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What is making the diffuse gamma-ray background?

2

Credit: NASA/DOE/Fermi LAT Collaboration 
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What is making the diffuse gamma-ray background?

3

Expected contribution of source populations to the IGRB

Sum is ~ 60-100% of IGRB intensity (energy-dependent)

Fermi-LAT Collaboration (preliminary)

Main)(and)guaranteed))contributions)to)the)Fermi)EGB)

Contribution)from)FSRQs)+)BL)Lac)+)Radio)galaxies)+)star&forming)galaxies:)
)~might)account)for)the)totality)of)the)measured)EGB)at)high)energies.)
)~not)enough)to)account)for)the)EGB)at)low)energies)!)What$makes$the$rest?$

[Courtesy)of)M.)Ajello])
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Radio galaxies
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Star-forming galaxies

Fermi LAT Collaboration, in prep
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Dark matter signals in the IGRB

4
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Figure 3. The vertically hatched band illustrates the span in the expected isotropic extragalactic
(EG) gamma-ray signal, defined by being the region enclosed by our MSII-Sub1 and MSII-Sub2 cases.
The horizontally hatched band is the flux that can be expected from Galactic substructure. The filled
grey band is the signal range that could be expected from the main DM Galactic halo, at a latitude
of 10�, which would by itself produce an anisotropic signal. The data points show the measurement
of the IGRB by the Fermi-LAT [30] (horisontal bars are the energy bin range, and vertical bars are
our later used 1� errors). The gamma-ray spectra are from DM particles with mass of 400 GeV, a
total annihilation cross section h�vi = 3⇥ 10�26 cm3 s�1 into bb̄ quarks, and a minimal subhalo mass
cut-o↵ at 10�6M�. See the text for more details.

substructures, inside the galactocentric distance r (in kpc), as:

Lsub(< r) = L200
main ⇥B ⇥ xx

�0.24
, where x = r/r200 and r200 ⇡ 200 kpc. (2.3)

This functional form is a parametrization of the result presented for the Aquarius simula-
tion in [19]. L200

main is the total DM-induced luminosity inside r200 from the smooth halo
(normalized through the Einasto profile in equation (2.4)), and B gives the relative signal
enhancement inside r200 due to substructures. The upper boarder of the vertically hatched
band is obtained when a single power law relation between the substructure flux and the
minimal DM subhalo mass are related as suggested in [19], which give B ⇠ 230.4 The lower
boarder is when the substructure signal strength instead is implemented consistently with
the average substructure enhancement used in the MSII-Sub1 calculation of the extragalactic
signal. Then the luminosity from all substructures inside r200 for a Milky-Way-sized halos
is merely B ⇠ 2 times the luminosity of the main DM halo. This lower signal limit is also
similar in amplitude to the finding in [71], where the Aquarius simulation is used, but a

4We note that by using the MSII-Sub2 prescription for substructure for Milky Way sized halos, the vertically
hatched upper limit would be extended up further by one order of magnitude.

– 7 –

Abdo et al., JCAP 04 014 (2010)
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Getting rid of the IGRB

• the IGRB is time-dependent: will get less intense as more sources are resolved

• understanding of unresolved source contributions will also improve

• future IGRB measurements will lead to improved DM sensitivity

5

These are consistent with previous work [8], though more
constrained because we are also fitting the source-count
distribution function dN=dF. The model reproduces the
DGRB and blazar dN=dF, with a reduced !2=DOF ¼
0:63. The value of q indicates that the bolometric luminos-
ity of a blazar jet is roughly 15 thousand times more
luminous than the x ray from the accretion disk. Here,
"1 > 1:0 so low-luminosity blazars have significant con-
tributions to the total blazar flux. Therefore, a ten or more
order-of-magnitude lower value of L";min would modify
the calculation considerably, though no blazars have been
detected below our L";min threshold, and therefore it seems
unlikely that there is a large population of very-low-
luminosity blazars. The fraction # ’ 2:4" 10#6 implies
that there is roughly one blazar for every 420 thousand
nonblazar AGN. Our fit to the DGRB spectrum is shown in
Fig. 3 and the fit to dN=dF is in Fig. 4.

Our value for the AGN XLF and blazar GLF ratio #,
3:4" 10#6 to 5" 10#7 (at 95% CL), is similar to and

slightly larger than the central value derived by Inoue &
Totani [8], 1:7" 10#6. This implies that only a small
fraction of x-ray loud AGN is visible as gamma-ray blaz-
ars. The intrinsic jet opening angle of a blazar has been
found to be $1 deg (subtending an area of $2" 10#4

steradian) [50]. Following from this is that only
$2" 10#5 of the AGN jets are potentially visible as
blazars. Our model then requires that only & 20% of
AGN jets are gamma-ray blazars. This is not inconsistent
with jet models [51], though if this fraction drops consid-
erably (i.e., # is required to be much smaller), then it would
call into question the blazar model analyzed here.
Note that using the dN=dF estimated from a power-law

blazar spectrum model is not perfect, due to the fact that
the detection efficiency estimate depends on the spectral
model [4]. However, Ref. [4] tested the dN=dF depen-
dence on the sensitivity estimate with a non-power-law fit
to the blazar spectra and found it did not significantly
change the measurement of dN=dF. We also verified this

FIG. 3 (color online). Shown are the best-fit model for the current DGRB spectrum (solid black line) and our upper/lower 95% CL
forecast for the Fermi-LAT 5-year sensitivity (magenta star/green circle points). The low-energy dominating red line is the AGN flux
from Ref. [10]. The high-energy dominating blue lines are the blazar contribution to the DGRB for the current (solid), and predictions
for the most-optimistic (dashed) and least-optimistic (dotted) 95% CL 5-year Fermi-LAT resolved fractions. The grey lines are the
combined 95% CL AGN plus blazar predicted flux for the corresponding blazar contribution. The DGRB data (triangles) are from
FS10 and the COMPTEL data (diamonds) are from Ref. [60].

FIG. 2. Shown are contours with 68% and 95% confidence level (CL) regions for the parameters of the luminosity scale q and GLF
faint-end index "1, q vs #, and # vs "1. The best-fit value is labeled by the cross.

CONTRIBUTION OF BLAZARS TO THE EXTRAGALACTIC . . . PHYSICAL REVIEW D 84, 103007 (2011)

103007-7

see also Abazajian, Blanchet, Harding 2012

Abazajian, Blanchet, Harding 2011

unresolved blazar contribution 
(current IGRB measurement) 

and at 5 years
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Detecting unresolved sources with anisotropies

Diffuse emission that originates from one or more unresolved source 
populations will contain fluctuations on small angular scales due to variations in 

the number density of sources in different sky directions

6

Anisotropy is another IGRB observable!!!

Log10( Intensity / K  [1030 cm-2 s-1 sr-1] )
-12 -7-12 -7
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Ando, Komatsu, Narumoto & Totani 2007

Angular power spectra of unresolved gamma-ray sources

EGRET, which is expected to be achieved after two years
of all-sky survey observations of sources with a spectral
index of 2 [56]. Our predictions for Cl from GLAST data
are shown in Fig. 4. As GLAST can detect and remove
more fainter objects than EGRET, the Poisson term is
greatly reduced while the correlation part is almost un-
changed. If the blazar bias is larger than 1, the correlation
part would dominate the angular power spectrum at low l’s,
which would allow us to measure the average bias of
unresolved blazars.

We also show the correlation part of the angular power
spectrum using a bias model which was inferred from the
optical quasar observations [51,52]:

 bQ!z" # 0:53$ 0:289!1$ z"2: (21)

If the unification picture of the AGNs is correct, then it may
be natural to set bB # bQ!z". The results from this calcu-
lation are shown as the dot-dashed curves in Figs. 3 and 4.
We find that these results are quite similar to the case of
bB # 1. This is because at low redshift, z & 0:5, the quasar
bias is close to 1, and the main contribution to the CGB
from blazars comes also from relatively low-redshift range.
Once again, we note that the quasar bias [Eq. (21)] is
significantly different from the bias inferred from the
x-ray AGN observation, which indicated stronger cluster-
ing [53–55]. Therefore, one should keep in mind that a
wide range of the blazar bias, possibly up to %5, is still
allowed. Hereafter, we adopt bB # 1 as our canonical
model, and we note that CC

l simply scales as b2B.

V. DISTINGUISHING DARK MATTER
ANNIHILATION AND BLAZARS

The main goal in this paper is to study how to distinguish
CGB anisotropies from dark matter annihilation and from
blazars. The current uncertainty in the blazar bias would be
the source of systematic errors, but this can be reduced
significantly by several approaches, such as the upgraded
and converged bias estimations of AGNs from the other
wavebands, direct measurement of the blazar bias from the
detected point sources by GLAST [46], and the CGB
anisotropy at different energies where the contribution
from dark matter annihilation is likely to be small.

A. Formulation for the two-component case

The total CGB intensity is the sum of dark matter
annihilation and blazars:

 ICGB!E; n̂" # IB!E; n̂" $ ID!E; n̂"; (22)

 hICGB!E"i # hIB!E"i$ hID!E"i; (23)

where the subscripts B and D denote blazar and dark matter
components, respectively. The expansion coefficients of
the spherical harmonics are given by

 aCGBlm #
Z

d!n̂
ICGB!E; n̂" & hICGB!E"i

hICGB!E"i
Y'
lm!n̂"

#
Z

d!n̂
!IB!E; n̂" $ !ID!E; n̂"

hICGB!E"i
Y'
lm!n̂"

( fBaBlm $ fDaDlm; (24)

where !IB;D ( IB;D & hIB;Di, fB;D ( hIB;Di=hICGBi. These
fB and fD are the fraction of contribution from the blazars
and dark matter annihilation to the total CGB flux, and we
have the relation fB $ fD # 1. Therefore, aB;Dlm is defined
as the coefficient of the spherical harmonic expansion if
each component is the only constituent of the CGB flux,
the same definition as in the previous sections or of AK06
[41]. The total angular power spectrum CCGB

l # hjaCGBlm j2i
is, therefore, written as

 CCGB
l # f2BCl;B $ f2DCl;D $ 2fBfDCl;BD; (25)

where Cl;B and Cl;D are the angular power spectrum of the
CGB from blazars (Sec. IV) and dark matter annihilation
(Sec. III and AK06 [41]), respectively, and Cl;BD (
haBlmaD'

lm i is a cross correlation term. This cross correlation
term is derived in Appendix B, and is again divided into 1-
halo and 2-halo terms, i.e.,

 Cl;BD # C1h
l;BD $ C2h

l;BD; (26)

where each term is given by

 

FIG. 4 (color online). The same as Fig. 3 but for the CGB
anisotropy expected from GLAST data.

DARK MATTER ANNIHILATION OR UNRESOLVED . . . PHYSICAL REVIEW D 75, 063519 (2007)

063519-7

Predicted angular power spectrum 
of unresolved blazars

• the angular power spectrum of 
many gamma-ray source classes 
(except dark matter) is 
dominated by the Poisson 
(shot noise) component for 
multipoles greater than ~ 10

• Poisson angular power arises 
from unclustered point sources 
and takes the same value at all 
multipoles

predicted fluctuation angular 
power                [sr] at l = 100 
for a single source class 
(LARGE UNCERTAINTIES):

• blazars: ~ 2e-4

• starforming galaxies: ~ 2e-7

• dark matter: ~ 1e-6 to ~ 1e-4

• MSPs: ~ 0.03

C`/hIi2
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Fermi LAT anisotropy measurement

• at l ≥155, detected signal is consistent 
with Poisson angular power CP (i.e., 
unclustered point sources)

• significant (>3σ) detection of angular 
power up to 10 GeV, lower significance 
power measured at 10-50 GeV

• small angular scale IGRB anisotropy 
measured for the first time with the 
Fermi LAT!

8

Map with default mask applied
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Ackermann et al. [Fermi LAT Collaboration], 
PRD 85, 083007 (2012)
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Constraints from the fluctuation angular power

9

Constraints from best-fit constant fluctuation angular power (l ≳ 150) 
measured in the data and foreground-cleaned data

NB: these are indicative predicted values for source populations, taken from the literature.  

• dependent on source model (large variations possible, especially for dark matter 
scenarios)

• dependent on source detection threshold 

• for cosmological populations, dependent on EBL assumptions

These values may not be accurate for your favorite source population model.

22

TABLE V: Maximum fractional contribution of various source populations to the IGRB intensity that is compatible with
the best-fit constant value of the measured fluctuation angular power in all energy bins, 〈CP/〈I〉

2〉 = 9.05 × 10−6 sr for the
default data analysis or 〈CP/〈I〉

2〉 = 6.94× 10−6 sr for the Galactic-foreground–cleaned data analysis. Indicative values for the
fluctuation angular power C!/〈I〉

2 of each source class are taken from existing literature (see text for details) and evaluated at
! = 100.

Source class Predicted C100/〈I〉2 Maximum fraction of IGRB intensity

[sr] DATA DATA:CLEANED

Blazars 2× 10−4 21% 19%

Star-forming galaxies 2× 10−7 100% 100%

Extragalactic dark matter annihilation 1× 10−5 95% 83%

Galactic dark matter annihilation 5× 10−5 43% 37%

Millisecond pulsars 3× 10−2 1.7% 1.5%

catalog is between 0.5 and 1 × 10−9 photons cm−2 s−1
1267

for |b| > 30◦, higher than the threshold assumed in [24].1268

If the blazar luminosity function is identical to the one1269

assumed in [24], this discrepancy in thresholds would im-1270

ply that the prediction for the blazar anisotropy in [24] is1271

underestimated with respect to the one applicable to our1272

analysis, since our masked maps include more bright un-1273

resolved blazars. As a result, the constraint on the frac-1274

tional intensity contribution to the IGRB from blazars1275

for this model from our measurement would, if anything,1276

be stronger.1277

In contrast to the larger anisotropy expected from1278

blazars, the fluctuation angular power at ! ∼ 100 pre-1279

dicted for star-forming galaxies by Ref. [27] is ∼ 2 ×1280

10−7 sr at 1 GeV, far below the value measured in this1281

analysis. Since star-forming galaxies would thus pro-1282

vide a subdominant contribution to the measured angular1283

power, this anisotropy measurement does not constrain1284

their contribution to the total IGRB intensity.1285

The anisotropy from dark matter annihilation in ex-1286

tragalactic structures is predicted to be slightly smaller1287

than that from unresolved blazars, although estimates1288

can vary substantially due to differences in the adopted1289

models. Moreover, for extragalactic dark matter anni-1290

hilation the amplitude of the expected anisotropy can1291

be highly sensitive to the energy spectrum of the emis-1292

sion. The source energy spectrum depends on the dark1293

matter particle mass and dominant annihilation chan-1294

nels, while the observed energy spectrum is affected by1295

redshifting and EBL attenuation. These factors can in-1296

troduce a non-trivial energy dependence into the am-1297

plitude of the anisotropy, particularly for high mass1298

(∼ 1 TeV) dark matter candidates. As a benchmark1299

range, Refs. [23, 24, 36] predict the anisotropy from an-1300

nihilation of extragalactic dark matter to be ∼ 10−6–1301

10−5 sr at ! ∼ 100 at energies of a few GeV, comparable1302

to the measured value.1303

The anisotropy from annihilation in Galactic dark mat-1304

ter substructure is expected to be much larger than that1305

from extragalactic dark matter. While variations in the1306

assumed properties of Galactic substructure can lead to1307

order-of-magnitude or larger variations in the predicted1308

angular power, for typical assumptions the predicted fluc-1309

tuation angular power is ∼ 5 × 10−5 sr at ! ∼ 100 (e.g.,1310

Model A1 in Ref. [30]), which implies that dark matter1311

annihilation can contribute less than ∼ 43% of the total1312

intensity. However, adopting alternative models for the1313

substructure properties can increase or decrease the pre-1314

dicted angular power by as much as ∼ 2 orders of magni-1315

tude [29–31], so the measured angular power represents1316

a strong constraint on some substructure models.1317

Galactic gamma-ray MSPs have also been considered1318

as possible contributors to the intensity and anisotropy1319

of the IGRB due to their extended latitude distribu-1320

tion [15, 28]. The emission from Galactic MSPs is ex-1321

pected to feature very large fluctuation anisotropy due1322

to the relatively low number density of this source class1323

compared to dark matter substructure or extragalactic1324

source populations. Ref. [28] predicts fluctuation angular1325

power at high Galactic latitudes of ∼ 0.03 sr at ! ∼ 1001326

for this Galactic source class, which implies a contribu-1327

tion to the total IGRB intensity of no more than a few1328

percent.1329

We note that constraints derived in this section have1330

not taken into account information about the likely en-1331

ergy spectrum of the dominant contributing population,1332

discussed in §VII, which is incompatible with sources1333

known or expected to feature spectral peaks at the ener-1334

gies we consider (for example, Galactic and extragalac-1335

tic dark matter and MSPs). A careful study combining1336

all observables obtained in this work would almost cer-1337

tainly yield stronger constraints on contributing popula-1338

tions. Furthermore, we have discussed the constraints1339

obtainable on specific source populations by requiring1340

that the total anisotropy from each population does not1341

exceed the measured value. We emphasize, however,1342

that stronger bounds could be derived if some fraction1343

of the total anisotropy could be robustly attributed to1344

one or more confirmed source classes, thereby reducing1345

the anisotropy available to additional contributors.1346
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Energy dependence of anisotropy

10

• consistent with a source class with power-law energy spectrum with Γ = -2.40 ± 0.07 
(-2.33 ± 0.08 for cleaned data)

Intensity anisotropy energy spectrum
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Ackermann et al. [Fermi LAT Collaboration] 
PRD 85, 083007 (2012)
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Energy dependence of anisotropy

10

• consistent with a source class with power-law energy spectrum with Γ = -2.40 ± 0.07 
(-2.33 ± 0.08 for cleaned data)

• spectral index in good agreement with that of blazars

Intensity anisotropy energy spectrum
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Figure 1. Left panel: flux–photon index plane for all the |b| ! 10◦ sources with TS ! 25. The dashed line is the flux limit as a function of photon index reported in
Abdo et al. (2010e), while the solid line represents the limiting flux above which the spectral selection effects become negligible. Right panel: photon index distribution
of all sources for F100 ! 7 × 10−8 ph cm−2 s−1. Above this limit, the LAT selection effect toward hard sources becomes negligible.
(A color version of this figure is available in the online journal.)

advance, with ∼4 times more blazars and a detailed investigation
of selection effects in source detection.

This work is organized as follows. In Section 3, the intrinsic
spectral properties of the Fermi sources are determined. In
Section 4, the Monte Carlo simulations used for this analyses
are outlined with the inherent systematic uncertainties (see
Section 5). Finally, the source count distributions are derived in
Section 6 and Section 7, while the contribution of point sources
to the GeV diffuse background is determined in Section 8.
Section 9 discusses and summarizes our findings. Since the
final goal of this work is to derive the contribution of sources to
the EGB, we will only use physical quantities (i.e., source flux
and photon index) averaged over the time (11 months) included
in the analysis for the First Fermi-LAT catalog (1FGL; Abdo
et al. 2010b).

2. TERMINOLOGY

Throughout this paper, we use a few terms which might not
be familiar to the reader. In this section, meanings of the most
often used are clarified.

1. Spectral bias (or photon-index bias). It is the selection effect
which allows Fermi-LAT to detect spectrally hard sources
at fluxes generally fainter than those of soft sources.

2. Flux-limited sample. It refers to a sample which is uni-
formly selected solely according to the source flux. If the
flux limit is chosen to be bright enough (as in the case of this
paper), then the selection effects affecting any other proper-
ties (e.g., the source spectrum) of the sample are negligible.
This is a truly uniformly selected sample.

3. Diffuse emission from unresolved point sources. It rep-
resents a measurement of the integrated emission from
sources that have not been detected by Fermi. As it will
be shown in the next sections, for each source detected at
low fluxes, there is a large number of sources that have
not been detected because of selection effects (e.g., the
local background was too large or the photon index was
too soft, or a combination of both). The diffuse emission
from unresolved point sources (computed in this work) ad-
dresses the contribution of all of those sources that have
not been detected because of these selection effects, but

have a flux that is formally larger than the faintest detected
source.

3. AVERAGE SPECTRAL PROPERTIES

3.1. Intrinsic Photon-index Distributions

As already shown in Abdo et al. (2009a; but see also Figure 1),
at faint fluxes the LAT more easily detects hard-spectrum
sources rather than sources with a soft spectrum. Sources with
a photon index (e.g., the exponent of the power-law fit to
the source photon spectrum) of 1.5 can be detected to fluxes
that are a factor >20 fainter than those at which a source
with a photon index of 3.0 can be detected (see Abdo et al.
2010e, for details). Thus, given this strong selection effect,
the intrinsic photon-index distribution is necessarily different
from the observed one. An approach to recovering the intrinsic
photon-index distribution is obtained by studying the sample
above F100 ≈ 7×10−8 ph cm−2 s−1 and |b| ! 10◦ (see the right
panel of Figure 1). Indeed, above this flux limit, LAT detects
all sources irrespective of their photon index, flux, or position
in the high-latitude sky. Above this limit, LAT detects 135
sources. Their photon-index distribution, reported in Figure 1,
is compatible with a Gaussian distribution with a mean of 2.40
± 0.02 and a dispersion of 0.24 ± 0.02. These values differ
from the mean of 2.23 ± 0.01 and the dispersion of 0.33 ±
0.01 derived using the entire |b| ! 10◦ sample. Similarly,
the intrinsic photon-index distributions of flat spectrum radio
quasars (FSRQs) and BL Lacertae objects (BL Lac objects)
are different from the observed distributions. In both cases,
the observed average photon index is harder than the intrinsic
average value. The results are summarized in Table 1.

3.2. Stacking Analysis

Another way to determine the average spectral properties is
by stacking source spectra together. This is particularly simple
since Abdo et al. (2010b) report the source flux in five different
energy bands. We thus performed a stacking analysis of those
sources with F100 ! 7 × 10−8 ph cm−2 s−1, TS ! 25, and
|b| !10◦. For each energy band, the average flux is computed as
the weighted average of all source fluxes in that band using the

Abdo et al. (Fermi LAT Collaboration), ApJ 720, 435 (2010)

Spectral indices of Fermi LAT sources

Ackermann et al. [Fermi LAT Collaboration] 
PRD 85, 083007 (2012)
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Figure 10. Distribution of photon indices (left) and fluxes (right) for the TS ! 50 and |b| ! 20◦ sources. The dashed line is the best-fit dN/dSdΓ model. Using the χ2

test, the probabilities that the data and the model line come from the same parent population are 0.98 and 0.97 for the photon-index and flux distributions, respectively.
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|b| ! 20◦) sources built with the standard method (green data points; see
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(A color version of this figure is available in the online journal.)

redshift. While it is something reasonable to expect, this effect
in the current data set is not observed. The luminosity function,
which is left to a future paper, will allow us to investigate this
effect in great detail.

6.4. FSRQs

For the classification of blazars as FSRQs or BL Lac objects,
we use the same criteria adopted in Abdo et al. (2009a). This
classification relies on the conventional definition of BL Lac
objects outlined in Stocke et al. (1991), Urry & Padovani (1995),
and Marcha et al. (1996) in which the equivalent width of the
strongest optical emission line is <5 Å and the optical spectrum
shows a Ca ii H/K break ratio C < 0.4.

It is important to correctly determine the incompleteness of
the sample when dealing with a subclass of objects. Indeed, in
the sample of Table 2, 56 objects have no associations and
28 have either an uncertain or a tentative association with
blazars. Thus, the total incompleteness is 84/425 = ∼19%
when we refer to either FSRQs or BL Lac objects separately.
The incompleteness levels of all the samples used here are
also reported in Table 4 for clarity. Since we did not perform
dedicated simulations for the FSRQ and the BL Lac object
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Figure 12. Comparison between log N–log S distributions of the whole sample
of sources (solid circles) and blazars (open circles). The solid lines are the
respective best-fit models as reported in Table 4.
(A color version of this figure is available in the online journal.)

classes, their source count distributions can be derived only
with the method described in Section 6.2.

The best fit to the source counts (reported in Table 4) is a
double power-law model with a bright-end slope of 2.41 ± 0.16
and faint-end slope 0.70 ± 0.30. The log N–log S relationship
shows a break around F100 = 6.12(±1.30) × 10−8 ph cm−2 s−1.
The intrinsic distribution of the photon indices of FSRQs is
found to be compatible with a Gaussian distribution with a mean
and a dispersion of 2.48 ± 0.02 and 0.18 ± 0.01, respectively,
in agreement with what found previously in Table 1. The faint-
end slope is noticeably flatter and this might be due to the fact
that many of the unassociated sources below the break might
be FSRQs. Figure 13 shows how the best-fit model reproduces
the observed photon-index and flux distributions. The χ2-test
indicates that the probability that the real distribution and the
model line come from the same parent population is !0.99
for both the photon-index and flux distributions, respectively.
The left panel shows that the photon-index distribution is not
reproduced perfectly. This might be due to incompleteness or
by the fact that the intrinsic distribution of photon indices is
actually not Gaussian. However, a Kolmogorov–Smirnov (K-S)
test between the predicted and the observed distribution yields

The source count distribution

11

Abdo et al. (Fermi LAT Collaboration), ApJ 720, 435 (2010)

dN
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⇢
A S�⇥ S � Sb

A Sb
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break flux
high (bright-end) 
spectral index

low (faint-end) 
spectral index

the source count distribution (“LogN-LogS”) of Fermi-LAT–detected 
sources is consistent with a broken power law

LogN-LogS of Fermi LAT sources
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the total intensity and Poisson angular power (CP) 
from unresolved sources can be predicted from the 

source count distribution
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the total intensity and Poisson angular power (CP) 
from unresolved sources can be predicted from the 

source count distribution

How do the predicted intensity and angular power from unresolved 
blazars compare to the measured values?
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Figure 10. Distribution of photon indices (left) and fluxes (right) for the TS ! 50 and |b| ! 20◦ sources. The dashed line is the best-fit dN/dSdΓ model. Using the χ2

test, the probabilities that the data and the model line come from the same parent population are 0.98 and 0.97 for the photon-index and flux distributions, respectively.
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(A color version of this figure is available in the online journal.)

redshift. While it is something reasonable to expect, this effect
in the current data set is not observed. The luminosity function,
which is left to a future paper, will allow us to investigate this
effect in great detail.

6.4. FSRQs

For the classification of blazars as FSRQs or BL Lac objects,
we use the same criteria adopted in Abdo et al. (2009a). This
classification relies on the conventional definition of BL Lac
objects outlined in Stocke et al. (1991), Urry & Padovani (1995),
and Marcha et al. (1996) in which the equivalent width of the
strongest optical emission line is <5 Å and the optical spectrum
shows a Ca ii H/K break ratio C < 0.4.

It is important to correctly determine the incompleteness of
the sample when dealing with a subclass of objects. Indeed, in
the sample of Table 2, 56 objects have no associations and
28 have either an uncertain or a tentative association with
blazars. Thus, the total incompleteness is 84/425 = ∼19%
when we refer to either FSRQs or BL Lac objects separately.
The incompleteness levels of all the samples used here are
also reported in Table 4 for clarity. Since we did not perform
dedicated simulations for the FSRQ and the BL Lac object
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respective best-fit models as reported in Table 4.
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classes, their source count distributions can be derived only
with the method described in Section 6.2.

The best fit to the source counts (reported in Table 4) is a
double power-law model with a bright-end slope of 2.41 ± 0.16
and faint-end slope 0.70 ± 0.30. The log N–log S relationship
shows a break around F100 = 6.12(±1.30) × 10−8 ph cm−2 s−1.
The intrinsic distribution of the photon indices of FSRQs is
found to be compatible with a Gaussian distribution with a mean
and a dispersion of 2.48 ± 0.02 and 0.18 ± 0.01, respectively,
in agreement with what found previously in Table 1. The faint-
end slope is noticeably flatter and this might be due to the fact
that many of the unassociated sources below the break might
be FSRQs. Figure 13 shows how the best-fit model reproduces
the observed photon-index and flux distributions. The χ2-test
indicates that the probability that the real distribution and the
model line come from the same parent population is !0.99
for both the photon-index and flux distributions, respectively.
The left panel shows that the photon-index distribution is not
reproduced perfectly. This might be due to incompleteness or
by the fact that the intrinsic distribution of photon indices is
actually not Gaussian. However, a Kolmogorov–Smirnov (K-S)
test between the predicted and the observed distribution yields

Exploring the LogN-LogS parameter space

13

Abdo et al. [Fermi LAT Collaboration], ApJ 720, 435 (2010)

LogN-LogS of Fermi LAT sources

vary break flux

vary faint slope

• we fix the high index 
and normalization of 
the source count 
distribution to the 
measured best-fit 
values

• we vary the low 
index and break flux, 
and calculate the 
intensity and 
anisotropy produced 
by the unresolved 
sources in the 1-10 
GeV band
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Cuoco, Komatsu & Siegal-Gaskins 2012

Constraints on source count distribution 
(logN-logS) parameter space

Constraints on unresolved gamma-ray sources

14

• anisotropy and source count 
analysis point to blazars 
contributing ~20% of IGRB 
intensity and ~100% of IGRB 
anisotropy

• this result implies that 
component(s) making ~80% 
of IGRB intensity have very 
low level of anisotropy

• anisotropy is a powerful 
constraint: measured angular 
power excludes Stecker & 
Venters 2011 model

• Harding & Abazajian 2012 
find LDDE blazar model 
constrained to provide less 
than ~ 10% of IGRB intensity

1-10 GeV
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Cuoco, Komatsu & Siegal-Gaskins 2012

Cumulative flux and anisotropy contribution as 
a function of source flux E > 100 MeV

Implications for blazar models

15

• anisotropy very sensitive to 
source count distribution 
just below detection 
threshold → difficult to 
construct a blazar model to 
avoid strong constraints

• as the source detection 
threshold decreases, the 
validity of predictions for 
the logN-logS of blazars 
(and other source 
populations) can be tested 
and revised
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Cuoco, Komatsu & Siegal−Gaskins 2012

Total measured angular power with 1-sigma uncertainties 
and 2-sigma upper limits on non-blazar anisotropy

Constraints on IGRB anisotropy from non-blazar sources

16

(calculated assuming blazar anisotropy given by best-fit source count parameters)
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Recent  advances:

• increase in detected sources has allowed improved estimates of IGRB contribution 
from known source populations

• IGRB small-scale anisotropy has been detected for the first time!

• consistent with unclustered point sources

• measured angular power constrains source populations

• energy dependence is consistent with that of blazars

• source count analysis and anisotropy measurements point to blazars contributing 
~100% of the anisotropy but only less than ~20% of the intensity of the IGRB

Open issues:

• what makes up the other ~80% of the IGRB intensity?

• how can we improve models of unresolved (known) source populations? / how much 
do we need to improve these to constrain possible new sources?

• how will the IGRB measured a few years from now change (in intensity and anisotropy) 
and what will that teach us about its origin?

Summary

17
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Additional slides

18
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Credit: NASA/General Dynamics

The Fermi Large Area Telescope (LAT)

19

• launched in June 2008

• pair-production detector: 
detects charged particles as 
well as gamma rays

• excellent charged particle 
event identification and 
background rejection

• 20 MeV to > 300 GeV

• angular resolution ~ 0.1 deg 
above 10 GeV

• uniform sky exposure of ~ 
30 mins every 3 hrs

Fermi data is public!
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The angular power spectrum

• intensity angular power spectrum: 

• indicates dimensionful amplitude of anisotropy

• fluctuation angular power spectrum: 

• dimensionless, independent of intensity normalization

• amplitude for a single source class is the same in all energy 
bins (if all members have same energy spectrum)

20
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• predictions derived from Millenium-II and Aquarius simulations and accurately account for 
redshifting and EBL attenuation for extragalactic DM, and secondary emission from Galactic DM

• the angular power spectrum of dark matter annihilation and decay falls off faster than Poisson at 
multipoles above ~ 100

21

Angular power spectra of dark matter signals
14 Fornasa et al.
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Figure 7. Upper panels: Fluctuation APS of the template gamma-ray maps at an observed energy of 4 GeV for annihilating DM (left) and decaying DM
(right). The particle physics parameters (including Mmin) as well as the color coding are the same as those in Figs. 5 and 6. Solid (dashed) lines indicate
the extragalactic (galactic) emission. Bottom panels: The same as the upper panels but for the intensity APS (see Eq. 13). The upper panels give a measure
of the relative anisotropies of the different components, whereas the bottom panels are an absolute measurement of the anisotropies and clearly show which
components dominate the APS. The grey dashed line (with arbitrary normalization) indicates a Poissonian APS independent on multipole.

resolved structures generate anisotropies that only contribute to a
small fraction of the total emission (the fi factor in Eq. 14).

In the lower panels of Fig. 7 we show the intensity APS, which
allow us to estimate the absolute contribution of the different com-
ponents. Large values of the intensity APS can be obtained from a
particularly anisotropic component or from a very bright one. The
angular dependence for all components is the same as in the fluctu-
ation APS, but now, due to a very small average intensity, the EG-
MSII component has the lowest intensity APS (black solid line),
followed by the solid green line, corresponding to the sum of the
EG-MSII and EG-UNRESMain components (even if the fluctua-
tion APS is larger for the former than for the latter). Once the full

extragalactic emission is considered (solid red and blue lines), the
intensity APS is between a factor of 100 and 5× 104 larger than the
intensity APS of EG-MSII, depending on the subhalo boost used.
Notice that the solid yellow and purple lines (that only include re-
solved (sub)halos and the subhalo boost to the resolved main halos)
have essentially the same intensity APS as the solid red and blue
lines, which implies that the total intensity APS of the DM annihi-
lation signal is dominated by the extragalactic unresolved subhalos
of the massive main halos.

In the case of DM decay (right panels), we can see that the
fluctuation APS of the EG-MSII component (solid black line) has
the same shape as the solid green line (which adds the contribution

c© 0000 RAS, MNRAS 000, 000–000

Predicted angular power spectrum of DM 
annihilation

Predicted angular power spectrum of DM 
decay

Fornasa, Zavala, Sanchez-Conde, JSG et al. 2012
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• the angular power spectrum 
from Galactic diffuse emission 
is NOT expected to look 
Poissonian; instead, it falls off 
quickly with multipole

Angular power spectra of foregrounds
Anisotropies in the Diffuse Gamma-Ray Background from Dark Matter with Fermi LAT: a closer look 5

Figure 2. All sky angular spectra for E > 10 GeV of the
employed models for point sources (red), Galactic foregrounds
(green), EGB (magenta) and EGB DM (blue) after convolution
with the Fermi-LAT Point Spread Function. For illustration, the
flux of each component is arbitrarily normalized to the level of the
IGRB detected by Fermi-LAT, and 5 years of Fermi-LAT obser-
vations have been assumed. The power spectrum of the exposure
map is also shown (black line). In the top panel the spectra be-
fore shot noise removal are shown (shot noise is represented by the
dashed lines) . All the spectra are calculated with HEALpix. The
last panel shows the angular power spectra after the application
of a suitable mask to cover the low latitude Galactic foregrounds
and the point sources. Since the mask is effective in suppress-
ing the point sources signal the related power spectrum has been
removed.

The following section describes in detail how the power
spectra of DM and astrophysical EGB are modeled and how
the related maps are simulated. The section can be skipped
by the reader not interested in these details.

4 DARK MATTER AND ASTROPHYSICAL

ANISOTROPIES

4.1 Modeling the EGB

Since we neglect the Poisson term coming from the unre-
solved point sources, the remaining source of anisotropies
of the IGRB is given by the anisotropic spatial distribu-
tion of the sources themselves. To derive the anisotropy we
will assume, as a reasonable first approximation, that the
gamma ray sources are distributed as the matter density of
the universe ρ("x), i.e. following the cosmological Large Scale
Structures (LSS). In principle ρs, the density distribution of
astrophysical sources, should be used instead of ρ: ρs in gen-
eral exhibits a scale and time dependent bias with respect
to the matter density. However, specific classes of astrophys-
ical gamma-ray sources have different biases. For example,
blazars are well known to concentrate at the center of clus-
ters of galaxies, thus presenting an over-bias with respect to
galaxies at high densities. On the other hand, galaxies and
clusters of galaxies reasonably trace the matter density, at
least in the recent cosmic epoch. The assumption ρs = ρ
is thus general enough to approximately describe emission
from astrophysical sources.

Given these assumptions the extragalactic cosmic
gamma-ray signal can be written as (Ullio et al. 2002;
Bergstrom et al. 2001; Cuoco et al. 2006)

Iγ(Eγ , n̂) ∝
∫ ∞

0

z.
ρ(z, n̂, r(z)) g[Eγ(1 + z)] e−τ(Eγ ,z)

H(z) (1 + z)3
, (1)

where g(E) = dNγ/dE is the photon spectrum of the
sources, Eγ is the energy we observe today, ρ(z, n̂, r) is the
matter density in the direction n̂ at a comoving distance
r, and the redshift z is used as time variable. The Hub-
ble expansion rate is related to its present z = 0 value H0

through the matter and cosmological constant energy den-
sities as H(z) = H0

√

ΩM (1 + z)3 + ΩΛ, and the reduced
Hubble expansion rate h(z) is given by H(z) = 100 h(z)
km/s/Mpc. We will in the following use ΩM = 0.3, ΩΛ = 0.7
and H0 = 70 km/s/Mpc. The quantity τ (Eγ, z) is the op-
tical depth of photons to absorptions via pair production
(PP) on the Extra-galactic Background Light (EBL). We use
the parametrization of τ (Eγ, z) from (Stecker et al. 2006)
for 0 < z < 5, where the evolution of the EBL is included
in the calculation. The EBL is expected to be negligible at
redshifts larger than z ≈ 5 corresponding to the peak of
star formation. Thus, gamma photons produced at earlier
times experience an undisturbed propagation until z ≈ 5,
while only in the recent epoch they start to lose energy
due to scattering on the EBL. Correspondingly, we assume
τ (Eγ, z) = τ (Eγ , 5) for z > 5 (see also formula (A.6) in
(Cuoco et al. 2006)).

In the case of cosmological DM annihilation, the re-
sulting spatial distribution of the gamma signal follows the
square of the matter distribution ρ2("x) through

Cuoco, Sellerholm, Conrad, & Hannestad 2010
point sources

Galactic diffuse

multipole range of interest 
for data analysis (l ≳ 150)
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Energy dependence of anisotropy

23

• consistent with no energy dependence, but mild or localized energy 
dependence not excluded

• consistent with all anisotropy contributed by one or more source classes 
contributing same fractional intensity at all energies considered

Fluctuation anisotropy energy spectrum
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Ackermann et al. [Fermi LAT Collaboration], 
PRD 85, 083007 (2012)
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• intensity angular power can constrain the absolute IGRB 
contribution from a single population

• fluctuation angular power can constrain the fractional 
IGRB contribution from a single population

C
P,i  C

P,tot

f2

i  C
P,tot/hItoti2

C
P,i/hIii2

Source population constraints from anisotropy

24
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Aside: threshold fluxes and spectral index bias

25

In general, the source detection threshold can depend 
on the spectral index of the source (spectral index bias)

spectral index bias is strong for fluxes > 100 MeV, 
but small for fluxes > 1 GeV (1-10 GeV is used in this study)

Source flux vs spectral index (E > 100 MeV) Source flux vs spectral index (E > 1 GeV)

(points are 1FGL sources, lines are derived threshold flux as a function of spectral index)

Cuoco, Komatsu & JSG 2012
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Comparison with predicted angular power

26

• fluctuation angular power of ~ 1e-5 sr falls in the range predicted for 
some astrophysical source classes and some dark matter scenarios

• can be used to constrain the IGRB contribution from these populations 

11

TABLE II: Best-fit values of the angular power CP and fluctuation angular power CP/〈I〉
2 in each energy bin over the multipole

range 155 ≤ ! ≤ 504. Results are shown for the data processed with the default analysis pipeline, the foreground-cleaned data,
and the default simulated model.

Emin Emax CP Significance CP/〈I〉
2 Significance

[GeV] [GeV] [(cm−2 s−1 sr−1)2 sr] [10−6 sr]

DATA 1.04 1.99 7.39 ± 1.14× 10−18 6.5σ 10.2 ± 1.6 6.5σ

1.99 5.00 1.57 ± 0.22× 10−18 7.2σ 8.35 ± 1.17 7.1σ

5.00 10.4 1.06 ± 0.26× 10−19 4.1σ 9.83 ± 2.42 4.1σ

10.4 50.0 2.44 ± 0.92× 10−20 2.7σ 8.00 ± 3.37 2.4σ

DATA:CLEANED 1.04 1.99 4.62 ± 1.11× 10−18 4.2σ 6.38 ± 1.53 4.2σ

1.99 5.00 1.30 ± 0.22× 10−18 6.0σ 6.90 ± 1.16 5.9σ

5.00 10.4 0.845 ± 0.246 × 10−19 3.4σ 8.37 ± 2.41 3.5σ

10.4 50.0 2.11 ± 0.86× 10−20 2.4σ 7.27 ± 3.36 2.2σ

MODEL 1.04 1.99 1.89 ± 1.08× 10−18 1.7σ 2.53 ± 1.47 1.7σ

1.99 5.00 1.92 ± 2.10× 10−19 0.9σ 0.99 ± 1.12 0.9σ

5.00 10.4 3.41 ± 2.60× 10−20 1.3σ 3.04 ± 2.34 1.3σ

10.4 50.0 0.62 ± 9.63× 10−21 0.1σ 0.24 ± 3.02 0.1σ

lent agreement. The modeling of the instrument PSF dif-732

fers between the P6 V3 and P6 V8 IRFs, however no sig-733

nificant differences in the measured angular power spec-734

tra are evident. The insensitivity of the measured angu-735

lar power spectrum to the choice of IRF confirms that736

variations in the PSF model between these two IRFs do737

not affect the anisotropy on the angular scales to which738

this analysis is sensitive.739

D. Dependence on masked region740

In this analysis we apply a generous latitude mask741

to reduce contamination of the data by Galactic diffuse742

emission. The mask is intended to remove enough con-743

tamination so that the measured angular power can be744

attributed to sources that are very uniformly distributed745

in the sky region we consider, i.e., sources that do not746

exhibit a strong gradient with Galactic latitude. The747

effectiveness of the mask at reducing the contribution748

to the angular power from a strongly latitude-dependent749

component can be evaluated by considering the angular750
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predicted fluctuation angular 
power                [sr] at l = 100 
for a single source class 
(LARGE UNCERTAINTIES):

• blazars: ~ 2e-4

• starforming galaxies: ~ 2e-7

• dark matter: ~ 1e-6 to ~ 1e-4

• MSPs: ~ 0.03

C`/hIi2

Fluctuation angular power in data
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• preliminary dark matter constraints from published anisotropy measurement

• updated measurement should yield improved sensitivity due to more energy bins and 
improved statistics

27

Anisotropy constraints on dark matter models
Constraints using 2-sigma upper limit 

on total measured anisotropy
Constraints using 2-sigma upper limits 

on non-blazar anisotropy

Fermi LAT collaboration and MultiDark, in prep
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• updated measurement should yield improved sensitivity due to more energy bins and 
improved statistics
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Decomposing diffuse emission with anisotropy
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assumptions:

• two-component scenario

• uncorrelated components

• each component defined by a single 
energy spectrum

• one component dominates the 
intensity at some energy 

2

model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)

I2 = Itot





Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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



(4)

I2 = Itot




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Ĉ!,2 . (3)
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use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151
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With sufficient photon statistics, Itot and Ĉ!,tot can be
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a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2




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Ĉ!,1 ∓
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If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
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Ĉ!,1 ∓
√
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If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
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function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
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a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
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Ĉ!,1 + Ĉ!,2
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tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
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This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
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If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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determined. We discuss the conditions under which such93
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techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97
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component models and simulated observations used for101
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niques for understanding gamma-ray source populations107
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with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125
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Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)
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Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot




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ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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that the single-population Ĉ! is energy-independent is140
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tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
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Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2
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the fluctuation angular power of the total emission as a151

function of energy.152
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



(4)

I2 = Itot




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that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141
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that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147
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sum of the two components,
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spectra of the components,
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use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)
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Ĉ!,1 ∓
√
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



(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157

observables

model parameters
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model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =
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I1(E)

Itot(E)

)2

Ĉ!,1 +
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I2(E)

Itot(E)
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Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:
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
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Ĉ!,1 ∓
√
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If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84
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nent can be recovered; in some cases the absolute nor-89
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Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97
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In §II we introduce the formalism common to all of99
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component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108
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per area per time per solid angle per energy) and the113
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sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119
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Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =
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Ĉ!,1 +
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I2(E)
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Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
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
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
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(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157

2

model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)

I2 = Itot





Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157

observables

model parameters
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following we assume that each distinct component of the125
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In practice, if a component of the emission arises from138
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that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141
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that the deviation of the fluctuation angular power from143
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the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
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The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
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the case we consider. In the following we will always149
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the fluctuation angular power of the total emission as a151

function of energy.152
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lations, energy-dependent fluctuation angular power can134
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In practice, if a component of the emission arises from138
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that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144
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observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147
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single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)

I2 = Itot




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√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)

I2 = Itot





Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157

under these assumptions, 

features observed in the anisotropy energy spectrum can be used 
to extract each component’s intensity spectrum 

without a priori assumptions about the shape of the intensity spectra 
or anisotropy properties!

observables

model parameters
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model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)

I2 = Itot





Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2




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I2 = Itot





Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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are guaranteed to contribute significantly to the IGRB at
some energy. Reference [22] showed that by combining
the spectral and anisotropy properties of the IGRB, it is
possible to identify the presence of a second, even sub-
dominant, component, such as a signal from dark mat-
ter annihilation or decay, over a dominant, astrophysi-
cal contribution. We extend this approach by developing
techniques that allow the intensity spectra of the individ-
ual components to be reconstructed without requiring a
model or prediction for any of the contributions.

For di↵use backgrounds composed of emission from un-
correlated source populations, we show that under cer-
tain conditions, if the intensity energy spectrum (di↵er-
ential photon intensity as a function of energy) and the
anisotropy energy spectrum (angular power at a fixed
multipole as a function of energy) of the di↵use back-
ground are both measured with su�cient accuracy, the
shape of the intensity energy spectrum of each compo-
nent can be recovered; in some cases the absolute nor-
malizations of the intensity spectra are also recoverable.
Similarly, in some cases the amplitude of the angular
power spectra of the individual components can also be
determined. We discuss the conditions under which such
decompositions are feasible, and demonstrate these novel
techniques on plausible scenarios for the IGRB composi-
tion. Although our examples are restricted to the IGRB,
the methods presented here can be applied to any di↵use
background at any wavelength.

In §II we introduce the formalism common to all of
the decomposition techniques. In §III we define IGRB
component models and simulated observations used for
the example scenarios. The details of each decomposition
technique are described in §IV; example scenarios illus-
trating a subset of the techniques are also presented. We
extend our approach to selected three-component scenar-
ios in §V. We discuss the potential of these techniques
for understanding gamma-ray source populations in §VI.

II. TWO-COMPONENT DECOMPOSITION:
METHODS

The two properties of di↵use emission we will use are
the di↵erential intensity energy spectrum I(E) (photons
per area per time per solid angle per energy) and the
angular power spectrum C` of a sky map of the inten-
sity. The angular power spectrum is defined as C` =
h|a`m|

2

i, where a`m are the coe�cients of the expansion
of the intensity map in the basis of spherical harmonics.
We also define the fluctuation angular power spectrum
Ĉ` ⌘ C`/I

2, where I is the mean intensity of the emis-
sion with intensity angular power spectrum C`. Because
Ĉ` describes fluctuations in units of the mean, the fluc-
tuation angular power at a fixed ` is energy-independent
for a signal arising from a single population of sources
with identical observer-frame intensity spectra. In the
following we assume that each distinct component of the
di↵use emission meets this criterion.

Variation between the source spectra of individual
members of a population can result in fluctuation an-
gular power which is energy dependent because the rel-
ative contributions of spectrally di↵erent sources within
a population change with energy (e.g., harder sources
contribute relatively more flux at high energies than at
low energies). In addition, for cosmological source popu-
lations, energy-dependent fluctuation angular power can
also arise due to redshifting of sharp features in the source
spectra, such as line emission or abrupt cut-o↵s (see,
e.g., [23, 24]).
In practice, if a component of the emission arises from

a population of sources, we assume that the requirement
that the single-population Ĉ` is energy-independent is
satisfied if the variation in the intensity spectra of in-
dividual members of the population is su�ciently small
that the deviation of the fluctuation angular power from
an energy-independent quantity is at a level smaller than
the uncertainty on the anisotropy measured by a specific
observation. We comment on the validity of this assump-
tion in the context of the IGRB in §III.
Our approach exploits the energy independence of the

single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ`. If we consider a sce-
nario in which the di↵use emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I

1

(E) and I

2

(E) and angular power spec-
tra C`,1 and C`,2, then the total intensity is simply the
sum of the two components,

I

tot

(E) = I

1

(E) + I

2

(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C`,tot(E) = C`,1(E) + C`,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ`,tot(E) =

✓
I

1

(E)

I

tot

(E)

◆
2

Ĉ`,1 +

✓
I

2

(E)

I

tot

(E)

◆
2

Ĉ`,2 . (3)

This is the fluctuation anisotropy energy spectrum for
the case we consider. In the following we will always
use the term “anisotropy energy spectrum” to refer to
the fluctuation angular power of the total emission as a
function of energy.
With su�cient photon statistics, I

tot

and Ĉ`,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ`,1 and Ĉ`,2 from the data, we
can solve Eqs. (1) and (3) for I

1

and I

2

:

I

1

= I

tot

0

@
Ĉ`,2 ±

q
Ĉ`,1Ĉ`,tot + Ĉ`,2Ĉ`,tot � Ĉ`,1Ĉ`,2

Ĉ`,1 + Ĉ`,2

1

A

(4)

I

2

= I

tot

0

@
Ĉ`,1 ⌥

q
Ĉ`,1Ĉ`,tot + Ĉ`,2Ĉ`,tot � Ĉ`,1Ĉ`,2

Ĉ`,1 + Ĉ`,2

1

A

(5)
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red = published LAT measurements
black = example scenario for 10 yrs LAT observations

• infer that one component 
dominates the intensity at the low 
plateau and one at the high plateau

• this yields the fluctuation 
anisotropy of each component; the 
intensity spectrum of each 
component can now be solved for

Hensley, Pavlidou & JSG 2012

Example observed intensity spectrum and 
anisotropy energy spectrum
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Decomposed energy spectra

red = published LAT measurements
black = example scenario for 10 yrs LAT observations

Example observed intensity spectrum and 
anisotropy energy spectrum

Hensley, Pavlidou & JSG 2012
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TABLE I: Summary of two-component decomposition techniques.

Method Observational Signature Inferred Properties of
Components

Intensity
Normalization
Recovered?

Fluctuation
Angular Power
Recovered?

Double plateau Plateaus at both high and
low energies observed in
anisotropy energy spectrum

One source dominant in
anisotropy at low energies,
other source dominant at
high energies

Yes Yes

Low-Anisotropy
Plateau

Anisotropy energy spectrum
rises from (falls to) a low-
anisotropy plateau at low
(high) energy

Source that is subdominant
in intensity is much more
anisotropic than the domi-
nant source

No No

High-Anisotropy
Plateau

Anisotropy energy spectrum
falls from (rises to) a high-
anisotropy plateau at low
(high) energy

Source that is subdominant
in intensity is much less
anisotropic than the domi-
nant source

Yes No

Known
Zero-Anisotropy
Component

None; requires a priori
knowledge that one of the
two components is isotropic

One source is completely
isotropic

No No

Minimum Minimum observed in the
anisotropy energy spectrum

Both source components
have comparable intensity
and anisotropy such that
Eq. 20 is satisfied at some
energy

Yes Yes

Multiple-!
Measurements

Two distinct anisotropy en-
ergy spectra can be obtained
at two different !

Ĉ! is a function of ! for at
least one source such that
two distinct anisotropy en-
ergy spectra can be obtained
at different !

Yes Yes

Ĉ!,1 = Ĉtot
! (E0) from the anisotropy of this baseline. A158

similar flat baseline could result if two source classes have159

the same spectral shape over an energy range, but such a160

scenario is unlikely for the source classes considered here.161

In each of the following cases, we will assume either that162

we can obtain the Ĉ! of one of the two source classes163

in this way, or that one source class is known to have164

Ĉ! ! 0.165

We discuss six distinct two-component decomposition166

techniques below. Some of them allow us to extract the167

component intensity spectra, while others only allow us168

to derive the shapes of the two intensity spectra up to169

unknown normalization constants. Some of the tech-170

niques also yield measurements of the fluctuation angu-171

lar power spectra of each component source population.172

Table I gives a summary of these techniques and their173

applicability conditions. We emphasize that in all cases174

we make the following three assumptions: (1) the diffuse175

background is composed of emission from uncorrelated176

source classes, (2) the fluctuation angular power of each177

individual component is independent of energy, and (3)178

the fluctuation angular power of one component can be179

directly measured from the data at some energy or is180

known to be negligibly small.181

III. PARAMETERS OF EXAMPLE SCENARIOS182

A. IGRB Component Models183

To illustrate the decomposition techniques, we apply184

them to example scenarios that could be measured by the185

Fermi-LAT within 5–10 years of observation time. Our186

example IGRBs are composed of an extragalactic blazar187

component, which is assumed to be dominant in intensity188

at low energies (less than a few GeV), and either a Galac-189

tic dark matter annihilation component with one of two190

benchmark spectra (annihilation to a τ+τ− or bb̄ final191

state), or a known zero-anisotropy component which is192

assumed to have a power-law intensity energy spectrum.193

Our example scenarios are consistent with current ob-194

servations of the measured IGRB intensity energy spec-195

trum [20] and the measurement of the IGRB anisotropy196

energy spectrum [21]. Although we do not consider them197

in our example scenarios, other known gamma-ray source198

populations which may contribute significantly to the in-199

tensity and/or anisotropy of the IGRB at some energies200

include star-forming galaxies [9, 25] VASO add more201

recent ones here?, gamma-ray loud radio galaxies [26]202
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TABLE I: Summary of two-component decomposition techniques.
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Recovered?
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Figure 5. Cross section h�vi limits on dark matter annihilation into bb̄ final states. The blue regions
mark the (90, 95, 99.999)% exclusion regions in the MSII-Sub1 �2(z) DM structure scenario (and
for the other structure scenarios only 95% upper limit lines). The absorption model in Gilmore et
al. [68] is used, and the relative e↵ect if instead using the Stecker et al. [69] model is illustrated by the
upper branching of the dash-dotted line in the MSII-Res case. Our conservative limits are shown on
the left and the stringent limits on the right panel. The grey regions show a portions of the MSSM7
parameter space where the annihilation branching ratio into final states of bb̄ (or bb̄ like states) is
> 80%. See main text for more details.

particle propagation in the Galaxy. In the preparation of this paper, Fermi-LAT data was
used in [10, 11] to set cross section limits on Galactic DM induced gamma-rays. In these two
papers, their data analysis method is more similar to our conservative analysis approach, and
the presented limits are comparable to our conservative MSII-sub1 limits when their Galactic
DM halos are described by a smooth Einasto or NFW DM density profile. As mentioned, most
hadronic channels are very similar in their gamma-ray production. To within roughly a factor
of two (if final states are not very close to, or below, production thresholds) our cross section
limits are also valid for prompt annihilation into the standard model gauge bosons, other
quarks, as well as (for WIMP masses below about 100 GeV) into the leptonic ⌧+⌧� channel.

Figure 6 shows the exclusion region for the leptonic DM model, together with the 2�
best fit region for this model to the PAMELA and Fermi-LAT positron and electron data.
The sharp upper endings of the gray best fit regions come from the constrain to not overshoot
HESS data [104]. Both the best fit regions and the exclusion regions for all our discussed
DM scenarios are calculated in a self-consistent way, modulo minor corrections. Below a DM
mass of about 500GeV, the limits on these models are determined by the FSR signal at the
high-energy end of the DM spectra, see figure 4, and therefore depend more substantially
on the choice of the absorption model. We note here that this conclusion holds even if one
considers the constraints that the low energy COMPTEL [105] and EGRET [25, 26] data
would pose on the first (IC) peak in the spectra. The di↵erence between the Stecker et
al. [69] and the Gilmore et al. [68] absorption model results in a di↵erence in the FSR signal
calculated in the two cases by a factor . 2, and a↵ects our limits correspondingly.
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