The International Axion Observatory (IAXO)

Cosmic Frontier Workshop 6 March 2013

Lawrence Livermore National Laboratory

Michael Pivovaroff (LLNL) On behalf of the IAXO collaboration

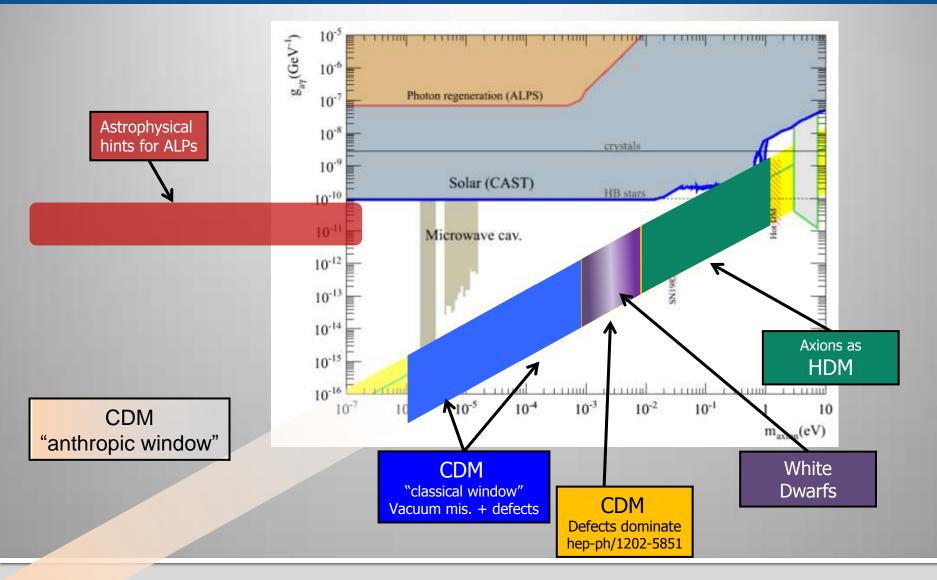
LLNL-PRES-566177

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview

- Solar Axion Searches
- The International Axion Observatory (IAXO)
 - Magnet
 - X-ray optics for IAXO
 - Low-background detectors for IAXO
 - Prototype testing
- IAXO Prospects
 - Sensitivity prospects
 - Collaboration and schedule
- Conclusions

ournal of Cosmology and Astroparticle Physics


Towards a new generation axion helioscope

I.G. Irastorza,^a F.T. Avignone,^b S. Caspi,^c J.M. Carmona,^a

- T. Dafni,^a M. Davenport,^d A. Dudarev,^d G. Fanourakis,^e
- E. Ferrer-Ribas, ^f J. Galán,^{a, f} J.A. García,^a T. Geralis,^e
- I. Giomataris,^f H. Gómez,^a D.H.H. Hoffmann,^g F.J. Iguaz,^f
- K. Jakovčić,^h M. Krčmar,^h B. Lakić,^h G. Luzón,^a M. Pivovaroff,^j
- T. Papaevangelou, ^f G. Raffelt,^k J. Redondo,^k A. Rodríguez,^a
- S. Russenschuck,^d J. Ruz,^d I. Shilon,^{d,i} H. Ten Kate,^d A. Tomás,^a
- S. Troitsky,¹ K. van Bibber,¹⁰ J.A. Villar,^a J. Vogel,³ L. Walckiers^d

Irastorza et al. JCAP 06 (2011) 013

Solar axion searches

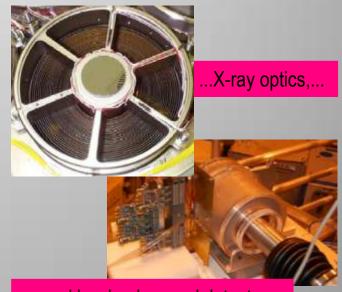
awrence Livermore National Laboratory

Cosmic Frontier Workshop March

LLNL-PRES-566177 3/20

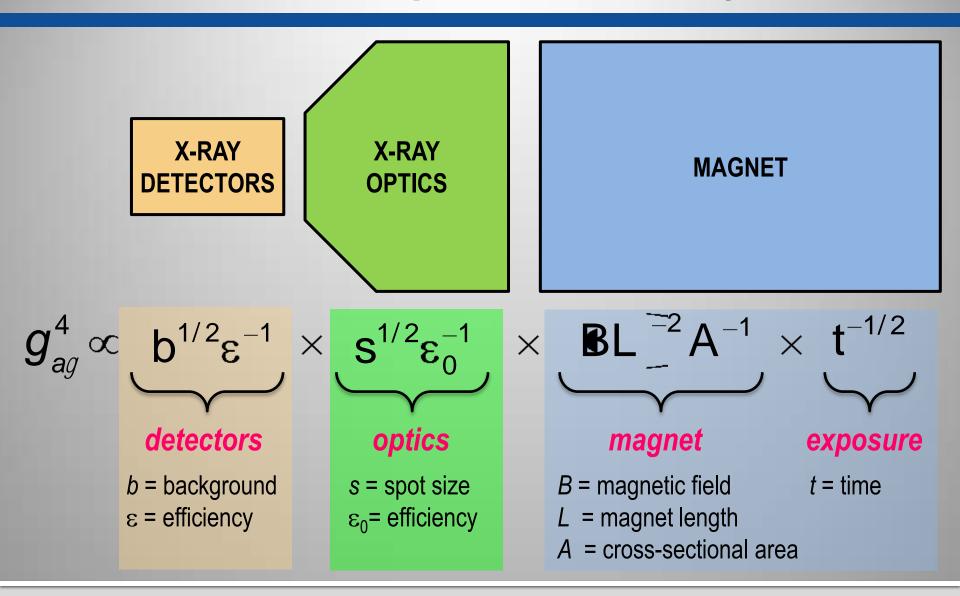
IAXO – 4th generation helioscope

- → 1st generation: Brookhaven Experiment
 - → 2nd generation: Tokyo Helioscope
 - → 3rd generation: CAST


IAXO = 4th generation axion helioscope

- CAST is established as a reference result in experimental axion physics
- IAXO builds on CAST innovations to improve the helioscope technique...
 - Based on the more than a decade CAST experience
 - Technologies have high maturity [TRL ≥ 7] — no fundamental challenges or high-risk R&D required
- No other technique can realistically improve grasp over a wide mass range, for γ-a coupling

Ingredients of a successful helioscope



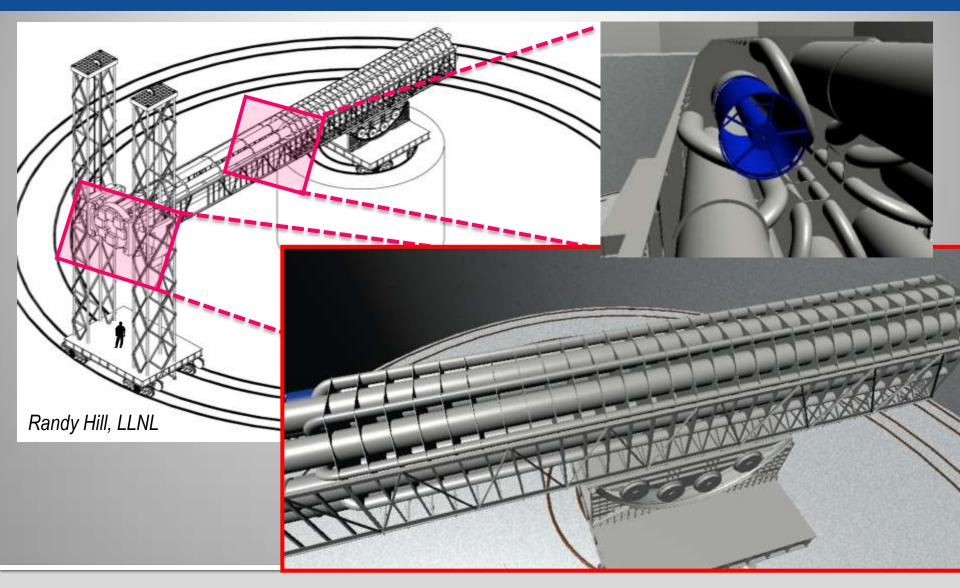
Large & powerful magnet...

...and low background detectors

IAXO – How to improve sensitivity

Lawrence Livermore National Laboratory

Cosmic Frontier Workshop March


LLNL-PRES-566177 5/20

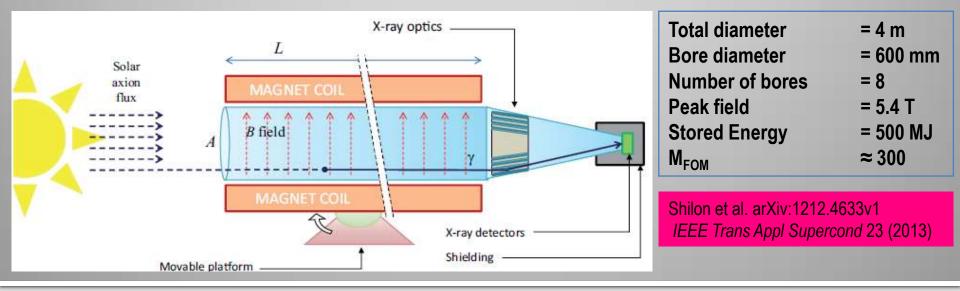
IAXO – How to improve sensitivity

Parameter	Unit	CAST-I	Scenario 1	Scenario 2	Scenario 3	Scenario 4
В	Т	9	3	3	4	5
L	m	9.26	12	15	15	20
A	m^2	2×0.0015	1.7	2.6	2.6	4.0
f_M^*		1	100	260	450	1900
Ь	$\frac{10^{-5}\mathrm{c}}{\mathrm{keV}\mathrm{cm}^{2}\mathrm{s}}$	~ 4	$3 imes 10^{-2}$	10^{-2}	$3 imes 10^{-3}$	10^{-3}
ϵ_d	no y chi o	0.5 - 0.9	0.7	0.7	0.7	0.7
ϵ_o		0.3	0.3	0.3	0.6	0.6
a	cm^2	0.15	3	2	1	1
f_{DO}^*		1	6	14	40	40
1 mil 1 mil 1 mil 2						
ϵ_t		0.12	0.3	0.3	0.5	0.5
t	year	~ 1	3	3	3	3
f_T^*		1	2.7	2.7	3.5	3.5
2250 11 77						
f^*		1	$1.6 imes 10^3$	9.8×10^3	$6.3 imes 10^4$	2.7×10^5

Current design have IAXO with performance between Scenarios 3&4

IAXO – The new generation helioscope

Lawrence Livermore National Laboratory

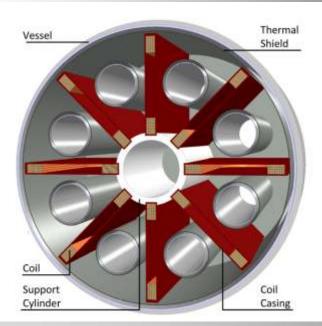

Cosmic Frontier Workshop March

LLNL-PRES-566177 7/20

Magnet for IAXO

- CAST has pushed the limits of "recycling", by using one of the best existing magnets (LHC test magnet)
- Only way to markedly improve reach is to build a new magnet for axions
- Significant modeling and design work completed

- Optimal design is a toroidal configuration (similar to ATLAS):
 - Much bigger bores than CAST
 60 cm versus 14 cm
 - Relatively light (no iron yoke)
 - Bores at room temperature
- Incorporate operational principles of a detector magnet with the performance required for axion physics


Lawrence Livermore National Laboratory

Magnet for IAXO

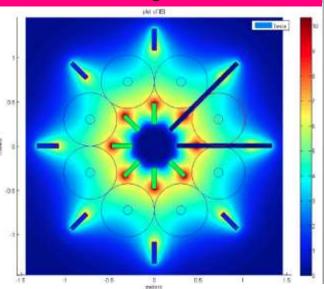
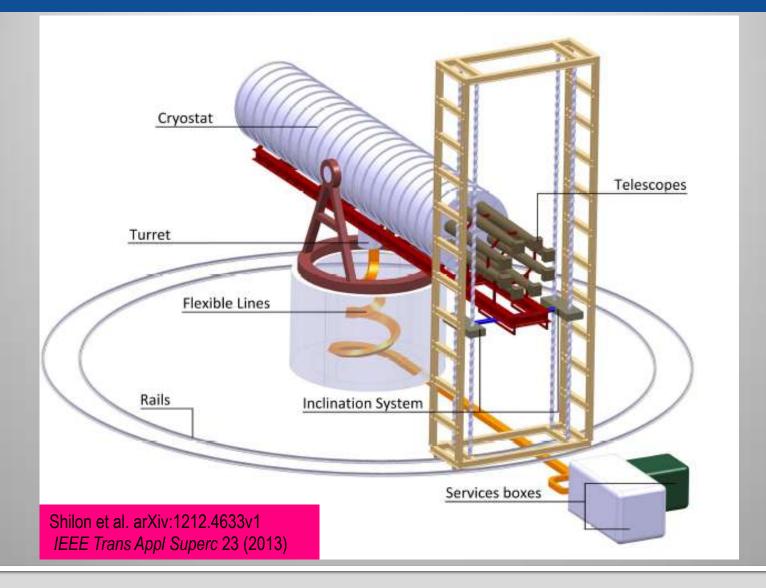


Fig. 4. Cross section of the conceptual design of the two double pancake winding pack and the coil casing (top) and the conductor with a 40 strands NbTi Rutherford cable embedded in a high purity Al stabilizer (bottom).

Shilon et al. arXiv:1212.4633v1 IEEE Trans Appl Superc 23 (2013)



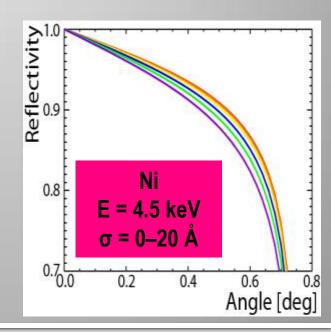
Lawrence Livermore National Laboratory

Cosmic Frontier Workshop March

Conceptual design for magnet



Lawrence Livermore National Laboratory

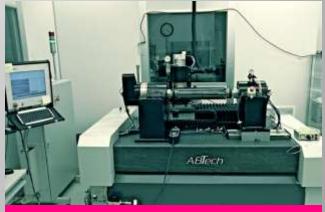

X-ray optics

- X-ray astrophysics community has invested heavily in the development of reflective x-ray optics:
 - 40+ years of telescopes in space
 - Excellent imaging capabilities
- Innovations include:

- Nested designs (e.g., Wolter telescopes)
- Low-cost substrates
- Highly reflective coatings
- IAXO optics requirements:
 - Exquisite imaging not needed for solar studies
 - Optics aperture matched to magnet bore size
 → IAXO requires dedicated but cost-effective optics
 - Good throughput (30–50% integrated reflectivity)

ABRIXAS flight-spare telescope

Lawrence Livermore National Laboratory Cosmic Frontier Workshop March

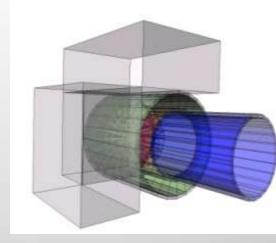

X-ray optics

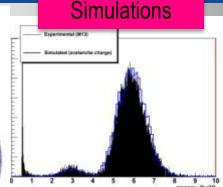
- Thermally-formed glass substrates optics
 - Successfully used for NuSTAR
 - Leverage of existing infrastructure
 - \rightarrow Minimize costs & risks
 - Allows for optimization of the reflective coating (multilayers) for each layer

NuSTAR telescope

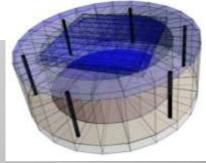
- NuSTAR launched 13 June 2012
 - Specialized tooling to mirror production and telescope assembly now available
 - Hardware can be easily configured to make optics with a variety of designs and sizes
- Many institutes from NuSTAR optics team [Columbia U, DTU Space, LLNL] in IAXO

NuSTAR optics assembly machine J Koglin *et al., Proc SPIE*, **8147**, (2011) W Craig *et al., Proc SPIE*, **8147**, (2011)

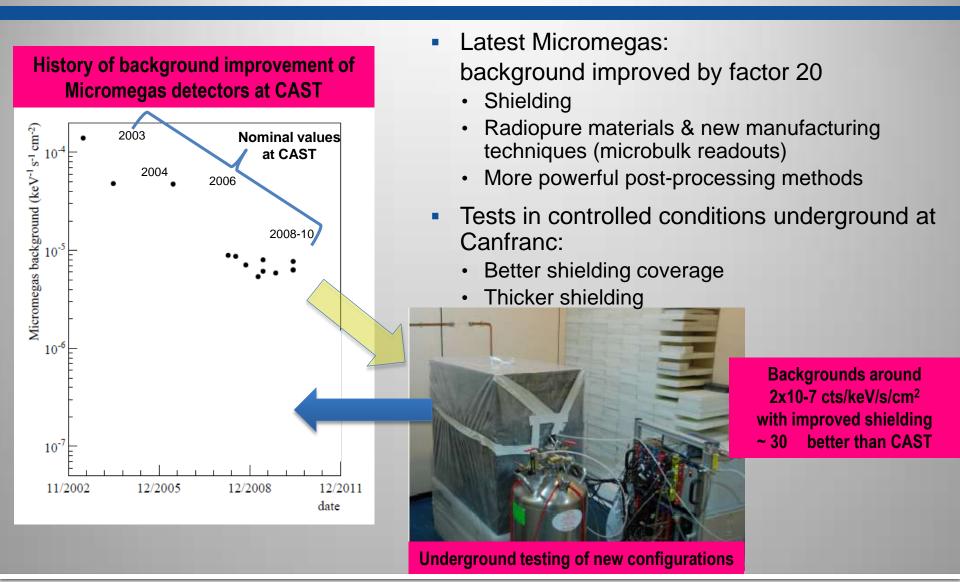

Low-background detectors


Goal

- Micromegas detectors with at least 10⁻⁷ cts/(keV cm² s)
- May be possible to reach 10⁻⁸ cts/(keV cm² s)

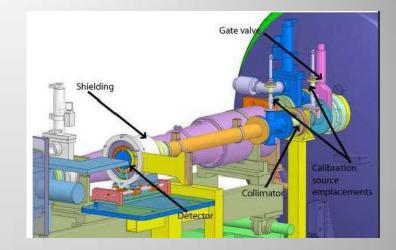

Work ongoing

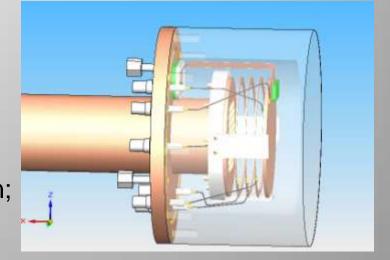
- Experimental tests with current micromegas detectors at CERN, Saclay & Zaragoza
- Underground setup at Canfranc
- Simulation works to build up a background model
- Design a new detector with improvements implemented



Radiopure materials

Low-background detectors

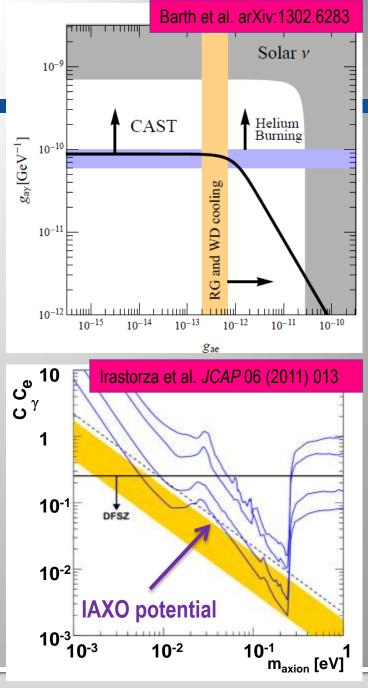

Lawrence Livermore National Laboratory


Cosmic Frontier Workshop March

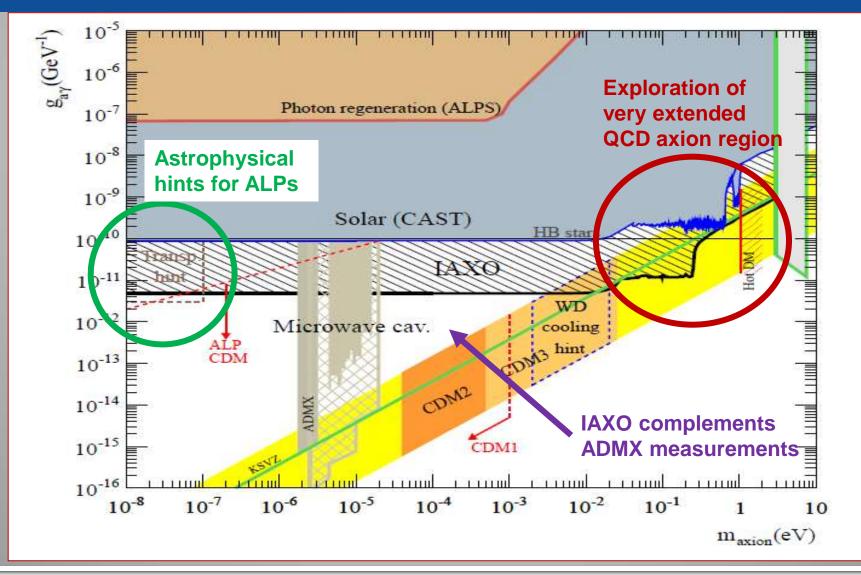
LLNL-PRES-566177 14/20

Pathfinder detector + optics for IAXO

- Small x-ray optics
 - Fabricated purposely using thermally-formed glass substrates (NuSTAR-like)
- Micromegas low background detector:
 - Apply lessons learned from R&D: compactness, better shielding, radiopurity,...
 - Aim for background of 10⁻⁷ cts/(keV cm² s) or lower
- Collaboration of key groups: Saclay, Zaragoza, LLNL, DTU, Columbia


Installation at CAST in 2014 Tests of techniques and instrumentation; gain operational knowledge for IAXO

IAXO sensitivity prospects


Hadronic axion models

- Improvements of factor 8-30 in g_{aγ} (4 10³ 1 10⁶ in signal strength)
- QCD axions at masses of ~meV seem out of reach even for an improved axion helioscope... but
- Non-hadronic axion models provide extra axion emission from the Sun through axionelectron Compton and bremsstrahlung processes

IAXO could improve current CAST sensitivity to non-hadronic axions by about 3 orders of magnitude

IAXO sensitivity prospects

Lawrence Livermore National Laboratory

Collaboration status and schedule

- Collaboration formed and growing
 - 100 physicists, 20 institutions,
 15 countries
- Conceptual design report in preparation; LOI solicited by CERN
- 4th gen helioscope supported in 2011 ASPERA roadmap

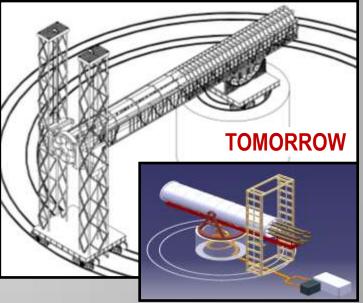
 Socializing IAXO with DOE/SC/HEP and communities of interest (dark matter, particle astrophysics, ...)

18/20

- Budget [ROM] = \$90-130M
 - \$50-70M magnet
 - \$20-30M CF
 - \$15-20M optics
 - \$5-10M detectors

Yr 1 Yr 2	Yr 3 Yr 4 Y	r 5 Yr	6 Yr 7	Yr 8	Yr 9	Yr 10	Yr 11	
Phase I	Phase II		Phase III		Phase IV			
Risk reduction Prototype: optics, detector, magnet elements	<u>Construction</u> Build: conventional facilities magnet, optics detectors	, eler cali	nmission grate nents, orate, operations	Solar s Extraga	ce observ earches alactic? vave cavit			

Conclusions


CAST is at the forefront of experimental axion physics

- CAST PRL2004 most cited experimental paper in axion physics
- Expertise gathered in magnet, optics, low background detectors, gas systems
- No other technique can realistically improve on CAST sensitivity over a wide mass range, for axion-photon coupling

IAXO is a proposed 4th generation axion helioscope

- Good prospects to improve CAST by 1–1.5 orders of magnitude in sensitivity
- Conceptual design effort is underway and will be completed in 2013
- Together IAXO and haloscopes (ADMX) could explore a large part of the QCD axion model region in the next decade
- Potential for other physics (White Dwarfs, ALPs,...)

Further physics cases

- More specific ALP or WISP (weakly interacting slim particle) models could be searched for at the low energy frontier of particle physics:
 - Paraphotons / hidden photons
 - Chamaleons
 - Non-standard scenarios of axion production
- Axions will also have more subtle implications on other astrophysical objects:
 - Neutron stars
 - SN
 - Red Giants in Glubular Clusters
- If equipped with microwave cavities, dark matter halo axions could be searched for, extending the sensitivity to lower masses.
 → under study [Baker et al. PRD 85]
- IAXO as a true "axion facility" open to the community:
- Groups invited to contribute and enrich the science program of IAXO.