Indirect WIMP detection with neutrinos in Hyper-K

Yusuke Koshio

for Hyper-K astrophysics working group Kamioka observatory, ICRR, Univ. of Tokyo Cosmic Frontier Workshop SLAC - March 7, 2013

Neutrinos generated by WIMP annihilation

 \checkmark Annihilation in Galactic Halo, etc..

Recent results

T. Tanaka et al. Astrophys. J. 742, 78 (2011) R. Abbasi et al. Phys. Rev. D 85, 042002 (2012)

Preliminary IceCube/DeepCore Limit IDM 2012 / arXiv:1212.4097 Preliminary Super-K Limit Neutrino 2012 / arXiv:1210.4161

Observation in SuperK

QECC interaction

$$v_e + n \rightarrow e^{-} + p$$

 $v_{\mu} + n \rightarrow \mu^{-} + p$

✓ Good Particle ID

 \checkmark Conserve the neutrino direction

- Important to search for the signal from the Sun

✓ Good energy reconstruction

Recent results

T. Tanaka et al. Astrophys. J. 742, 78 (2011) R. Abbasi et al. Phys. Rev. D 85, 042002 (2012) Preliminary IceCube/DeepCore Limit IDM 2012 / arXiv:1212.4097 Preliminary Super-K Limit Neutrino 2012 / arXiv:1210.4161

Observation in SuperK

Event category

✓ Upward going muons (Upmu)

No significant excess from the Sun

Hyper-Kamiokande

25 times larger than Super-K

Hyper-K sensitivity

Hyper-K sensitivity

Hyper-K sensitivity

- Scale of achieved Super-K results (FC+PC+upmu) to Hyper-K.
- Hyper-K is sensitive to the interesting WIMP mass region suggested by the direct search experiments.
- Hyper-K compares favorable to other indirect searches for WIMP masses below ~20-50 GeV.

arXiv 1210.4161 by C.Rott

New detection channel

K. Bays {Super-K Collaboration} Phys.Rev. D85 (2012) 052007

Gadolinium in water

- Decay electron events are the dominant background
- Identifying neutrinos of the inverse beta decay reaction can provide a way to discriminate against this background

- Proposal : add Gd to Super-K for SuperNova relic neutrino search. (Beacom & Vagins : Phys.Rev,Lett. 93(2004)171101)
 - 0.2% Gd solution would yield >90% neutron captured.

EGADS

Evaluating Gadolinium's Action on Detector Systems

50m Kamioka underground observatory

R&D for Gd in SuperK (GADZOOKS!)

•200 ton tank with 232 PMTs

Establish purification method

Electronics and computer

EGADS

Evaluating Gadolinium's Action on Detector Systems

50m Kamioka underground observatory

Electronics and computer

R&D for Hyper-K (Gd option)

•200 ton tank with 8 HPDs

Establish purification method

M.Yokoyama, this afternoon session

Start data taking in this Summer

SuperK - Galactic search

Hyper-Kamiokande multi-purpose detector

Lol : arXiv 1109.3202

International HK meeting

http://indico.ipmu.jp/indico/conferenceTimeTable.py?confld=7

http://indico.ipmu.jp/indico/conferenceTimeTable.py?confld=10

Start up an international working group (~100 researchers)

- < List of R&D >
- Physics potential
- Cavity and Tank
- Water system
- Photo-sensor development
- DAQ and electronics
- software
- calibration

etc.

Conclusion

- Water Cherenkov detector has a unique potential for indirect WIMP search.
 - Established by Super-K.
 - Good flavor tagging, energy and direction reconstruction.
- Hyper-K will be most important to cover the WIMP mass region less than 50GeV.
- New low-energy neutrinos from the Sun could offer unique prospects for Hyper-K.