sky or to quickly repoint,
+ large duty cycle.

— Optimization for “blind search” vs “follow up” strategy

— In case of a detection, localization is also important to trigger multi-
wavelength campaigns
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EBL and new physics

 From the detection of high energy photons:

— Constrain the EBL model (combined
study with high energy events from AGN)

e « baseline » model from Stecker et al.
ruled out at ~3.60, using only GRBs

— Testing Lorentz Invariance Violation:

e Different methods can be applied, all
lower limits Mag,1 > Mpianck

e QG models with linear LIV disfavored

Abdo, et al. 2010 ApJ...723.1082A
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Highest
photon
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Redshift

080916C

long

145

14

0.11

~ 13 GeV ~4.35

090510

short

> 150

1.2,34,51,10
102
1.2

~31GeV 0.903

090902B

long

> 200

0.068

~ 33 GeV 1.822

090926A

long

> 150

0.066, 0.082

~ 20 GeV 2.106
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Gamma-ray

/ Space Telescope

Is the fireball “radiative”?

Radiative L(e) ~ te.es

3€e Ex. £ ,3/7

20’1()/7 tdec

Adiabatic

3 €e Ek,f )
oy T -
Sari 1997, Katz & Piran 1997, Ghisellini et al. 2009

RS———

Bl t > tpeak ‘ Radiative

ar =(12b-2)/7

t

Adiabatic

Liso.a —

2.5 : : Outlier?
= : We probably did not

i _ i . . see the break in the LC

I S N I D G I A (G S I e O S I ) )

091208B
100116A
100728A
101123A
110120A
1103288
110428A
110529A
110625A
110709A
110721A
110731A |,

B
— In this framework, adiabatic expansion is preferred for most of the GRBs
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Cenko, S. B., et al. 2011, ApJ, 732, 29 Racusin, J. L., et al. 2011, ApJ, 738, 138

1049

Note: From X-ray afterglow observation (Swift) one can derive
the jet opening angle, and the beamed bolometric luminosity.
The kinetic energy is also model-dependent

Hyper energetic Fermi LAT GRBs have also high radiative efficiency
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A Energy Budget

Cldr" ma-ray

/ Space Tele scope

« We measure the energy budget during the different component (Prompt,
temporally extended emission, Band, extra PL component)
— During the prompt phase (GBM)
* Fluence at high-energy similar to the Fluence released at low energy
(measured by the GBM)
e <10% of the total prompt energy goes in high energy late emission

 The short 090510 is an exceptional bursts in several plots (typical of
short GRBs?)

— During the prompt phase (GBM) ,10%-30% of the total energy comes
from the extra component (PL)
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s, ermi 1he delayed onset and the bulk Lorentz factor

Gamma-ray

/ﬁ Sp.’a-: £ Tf‘le-'.a‘or.-e

| I 1

-Th_e df-:-lay.ed onset of the LAT a2 ISM (Adiabatic)
emission is poorly understood. In K o-© ISM (Radiative)
the context of early afterglow ! ¢— Wind
models (Kumar & Barniol Duran ’
2009; Ghisellini et al. 2010; De
Pasquale et al. 2010; Razzaque
2010), it can be related to the
transition between the coasting
phase (acceleration) and the self-
similar phase (deceleration), and
can be used to calculate the jet
bulk Lorentz factor.
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Cldr" ma-ray

/ Space Tele scope

Flux density [mJy]

Simultaneous Swift detections

2 GRBs have been simultaneously detected by LAT and Fermi

® LAT @ 100 MeV (x 100)
— GBM @ 10 keV

¢+ BAT @ 25 keV (x 25)

+ XRT @ 1 keV
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