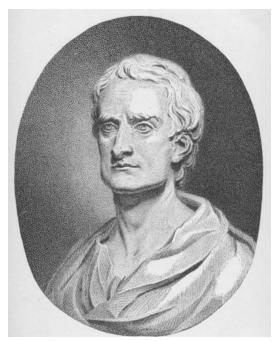
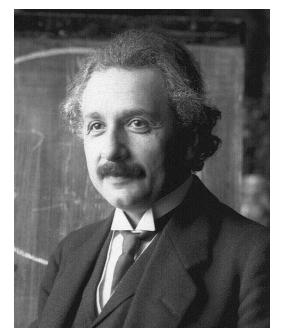
THE SEARCH FOR PRIMORDIAL BLACK HOLES


JANE H MACGIBBON UNIVERSITY OF NORTH FLORIDA

Cosmic Frontier Workshop SLAC March 6 - 8 2013

COLLABORATORS


- T. N. Ukwatta (MSU), D. Stump (MSU),
- J. T. Linnemann (MSU), K. Tollefson (MSU),
- E. Hawkes (MSU), U. Abeysekara (MSU),
- G. Sinnis (LANL), W. C. Parke (GWU),
- K. S. Dhuga (GWU), A. Eskandarian (GWU),
- N. Gehrels (NASA GSFC), L. Maximon (UVI),
- D. C. Morris (GWU/NASAGSFC), B.J. Carr (QMW), D.N. Page (UAlberta)

SIR ISAAC NEWTON ALBERT EINSTEIN

Gravity
$$F_G = \frac{GMm}{r^2}$$

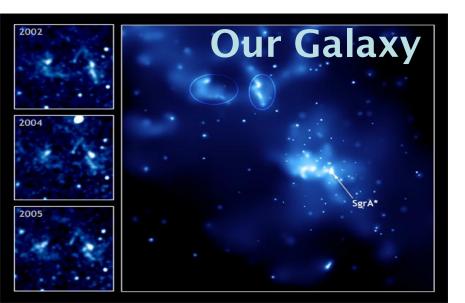
Escape Velocity $v_G = \sqrt{\frac{2GM}{T}}$

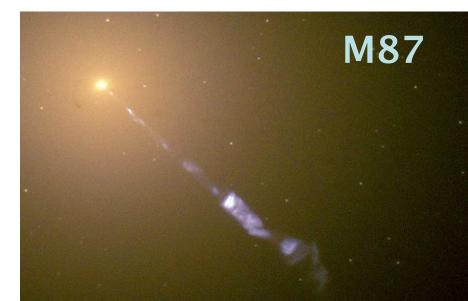
General Theory of Relativity $G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

BLACK HOLES IN 4D SPACE-TIME

Schwarzschild Metric in General Relativity

$$\begin{split} c^2 d\tau^2 &= \left(1-\frac{r_s}{r}\right)c^2 dt^2 - \frac{dr^2}{1-\frac{r_s}{r}} - r^2 \left(d\theta^2 + \sin^2\theta \, d\varphi^2\right) \\ & \text{ where } \quad r_s = \frac{2GM}{c^2} \end{split}$$


Extensions: Kerr Metric for rotating black hole Reissner-Nordström Metric for charged black hole Kerr-Newman Metric for charged rotating black hole


Schwarzschild Radius
$$r_s = \frac{2GM_{BH}}{c^2}$$
, Black Hole Mass M_{BH}
So Density inside Black Hole $\rho \propto \frac{M_{BH}}{r_s^3} \propto \frac{1}{M_{BH}^2}$

SUPERMASSIVE BLACK HOLES

Galactic Centers of most spiral and elliptical galaxies and all AGN

 $M_{BH} \sim 10^{38} - 10^{43} \text{ g} \sim 10^5 - 10^{10} \text{ solar masses}$ $r_s \sim 10^{-3} - 10^3 \text{ AU}$

INTERMEDIATE MASS BLACK HOLES?

Possibly formed in Star Clusters (Young Starburst Clusters and Old Globular Clusters)

$$M_{BH} \sim 10^{37} \text{ g}$$
 $r_{s} \sim 10^{3} \text{ km}$

STELLAR MASS BLACK HOLES

Stellar collapse supernova of stars greater than ~20 solar masses (detect by X-rays or Gamma-rays from accretion disk in binary star system)

$$M_{BH} \sim 10^{34} - 10^{35} \text{ g}$$
 $r_s \sim 10 - 10^2 \text{ km}$
CYGNUS X-1

PRIMORDIAL BLACK HOLES (PBHs)?

= Black Holes Formed in the Early Universe

$$M_{BH} \sim 10^{-5} - 10^{43} \text{ g}$$

PBH FORMATION MECHANISMS

Collapse of Overdense Regions

- Primordial Density Inhomogeneities
- many Inflation models (eg blue, peaked or 'running index' spectrum)
- Epoch of Low Pressure (soft equation of state)
- Cosmological Phase Transitions

Colliding Bubbles of Broken Symmetry

Oscillating Cosmic Strings

Collapse of Domain Walls

PBH FORMATION

PBH mass ~ cosmic horizon (or Hubble) mass at time of formation (or smaller)

$$M_H(t) \approx 10^{15} \left(\frac{t}{10^{-23} \text{ s}}\right) \text{g}$$

Most formation scenarios give narrow PBH spectrum

Scale-Invariant Density Perturbations would give extensive PBH spectrum

$$\frac{dn}{dM_i} = (\alpha - 2)(M_i / M_*)^{-\alpha} M_*^{-2} \Omega_{PBH} \rho_{crit}, \text{ radiation era } \alpha = \frac{1}{2}$$

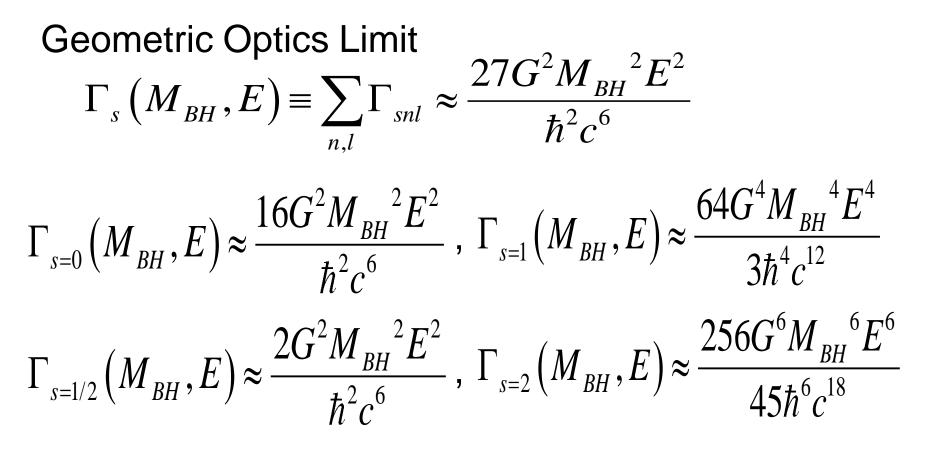
STEPHEN HAWKING

Gravitational Temperature

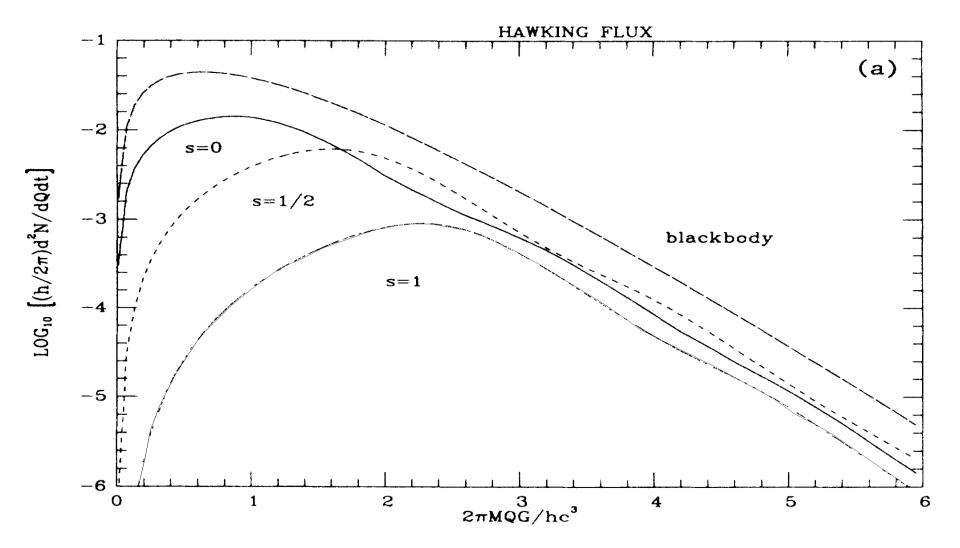
$$T_{BH} \propto rac{1}{M_{BH}}$$

BLACK HOLE THERMODYNAMICS

HAWKING TEMPERATURE: $kT_{BH} = \frac{\hbar c^3}{8\pi GM_{BH}} = 1.06 \left(\frac{M_{BH}}{10^{13} g}\right) \text{ GeV}$


Solar Mass BH $T_{BH} \sim 10^{-7} K$ $M_{BH} \sim 10^{25} g T_{BH} \sim 3 K \text{ CMB}$

HAWKING RADIATION FLUX:


$$\frac{d^2 N_s}{dt \ dE} = \sum_{n,l} \frac{\Gamma_{snl}}{2\pi\hbar} \left[\exp\left[\frac{E - n\hbar\Omega - e\Phi}{\hbar\kappa/2\pi c}\right] - (-1)^{2s} \right]^{-1}$$

BLACK HOLE THERMODYNAMICS

ABSORPTION PROBABILITY

DIRECT HAWKING RADIATION

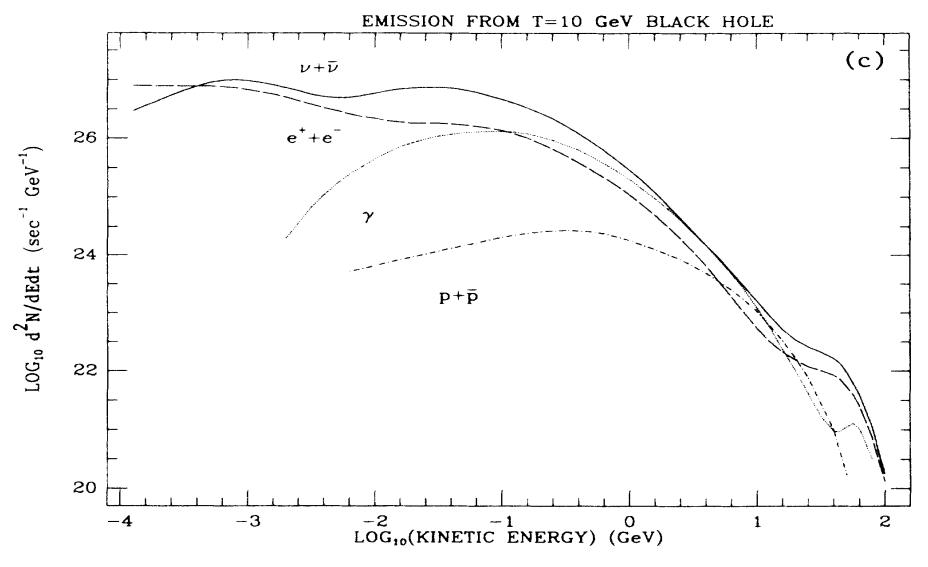
DIRECT HAWKING RADIATION

Flux of Directly Emitted Species peaks at:

Spin-0 $E_{s=0} = 2.81T_{BH}$ Spin-1/2 $E_{s=1/2} = 4.02T_{BH}$ Spin-1 $E_{s=1} = 5.77T_{BH}$

Flux integrated over E, per degree of freedom: dN/dt α T_{BH} α 1/M_{BH}

STANDARD PICTURE (MacGibbon-Webber)


BH should directly evaporate those particles which appear non-composite compared to wavelength of the radiated energy (or equivalently BH size) at given T_{BH}

As **T_{BH}** increases:

BH directly emits photons + gravitons \rightarrow + neutrinoes \rightarrow + electrons \rightarrow + muons \rightarrow + pions

Once T_{BH} >>Λ_{QCD}: quarks and gluons, not direct pions) which shower and hadronize into astrophysically stable γ, ν, p, pbar, e⁻, e⁺

HAWKING RADIATION

Source: MacGibbon and Webber (1990)

HAWKING RADIATION $T_{BH} = 0.3 - 100 \text{ GeV}$

Total Instantaneous flux
 Average Energy

$$\dot{N}_{p\bar{p}} \approx 2.1(\pm 0.4) \times 10^{23} \left[\frac{T}{\text{GeV}}\right]^{1.6\pm0.1} \text{sec}^{-1}$$
 $\bar{E}_{p\bar{p}} \approx 5.2(\pm 0.5) \times 10^{-1} \left[\frac{T}{\text{GeV}}\right]^{0.8\pm0.1} \text{GeV}$
 $\dot{N}_{e^{\pm}} \approx 2.0(\pm 0.6) \times 10^{24} \left[\frac{T}{\text{GeV}}\right]^{1.6\pm0.1} \text{sec}^{-1}$
 $\bar{E}_{e^{\pm}} \approx 2.9(\pm 0.5) \times 10^{-1} \left[\frac{T}{\text{GeV}}\right]^{0.5\pm0.1} \text{GeV}$
 $\dot{N}_{\gamma} \approx 2.2(\pm 0.7) \times 10^{24} \left[\frac{T}{\text{GeV}}\right]^{1.6\pm0.1} \text{sec}^{-1}$
 $\bar{E}_{\gamma} \approx 3.4(\pm 0.5) \times 10^{-1} \left[\frac{T}{\text{GeV}}\right]^{0.5\pm0.1} \text{GeV}$
 $\dot{N}_{\nu\bar{\nu}} \approx 5.6(\pm 1.7) \times 10^{24} \left[\frac{T}{\text{GeV}}\right]^{1.6\pm0.1} \text{sec}^{-1}$
 $\bar{E}_{\nu\bar{\nu}} \approx 2.4(\pm 0.5) \times 10^{-1} \left[\frac{T}{\text{GeV}}\right]^{0.5\pm0.1} \text{GeV}$

PBH CONSEQUENCES

Dark Matter

- $M_{BH} > 10^{15}$ g PBHs are CDM candidates
- should cluster in galactic haloes
- may enhance clustering of other Dark Matter eg WIMPs (Ultra Compact Massive Halos)
- do expired PBHs leave a Planck mass relic?

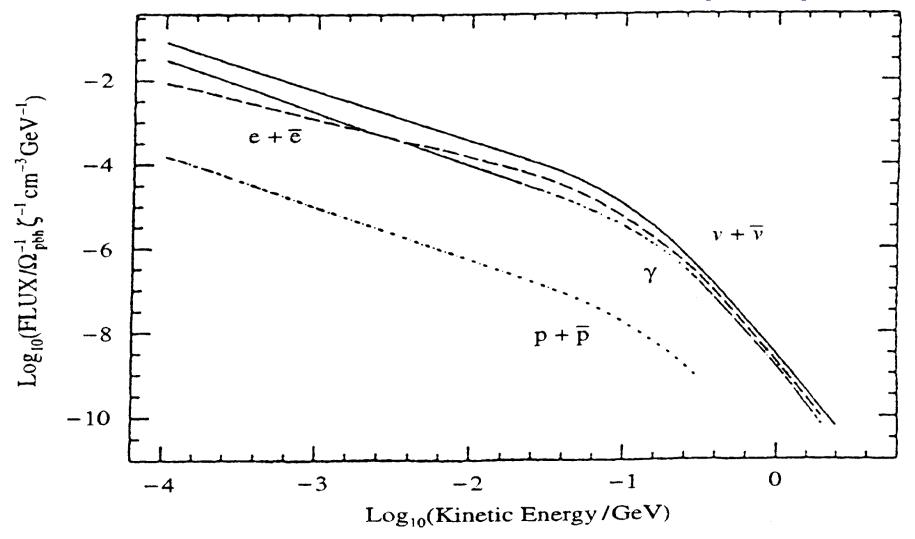
Large PBHs

 may influence large scale structure development, seed SMBHs, cosmic x-rays from accretion disks

Radiation

- direct limits from extragalactic γ background and galactic γ, e+, e-, p-bar backgrounds
- burst searches
- limits on $10^9 10^{43}$ g PBHs from PNS, CMB anisotrophies
- may contribute to entropy, baryogenesis, reionization of Universe in earlier epochs; annihilation lines

MOTIVATION FOR PBH SEARCHES


Observation of PBHs

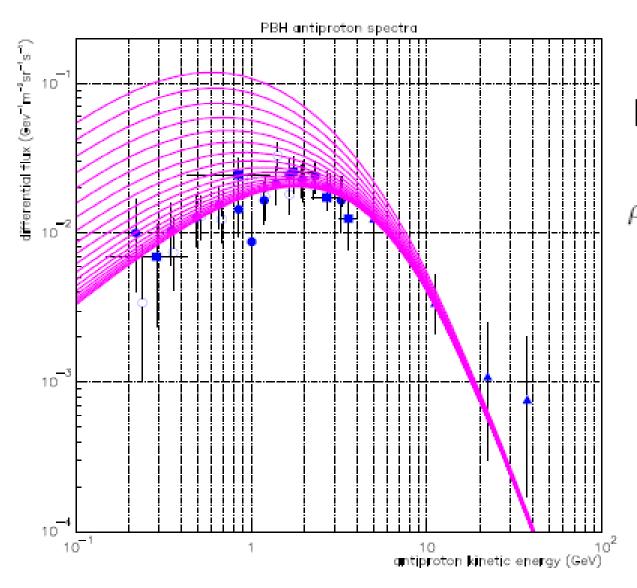
- Proof of amalgamation of classical gravity and thermodynamics (classical as well as quantum); insight into quantum gravity
- Direct window on particle physics at higher energies than can ever be achieved by accelerators on Earth (including other DM candidates)
- Information on conditions in the Early Universe

Non-observation of PBHs

- Information on conditions in the Early Universe
- Constrain amplitude and spectral index of initial density perturbations, reheating, etc

Astrophysical Spectra from Uniformly Distributed PBHs with $dn/dM_i \alpha M_i^{-2.5}$

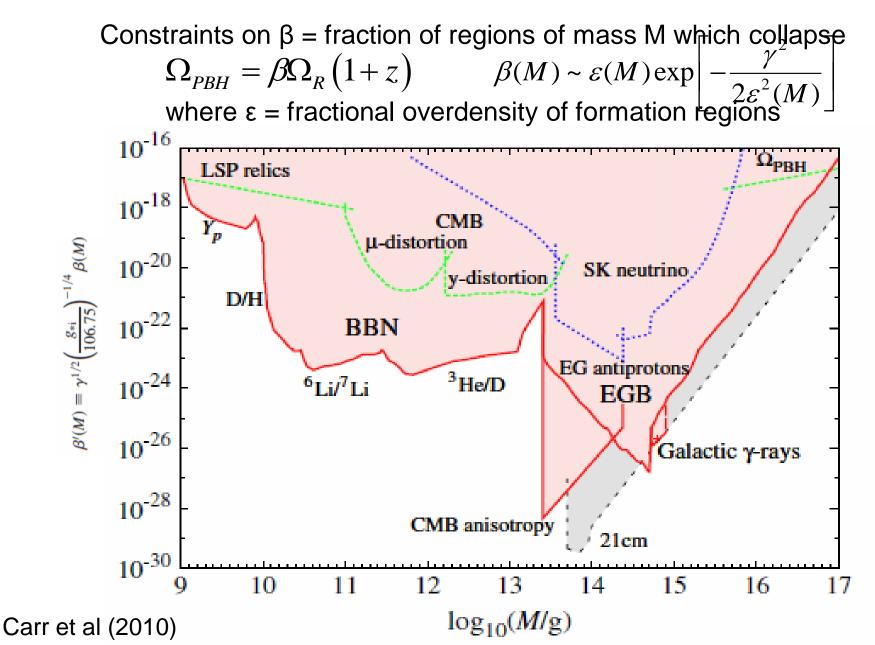
Source: MacGibbon and Carr (1991)


ASTROPHYSICAL SPECTRA

GAMMA RAY EXTRAGALACTIC BACKGROUND (Carr & MacGibbon 1998): $\Omega_{PBH} \leq (5.1 \pm 1.3) \times 10^{-9} h^{-2}$

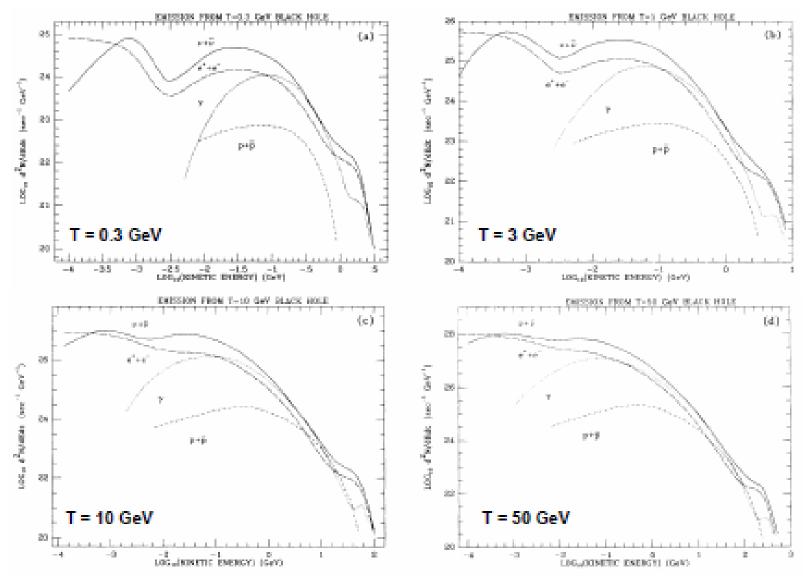
IF PBHS CLUSTER IN GALACTIC HALO: Local density enhancement $\eta_{\text{local}} \approx 5 \times 10^5 h^{-2} \left(\frac{\Omega_h}{0.1}\right)^{-1}$

Galactic Halo Gamma Ray Background (Wright 1996) Antiprotons, Positrons Antimatter interactions, Microlensing

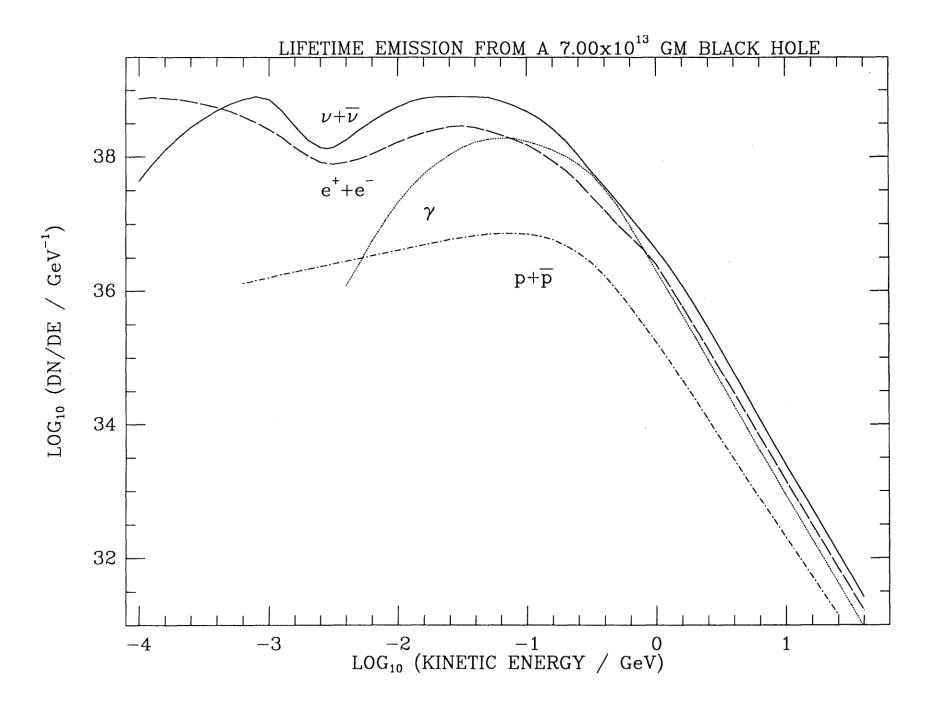

ANTIPROTONS

Barrau et al (2002)

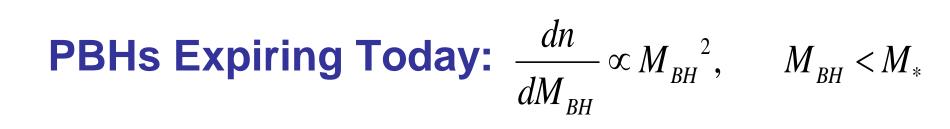
PBH LIMITS


PBH BURSTS

MASS LOSS RATE:
$$\frac{dM_{BH}}{dt} \approx -5 \times 10^{25} \left(M_{BH} / g \right)^{-2} f\left(M_{BH} \right) g s^{-1}$$


BLACK HOLE LIFETIME: $\tau_{evap} \approx 6.24 \times 10^{-27} M_i^3 f(M_i)^{-1}$ s where f(M_i) counts total directly emitted species $f_{s=0} = 0.267$ $f_{s=1/2} = 0.147$, uncharged $f_{s=3/2} = 0.020$ $f_{s=1} = 0.060$ $f_{s=1/2} = 0.142$, electric charge $= \pm e$ $f_{s=2} = 0.007$

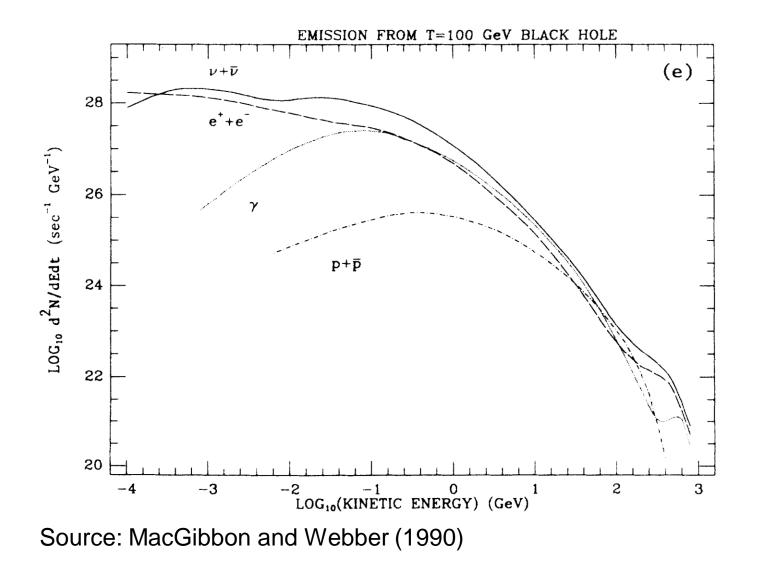
Mass of PBH whose lifetime equals age of Universe (MacGibbon, Carr & Page 2008): $M_* \approx 5.00(\pm 0.04) \times 10^{14} \text{ gm}$


Instantaneous PBH Spectra

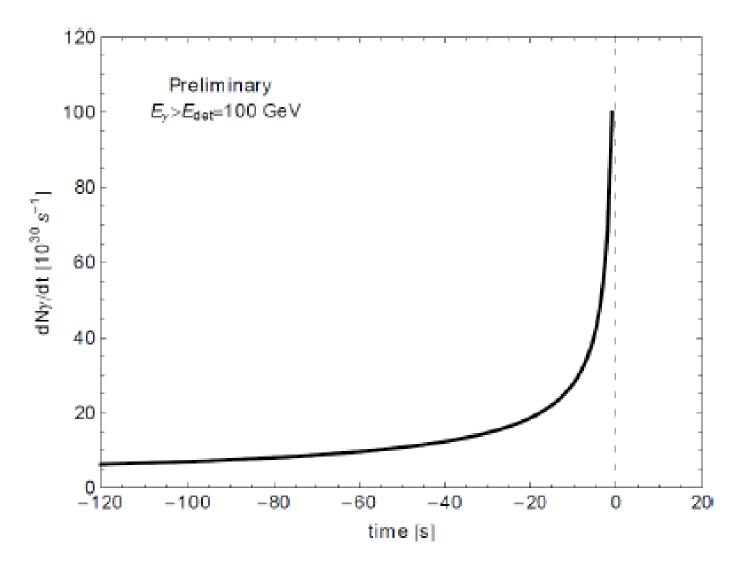
MacGibbon and Webber 1990

PBH Bursts

Number Expiring: $N \leq 10^{-7} \eta_{\text{local}} \text{ pc}^{-3} \text{ yr}^{-1}$


where η_{local} is local clustering factor

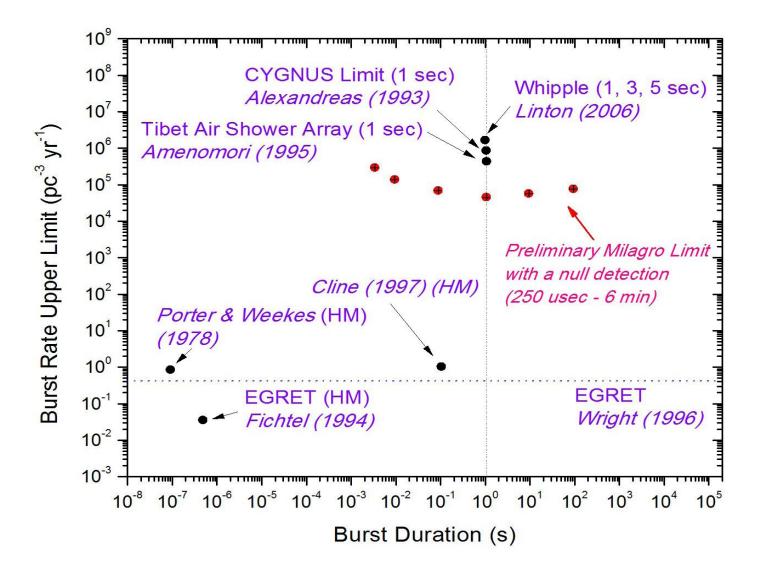
Remaining lifetime for given T_{RH}:


Model	1 Hour	1 min	30 sec	10 sec	1 sec	30 ms	10 ms
Standard Model Higgs SUSY	250 GeV	0.98 TeV	1.45 TeV 1.24 TeV 1.0 TeV	1.8 TeV	4.51 TeV 3.8 TeV 3.2 TeV		18.0 TeV

PBH Bursts

Fermi LAT Energy Range: 20 MeV – 300 GeV

Preliminary PBH Burst Light Curve



Ukwatta et al

Difference between GRBs and PBH bursts

Gamma-ray Bursts (GRB)	PBH Bursts (pBHB)
Detected at cosmological distances	Unlikely to be detected outside our Galaxy
Most GRBs show hard-to-soft evolution	Soft-to-hard evolution is expected from pBHB
Hadrons are not expected from GRBs	Hadronic bursts may reach earth
Gravitational Wave signal is expected	No gravitational wave signal is expected
Time duration can range from fraction of second to few hours	Time duration of the burst is most likely less than few seconds
Fast Rise Exponential Decay (FRED) light curve	Exponential Rise Fast Fall (ERFF) light curve
X-ray, optical, radio afterglows are expected	No multi-wavelength afterglow is expected
Multi-peak time profile	Single-peak time profile

PBH Burst Rate Upper Limits

SEARCHING FOR PBH BURSTS

 working on predicting spectra, sensitivity and analysizing GRB events for Fermi LAT, Milagro and HAWC

 HAWC ideal for improving PBH search because of large FoV, energy range and high duty cycle

CAN A CHROMOSPHERE BE FORMED IN BLACK HOLE DECAYS?

Heckler Model

A.F.Heckler PRD 55, 480 (1997); A.F.Heckler PRL 78, 3430 (1997)

 QED/QCD bremsstrahlung and pair-production interactions between Hawking-radiated particles form photosphere/chromosphere

Other 4D Photosphere/Chromosphere Models

- Belyanin et al
- Bugaev et al
- D. Cline and Hong
- Kapusta and Daghigh

HECKLER MODEL

Number Density at radius *r* from BH of e⁻ directly Hawking radiated by BH $n_0(r) \approx \frac{10^{-4}}{M_{BH}r^2}$ where $\hbar = k = G = c = 1$

Two-body QED bremsstrahlung cross-section in BH center-of-mass frame $\sigma_{brem} \approx \frac{8\alpha^3}{m^2} \ln \frac{2E}{m}$ for $e + e \rightarrow e + e + \gamma$

Plasma mass correction

$$m'_e = \sqrt{m_e^2 + m_{pm}^2}$$
 where $m_{pm}^2 \approx \frac{4\pi\alpha n(r)}{E_{av}}$

 $\langle \mathbf{a} \rangle N(r)$

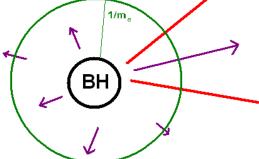
I otal number of Scatterings
$$r_{max} = R dr$$

$$\mathcal{N}(R) = \int_{r_{\min}=r_{BH}} \frac{dr}{\lambda(r)} \text{ where } \lambda(r) = \left(n(r)\sigma_{brem}v_{rel}\right)^{-1} \text{ and } n(r) = \left(\frac{3}{2}\right)^{-1} n_0(r)$$

→QED Photosphere above $T_{BH} \sim 45$ GeV. Similarly QCD $\sigma_{brem} \approx \frac{8\alpha_s^3}{m_q^2} \ln \frac{2E}{m_q}$ → Chromosphere above $T_{BH} \sim \Lambda_{QCD}$

IS THE HECKLER MODEL CORRECT?

Two-body bremsstrahlung cross-section


$$\sigma_{brem} = \frac{1}{E} \int_{0}^{E} \omega \frac{d\sigma_{brem}}{d\omega} d\omega \approx \frac{8\alpha^{3}}{m_{e}^{2}} \ln \frac{2E}{m_{e}}$$

Average momentum exchanged is ~ m_e in centerof-momentum (CM) frame \rightarrow particles must be within ~ $1/m_e$ of each other to interact

Average angle between final on-shell electron and outgoing photon in CM frame is $\varphi_{av} \sim m_e / 2E$

Average energy of final on-shell electron and outgoing photon in CM frame is $E_e \sim \omega \sim E/2$

assumes BH is center-of-momentum frame for most pairs of emitted charged particles

- BUT two particles moving in similar direction will not interact near BH (because their center-of-momentum frame is highly Lorentz-boosted) \rightarrow
- X get 'Exclusion cone' around each emitted particle → once particle is a distance *d* from BH the transverse distance to the nearest particle it can interact with is $x_T \sim d$
- \rightarrow particles must be within $\sim 1/m_e$ of BH to interact

- ► For radial emission $\lambda(r) = (n(r)\sigma_{brem}v_{rel})^{-1}$ is not correct → must be replaced by radial description
 - × particles are Hawking emitted near BH so particles do not travelling in from minus ∞, past the BH and each other, then out to plus ∞
 BUT bremsstrahlung cross-section assumes interacting particles travel in from minus ∞
 - interaction cross-section is decreased

X Causality Constraint

Two particles must be in casual contact to interact BUT negligible fraction of Hawking emitted particles are in causal contact with each other

Time between subsequent Hawking emissions is $\Delta t_e \sim 200 / E_{peak}$ For causal contact within ~ $1 / m_e$ of BH require $\Delta t_e < \Delta t_c \sim 1 / \gamma m_e$ where $\gamma \sim E_{peak} / m_e$ $\rightarrow \Delta t_c << \Delta t_e$ for almost all emitted particles

X Scale for Completion of Interaction

- Heckler assumed distance required for formation of final on-shell electron and outgoing photon is $d_{form} \sim 1 / m_e$ in CM frame
- BUT average angle between final on-shell electron and photon is $\varphi_{av} \sim m_e / 2E$

so
$$d_{form} \sim E / m_e^2$$
 in CM frame

- →Electron must travel $d_{form} \sim E / m_e^2$ before it can undergo next on-shell interaction
- → Any multiple interactions of electron within ~1 / m_e of BH are off-shell interactions and so strongly suppressed by LPM effect

QCD CHROMOSPHERE?

× when $T_{BH} >> A_{QCD}$ the causality constraint ($\Delta t_e \sim 20 / E_{peak}$) and LPM suppression in any (rare) multiple scatterings also prevent QCD chromosphere formation for 4D BHs

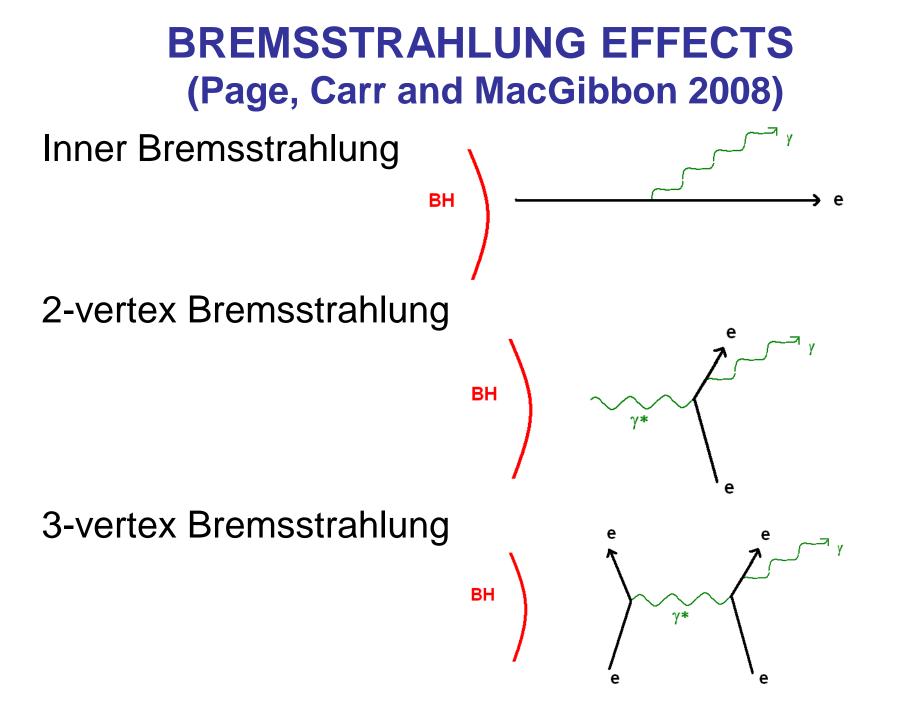
BUT could a QCD chromosphere form when $T_{BH} \sim A_{QCD}$?

Jane H MacGibbon "The Search for Primordial Black Holes" Cosmic Frontier Workshop SLAC March 6 – 8 2013

$\begin{array}{l} \textbf{QCD CHROMOSPHERE} \\ \textbf{WHEN T}_{\text{BH}} \sim \Lambda_{\text{QCD}} \end{array} \end{array}$

- X Hawking emission of particle is damped (lower flux and greater Δt between emissions) near rest mass threshold (eg Λ_{QCD}) + low multiplicity per jet near Λ_{QCD}
- X Δt between consecutive Hawking emissions increases around $\Lambda_{QCD} \rightarrow$ causality constraint is stronger
- X when BH goes from directly emitting π to directly emitting quarks and gluons the initial quarks and gluons are relativistic (not slow)

QCD CHROMOSPHERE WHEN T_{BH}~ Λ_{QCD} ?


× number of final hadronized states is limited by available energy ($E \sim A_{QCD}$ per Hawking emitted particle) + qm conservation laws \rightarrow emitted particle produces mainly π (and only a couple of π) around A_{QCD} and soft gluon bremsstrahlung is insignificant (because lowest colourless state from g is π)

 $\rightarrow T_{BH} \sim A_{QCD}$ 4D BH can NOT form quark-gluon plasma

(No analogy to RHIC's ~ 200 GeV per nucleon, gluonsaturated, high baryon/antibaryon asymmetry)

OTHER PHOTOSPHERE/ CHROMOSPHERE MODELS

- Kapusta and Daghigh assumes plasma thermalized by QED and QCD bremsstrahlung and pair-production of Heckler model
- Belyanin et al 'collisionless' QED plasma omits Lorentz factors → no self-induced MHD photosphere but strong ambient magnetic field may induce (weak) photosphere
- **Bugaev et al** 'Stretched Horizon' T_{pl} region just outside horizon \rightarrow neglects LPM suppression (and thermalization scales)
- **D. Cline and Hong** Hagedorn-type emission of remaining BH mass into exponentially growing number of states at $T_{BH} \sim \Lambda_{QCD} \rightarrow$ state occupancy should be determined by available energy $E \sim \Lambda_{QCD} \rightarrow$ model would require direct coupling of BH mass to Hagedorn states (but T_{BH} increases as $1/M_{BH}^2$)

INNER BREMSSTRAHLUNG

Number flux of inner bremsstrahlung photons radiated by charged particles of mass *m* and $\gamma_{av} \sim 4.20T_{BH}$ / *m* emitted by BH with spectrum dN/dt:

$$\frac{d^2 N_{b\gamma}}{dt d\omega} \approx \frac{2\alpha}{\pi \omega} \Big[\ln \big(2\gamma_{av} \big) - 1 \Big] \frac{dN}{dt}$$

 \rightarrow Nearly flat power spectrum up to $\omega \sim E - m$ cut-off

Total power in inner bremsstrahlung photons radiated by charged particles emitted by BH with power dE/dt:

$$\frac{dE_{b\gamma}}{dt} \approx \frac{2\alpha}{\pi\omega} \Big[\ln \big(2\gamma_{av} \big) - 1 \Big] \frac{dE}{dt}$$

Jane H MacGibbon "The Search for Primordial Black Holes" Cosmic Frontier Workshop SLAC March 6 – 8 2013

INNER BREMSSTRAHLUNG

Total power in inner bremsstrahlung photons radiated by charged particle emitted by BH with power dE/dt:

$$\frac{dE_{b\gamma}}{dt} \approx \frac{2\alpha}{\pi\omega} \Big[\ln \left(2\gamma_{a\nu} \right) - 1 \Big] \frac{dE}{dt}$$

Compare with power in direct photons:

 $\frac{dE_{d\gamma}}{dt} \approx 0.3364 \text{ x } 10^{-4} M_{BH}^{-2} \quad \text{At low } \omega \to 0, \quad \frac{d^2 E_{d\gamma}}{dt d\omega} = \frac{8}{3\pi^2} M^3 \omega^4$

For
$$M_{BH} = 5 \times 10^{14} g$$
 BH, $\frac{d^2 E_{b\gamma}}{dt d\omega} \approx 1.73 \times 10^{-19} \text{ s}^{-1}$

→ inner bremsstrahlung photons dominate the directly Hawking emitted photons below 57 MeV

Jane H MacGibbon "The Search for Primordial Black Holes" Cosmic Frontier Workshop SLAC March 6 – 8 2013

LET'S GO SEARCH FOR PBHs!

And Black Hole Thermodynamics!