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How to illustrate complementarity?
• Model-independent approaches

– parameterize our ignorance
– consider effective Lagrangian 
– easy to study complementarity of DM search
– important questions to ask:

• when does this approach make sense?
• how do we interpret?

• Specific theory models
– choose a complete new physics model with a dark matter 

candidate: SUSY is a good candidate.
– problem: many input parameters and model-dependent 

assumptions
• Need both approaches

– study different models and learn lessens



• UED provides alternative DM candidates

• spin-1: KK photon, KK Z

• spin-0: spinless photon, spinless Z, KK Higgs 

• spin-2: KK graviton

• spin-1/2: KK neutrino

• Different aspect of DM detection

• Natural set up for a model with degenerate mass spectrum

• Importance of complementarity: LHC vs DD

Summary I



Overview on UED
• Universal: all SM particles in flat ED
• The simplest model: S1/Z2 (5D)
• KK-parity: 

– all SM particles (zero mode) are even
– level 1 KK particles (n=1) are odd
– level 2 KK particles (n=2) are even
– electroweak precision constraints are avoided

• new contributions are loop-suppressed
– the LKP is stable and a DM candidate
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Figure 1–3: S1/Z2 orbifold. A half of the circle (S1) is identified with the other half
with a Z2 symmetry. The geometry becomes a line with two fixed points. The line
between two fixed points represents the bulk.

1. The lightest KK-partners (those at level 1) must always be pair-produced

in collider experiments, which leads to relatively weak bounds from direct

searches.

2. The KK-parity conservation implies that the contributions to various pre-

cisely measured low-energy observables only arise at the loop level and are

small.

3. Finally the KK-parity guarantees that the lightest KK partner is stable, and

thus can be a cold dark matter candidate.

As we will see in the next chapters, the phenomenology of this scenario clearly

resembles that of supersymmetry. In this sense, many of the SUSY studies in the

literature apply, and it is perhaps more important to find methods to distinguish

between the two models. Recently, other models such as little Higgs theory with

T-parity have been proposed as new physics beyond the Standard Model. Our

studies can also apply in the case of little Higgs models since the first level of the

UED model looks like the little Higgs particle spectrum.

Except for its abundance, no other properties of dark matter candidates are

known at present. Therefore it is important to study the properties of new types

of dark matter candidates in the extra dimensional models and compare them with

those in supersymmetry. Then a number of questions can arise: What are the
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More on UED
• Minimal UED: mass splitting be generated by radiative 

corrections (assuming no boundary terms and no bulk masses) 
• Short RG running leads to compressed mass spectrum
• Larger production cross sections (compared to SUSY 

productions), i.e., KK gluon, KK quark productions
• SUSY-like cascade decays at the LHC

SUSY: q̃

χ̃0
2

"̃∓
L

χ̃0
1

UED: Q1

Z1

"∓1

γ1

q

"± (near)

"∓ (far)

FIG. 10: Twin diagrams in SUSY and UED. The upper (red) line corresponds to the cascade decay

q̃ → qχ̃0
2 → q"±"̃∓L → q"+"−χ̃0

1 in SUSY. The lower (blue) line corresponds to the cascade decay

Q1 → qZ1 → q"±"∓1 → q"+"−γ1 in UED. In either case the observable final state is the same:

q"+"− /ET .

analogous decay chain Q1 → qZ1 → q!±!∓1 → q!+!−γ1 in UED [11, 12]. Both of these

processes are illustrated in Fig. 10.

FIG. 11: Lepton-quark invariant mass distributions in (a) UED with R−1 = 500 GeV and (b)

supersymmetry with a matching sparticle spectrum. We show separately the distributions with

the near and far lepton, and their sum. The positive (negative) charge leptons are shown in red

(blue).

Next, one forms the lepton-quark invariant mass distributions M!q (see Fig. 11). The

spin of the intermediate particle (Z1 in UED or χ̃0
2 in SUSY) governs the shape of the

distributions for the near lepton. However, in practice we cannot distinguish the near and

far lepton, and one has to include the invariant mass combinations with both leptons. This

tends to wash out the spin correlations, but a residual effect remains, which is due to the
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Universal Extra Dimensions

• MUED: Minimal Universal Extra Dimensions (cf. mSugra)

• 2UED: Two Universal Extra Dimensions (GMSB)

• nUED: non-minimal Universal Extra Dimensions

• boundary terms

• SUED: Split Universal Extra Dimensions (cf. Split SUSY)

• bulk terms

• sUED: UED with singlet extension

• NMUED: Next-to-Minimal UED 

• (with boundary and bulk terms)



FIG. 6: The spectrum of the first KK level at (a) tree level and (b) one-loop, for R−1 = 500 GeV,

ΛR = 20, mh = 120 GeV, m2
H = 0, and assuming vanishing boundary terms at the cut-off scale Λ.

R−1 = 500 GeV, ΛR = 20, mh = 120 GeV, m2
H = 0 and assumed vanishing boundary

terms at the cut-off scale Λ. We see that the KK “photon” receives the smallest corrections

and is the lightest state at each KK level. Unbroken KK parity (−1)KK implies that the

lightest KK particle (LKP) at level one is stable. Hence the “photon” LKP γ1 provides an

interesting dark matter candidate. The corrections to the masses of the other first level KK

states are generally large enough that they will have prompt cascade decays down to γ1.3

Therefore KK production at colliders results in generic missing energy signatures, similar

to supersymmetric models with stable neutralino LSP. Collider searches for this scenario

appear to be rather challenging because of the KK mass degeneracy and will be discussed

in a separate publication [13].

V. CONCLUSIONS

Loop corrections to the masses of Kaluza-Klein excitations can play an important role

in the phenomenology of extra dimensional theories. This is because KK states of a given

level are all nearly degenerate, so that small corrections can determine which states decay

and which are stable.

3 The first level graviton G1 (or right-handed neutrino N1 if the theory includes right handed neutrinos N0)

could also be the LKP. However, the decay lifetime of γ1 to G1 or N1 would be comparable to cosmo-

logical scales. Therefore, G1 and N1 are irrelevant for collider phenomenology but may have interesting

consequences for cosmology.
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Minimal UED
• Two parameters: R, Lambda (cutoff)
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Minimal UED
• Two parameters: R, Lambda (cutoff)

FIG. 1: One-loop corrected mass spectrum of the n = 1 and n = 2 KK levels in Minimal UED, for

R−1 = 500 GeV, ΛR = 20 and mh = 120 GeV. We show the KK modes of gauge bosons, Higgs

and Goldstone bosons and first generation fermions.

In Fig. 1 we show the mass spectrum of the n = 1 and n = 2 KK levels in Minimal UED,

for R−1 = 500 GeV, ΛR = 20 and SM Higgs boson mass mh = 120 GeV. We include the

full one-loop corrections from [26]. We have used RGE improved couplings to compute the

radiative corrections to the KK masses. It is well known that in UED the KK modes modify

the running of the coupling constants at higher scales. We extrapolate the gauge coupling

constants to the scale of the n = 1 and n = 2 KK modes, using the appropriate β functions

dictated by the particle spectrum [38, 58, 59]. As a result the spectrum shown in Fig. 1

differs slightly from the one in [26]. Most notably, the colored KK particles are somewhat

lighter, due to a reduced value of the strong coupling constant, and overall the KK spectrum

at each level is more degenerate.

B. Comparison of UED and Supersymmetry

We are now in a position to compare in general terms the phenomenology of UED and

supersymmetry at colliders. In Section I we outlined four identifying features of SUSY

models with WIMP LSPs. In complete analogy, the discussion of Section IIA leads to the

following generic features of UED:
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Level 1: decays and LHC reach
3

electroweak interactions are a few percent. We find that
the corrections to the masses are such that mgn

> mQn
>

mqn
> mWn

∼ mZn
> mLn

> m!n
> mγn

. The light-
est KK particle γ1, is a mixture of the first KK mode
B1 of the U(1)Y gauge boson B and the first KK mode
W 0

1 of the SU(2)W W 3 gauge boson. (The possibility of
the first level KK graviton being the LKP is irrelevant
for collider phenomenology, since the decay lifetime of γ1

to G1 would be of cosmological scales.) We will usually
denote this state by γ1. However, note that the corre-
sponding “Weinberg” angle θ1 is much smaller than the
Weinberg angle θW of the Standard Model [10], so that
the γ1 LKP is mostly B1 and Z1 is mostly W 0

1 . The mass
splittings among the level 1 KK modes are large enough
for the prompt decay of a heavier level 1 KK mode to a
lighter level 1 KK mode. But since the spectrum is still
quite degenerate, the ordinary SM particles emitted from
these decays will be soft, posing a challenge for collider
searches.

The terms localized at the orbifold fixed points also
violate the KK number by even units. However, assum-
ing that no explicit KK-parity violating effects are put
in by hand, KK parity remains an exact symmetry. The
boundary terms allow higher (n > 1) KK modes to decay
to lower KK modes, and even level states can be singly
produced (with smaller cross sections because the bound-
ary couplings are volume suppressed). Thus KK number
violating boundary terms are important for higher KK
mode searches as we will discuss in Section IV.

III. FIRST KK LEVEL

Once the radiative corrections are included, the KK
mass degeneracy at each level is lifted and the KK modes
decay promptly. The collider phenomenology of the first
KK level is therefore very similar to a supersymmetric
scenario in which the superpartners are relatively close
in mass - all squeezed within a mass window of 100-200
GeV (depending on the exact value of R). Each level
1 KK particle has an exact analogue in supersymmetry:
B1 ↔ bino, g1 ↔ gluino, Q1(q1) ↔ left-handed (right-
handed) squark, etc. The decay cascades of the level 1
KK modes will terminate in the γ1 LKP (Fig. 3). Just
like the neutralino LSP is stable in R-parity conserving
supersymmetry, the γ1 LKP in MUEDs is stable due to
KK parity conservation and its production at colliders
results in generic missing energy signals.

It is known that supersymmetry with a stable neu-
tralino LSP is difficult to discover at hadron colliders
if the superpartner spectrum is degenerate. Hence the
discovery of level 1 KK modes in MUEDs at first sight
appears problematic as well – the decay products result-
ing from transitions between level 1 KK states may be
too soft for reliable experimental observation at hadron
colliders. This issue is the subject of this Section.

Before we address the possible level 1 discovery chan-
nels in some detail, we need to determine the allowed

FIG. 3: Qualitative sketch of the level 1 KK spectroscopy de-
picting the dominant (solid) and rare (dotted) transitions and
the resulting decay product.

decays at level 1 and estimate their branching fractions.
For any given set of input parameters (3) the mass spec-
trum and couplings of the KK modes in MUEDs are
exactly calculable [10]. Hence one obtains very robust
predictions for the main branching ratios of interest for
phenomenology.

KK gluon.— The heaviest KK particle at level 1 is the
KK gluon g1. Its two-body decays to KK quarks Q1 and
q1 are always open and have similar branching fractions:
B(g1 → Q1Q0) $ B(g1 → q1q0) $ 0.5.

KK quarks.— The case of SU(2)-singlet quarks (q1)
is very simple – they can only decay to the hyper-
charge gauge boson B1, hence their branchings to Z1

are suppressed by the level 1 Weinberg angle θ1 % θW :
B(q1 → Z1q0) $ sin2 θ1 ∼ 10−2 − 10−3 while B(q1 →
γ1q0) $ cos2 θ1 ∼ 1. Thus q1 production yields jets
plus missing energy, the exception being t1 → W+

1 b0 and
t1 → H+

1 b0 (the latter will be in fact the dominant source
of H+

1 production at hadron colliders).
SU(2)-doublet quarks (Q1) can decay to W±

1 , Z1 or
γ1. In the limit sin θ1 % 1 SU(2)W -symmetry implies

B(Q1 → W±
1 Q′

0) $ 2B(Q1 → Z1Q0) (4)

and furthermore for massless Q0 we have

B(Q1 → Z1Q0)

B(Q1 → γ1Q0)
$

g2
2 T 2

3Q (m2
Q1

− m2
Z1

)

g2
1 Y 2

Q (m2
Q1

− m2
γ1

)
, (5)

where g2 (g1) is the SU(2)W (U(1)Y ) gauge coupling, and
T3 and Y stand for weak isospin and hypercharge, corre-
spondingly. We see that the Q1 decays to SU(2) gauge
bosons, although suppressed by phase space, are numeri-
cally enhanced by the ratio of the couplings and quantum
numbers. With typical values for the mass corrections
from Fig. 2, eqs. (4) and (5) yield B(Q1 → W±

1 Q′
0) ∼

65%, B(Q1 → Z1Q0) ∼ 33% and B(Q1 → γ1Q0) ∼ 2%.
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KK W - and Z-bosons.— With their hadronic decays
closed, W±

1 and Z1 decay democratically to all lepton
flavors: B(W±

1 → ν1L
±
0 ) = B(W±

1 → L±
1 ν0) = 1

6
and

B(Z1 → ν1ν̄0) = B(Z1 → L±
1 L∓

0 ) " 1
6

for each genera-
tion. Z1 → "±1 "∓0 decays are suppressed by sin2 θ1.

KK leptons.— The level 1 KK modes of the charged
leptons as well as the neutrinos decay directly to γ1.
As a result W±

1 and Z1 always effectively decay as
W±

1 → γ1L
±
0 ν0 and Z1 → γ1L

±
0 L∓

0 or Z1 → γ1ν0ν̄0,
with relatively large e and µ yields.

KK Higgs bosons.— Their decays depend on their
masses. They can decay into the KK W , Z bosons or
KK t, b quarks if they are heavier and the phase space
is open. On the other hand, if they are lighter than W1,
Z1, t1, b1 (as in the example of Fig. 1), their tree-level
two-body decays will be suppressed. Then they will de-
cay to γ1 and the corresponding virtual zero-level Higgs
boson, or to γ1γ0 through a loop.

We are now in shape to discuss the optimum strategy
for MUEDs KK searches at hadron colliders. Level 1
KK states necessarily have to be pair produced, due to
KK parity conservation. The approximate mass degen-
eracy at each level ensures that strong production dom-
inates, with all three subprocesses (quark-quark, quark-
gluon and gluon-gluon) having comparable rates [8, 12].

For an estimate of the reach at the Tevatron or the
LHC, we need to discuss the final state signatures and
the related backgrounds. The signature with the largest
overall rate is #ET +N ≥ 2 jets, which is similar to the tra-
ditional squark and gluino searches [13]. It arises from
inclusive (direct or indirect) q1q1 production. Roughly
one quarter of the total strong production cross-section
σhad

tot materializes in q1q1 events. However, in spite of the
large missing mass in these events, the measured missing
energy is rather small, since it is correlated with the en-
ergy of the relatively soft recoiling jets. As a conservative
rough guide for the discovery reach we can use existing
studies of the analogous supersymmetric case. One might
expect that Run II can probe R−1 ∼ 300 GeV [14] while
the LHC reach for R−1 is no larger than 1.2 TeV [15].
While the jetty signatures can be potentially used for dis-
covery, further studies in an MUEDs context are needed.
Here we prefer to discuss the much cleaner multilepton
final states arising from diboson (W±

1 or Z1) production.
Consider inclusive Q1Q1 production, whose cross-

section also roughly equals 1
4
σhad

tot . The subsequent de-
cays of Q1’s yield W±

1 W±
1 , W±

1 Z1 and Z1Z1 pairs in pro-
portion 4 : 4 : 1. The W±

1 and Z1 decays in turn provide
multilepton final states with up to 4 leptons plus missing
energy, all of which may offer the possibility of a discov-
ery. In the following we concentrate on the gold-plated
4" #ET signature.

We shall conservatively ignore additional signal con-
tributions from direct diboson production and Q1W

±
1

or Q1Z1 processes. For the Tevatron we use the sin-
gle lepton triggers pT (") > 20 GeV and |η(e)| < 2.0,
|η(µ)| < 1.5; or the missing energy trigger #ET > 40 GeV.
Because the channel is very clean, we use relatively soft

FIG. 4: Discovery reach for MUEDs at the Tevatron (blue)
and the LHC (red) in the 4! !ET channel. We require a 5σ

excess or the observation of 5 signal events, and show the
required total integrated luminosity per experiment (in fb−1)
as a function of R

−1, for ΛR = 20. (In either case we do not
combine the two experiments).

off-line cuts, pT (") > {15, 10, 10, 5} GeV, |η(")| < 2.5 and
#ET > 30 GeV. The remaining physics background comes
from ZZ → "±"∓τ+τ− → 4" #ET where Z stands for a
real or virtual Z or γ [16], and can be reduced by invari-
ant mass cuts for any pair of opposite sign, same flavor
leptons: |m!! − MZ | > 10 GeV and m!! > 10 GeV. As
a result, the expected background is less than 1 event in
all of Run II and we require 5 signal events for discovery.
The reach is shown in Fig. 4. We see that Run IIb of
the Tevatron will go slightly beyond the current indirect
bounds (R−1 > 300 GeV) from precision data [1].

For the LHC we use pT (") > {35, 20, 15, 10} GeV with
|η(")| < 2.5, which is enough for the single lepton trig-
ger. In addition, we require #ET > 50 GeV and the same
dilepton invariant mass cut. There are now several rele-
vant background sources, including multiple gauge boson
and/or top quark production [17], fakes, leptons from b-
jets etc. We conservatively assume a background level of
50 events after cuts per 100 fb−1 (1 year of running at
high luminosity). Our LHC reach estimate is presented
in Fig. 4. Without combining experiments, we plot the
total integrated luminosity L required for either an ob-
servation of 5 signal events or a 5σ excess over the back-
ground. The reach, shown as a solid line, is defined as
the larger of the two and extends to R−1 ∼ 1.5 TeV.

Other leptonic channels such as two or three leptons
with #ET may also be considered. They have more back-
grounds but take advantage of the larger branching frac-
tion for Q1 → W±

1 Q′
0 and offer higher statistics, which

may prove useful especially for the case of the Tevatron.
In conclusion, note that at a hadron collider all signals

from level 1 KK states look very much like supersym-
metry – all SM particles have “partners” with similar
couplings, and identifying the extra-dimensional nature

Cheng, Matchev, Schmaltz, 2002

• 4 leptons with large branching fractions



Level 2: KK resonances

FIG. 8: 5σ discovery reach for (a) γ2 and (b) Z2. We plot the total integrated luminosity L (in

fb−1) required for a 5σ excess of signal over background in the dielectron (red, dotted) or dimuon

(blue, dashed) channel, as a function of R−1. In each plot, the upper set of lines labelled “DY”

makes use of the single V2 production of Fig. 6 only, while the lower set of lines (labelled “All

processes”) includes indirect γ2 and Z2 production from n = 2 KK quark decays. The red dotted

line marked “FNAL” in the upper left corner of (a) reflects the expectations for a γ2 → e+e−

discovery at the Tevatron in Run II. The shaded area below R−1 = 250 GeV indicates the region

disfavored by precision electroweak data [31].

(red, dotted) or dimuon (blue, dashed) channel, as a function of R−1. In each panel in Fig. 8,

the upper set of lines labelled “DY” only utilizes the single V2 production cross-sections from

Fig. 6. The lower set of lines (labelled “All processes”) includes in addition indirect γ2 and

Z2 production from the decays of n = 2 KK quarks to γ2 and Z2 (we ignore secondary γ2

production from Q2 → Z2 → "2 → γ2). The shaded area below R−1 = 250 GeV indicates

the region disfavored by precision electroweak data [31]. Using the same cuts also for the

case of the Tevatron, we find the Tevatron reach in γ2 → e+e− shown in Fig. 8a and labelled

“FNAL”. For the Tevatron we use electron energy resolution ∆E/E = 0.01⊕0.16/
√

E [77].

The Tevatron reach in dimuons is worse due to the poorer resolution, while the reach for Z2

is also worse since mZ2
> mγ2

for a fixed R−1.

Fig. 8 reveals that there are good prospects for discovering level 2 gauge boson resonances

at the LHC. Already within one year of running at low luminosity (L = 10 fb−1), the LHC

will have sufficient statistics in order to probe the region up to R−1 ∼ 750 GeV. Notice that
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FIG. 9: The γ2 − Z2 diresonance structure in UED with R−1 = 500 GeV, for (a) the dimuon and

(b) the dielectron channel at the LHC with L = 100 fb−1. The SM background is shown with the

(red) continuous underlying histogram.

in the Minimal UED model, the “good dark matter” region, where the LKP relic density

accounts for all of the dark matter component of the Universe, is at R−1 ∼ 500 − 600 GeV

[39, 43, 44]. This region is well within the discovery reach of the LHC for both n = 1 KK

modes [2] and n = 2 KK gauge bosons (Fig. 8). If the LKP accounts for only a fraction of

the dark matter, the preferred range of R−1 is even lower and the discovery at the LHC is

easier.

From Fig. 8 we also see that the ultimate reach of the LHC for both γ2 and Z2, after

several years of running at high luminosity (L ∼ 300 fb−1), extends up to just beyond

R−1 = 1 TeV. One should keep in mind that the actual KK masses are at least twice as

large: mV2
∼ m2 = 2/R, so that the KK resonances can be discovered for masses up to 2

TeV.

While the n = 2 KK gauge bosons are a salient feature of the UED scenario, any such

resonance by itself is not a sufficient discriminator, since it resembles an ordinary Z ′ gauge

boson. If UED is discovered, one could then still make the argument that it is in fact some

sort of non-minimal supersymmetric model with an additional gauge structure containing

neutral gauge bosons. An important corroborating evidence in favor of UED would be the

simultaneous discovery of several, rather degenerate, KK gauge boson resonances. While

SUSY also can accommodate multiple Z ′ gauge bosons, there would be no good motivation

24

FIG. 7: Branching fractions of the n = 2 KK gauge bosons versus R−1: (a) g2, (b) Z2, (c) W±
2 ,

and (d) γ2.

n = 2 KK gauge bosons and confirmed that they are very small, hence we shall neglect them

in our analysis below.

In conclusion of this section, we discuss the experimental signatures of n = 2 KK gauge

bosons. To this end, we need to consider their possible decay modes. Having previously

discussed the different partial widths, it is straightforward to compute the V2 branching

fractions. Those are shown in Fig. 7(a-d). Again we observe that the branching fractions

are very weakly sensitive to R−1, just as the case of Figs. 3 and 4. This can be understood as

follows. The partial widths (3) and (4) for the KK number conserving decays are proportional

to the available phase space, while the partial width (6) for the KK number violating decay

is proportional to the mass corrections (see eq. (7)). Both the phase space and the mass

corrections are proportional to R−1, which then cancels out in the branching fraction.

Similarly to the case of n = 2 KK quarks discussed in Sec. IIIA, KK number conserving

20

Datta, Kong, Matchev 2005



KK Dark Matter: abundance
• O(1) TeV KK photon
• Coannihilation with SU(2)-singlet 

KK leptons lowers LKP mass to ~ 
600 GeV.
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Figure 3: Prediction for ΩB(1)h2 as in Figure 1. The solid line is the case for B(1) alone,
and the dashed and dotted lines correspond to the case in which there are one (three)

flavors of nearly degenerate e(1)
R . For each case, the black curves (upper of each pair)

denote the case ∆ = 0.01 and the red curves (lower of each pair) ∆ = 0.05.

translates into a KK mass window slightly below the window obtained for B(1) alone. In
Figure 3 we present the resulting relic abundance of B(1) including both the one flavor
and three flavors of e(1)

R , for two choices of ∆ corresponding to 1% and 5% mass splittings.
The curves become approximately degenerate with the B(1) without coannihilation case
when ∆ ∼> 0.1. In each case, the resulting mKK window shifts slightly downward because
of the increase in the predicted relic density, favoring values between 600 − 1050 GeV,
depending on the number of light e(1)

R flavors and the mass splitting.

6.2 ν(1) Coannihilation with e(1)
L

As mentioned in the introduction of section 5, one should include e(1)
L in the calculation

of the LKP relic density when assuming that the LKP is ν(1). Indeed, ν(1) and e(1)
L are

expected to be nearly degenerate, with tree level mass splittings on the order of the mass
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Figure 1: Ωh2 as function of R−1 for mh = 120 GeV, ΛR = 20 (left) and ΛR = 50 (right)
including different processes as specified on the figure. Here 1-loop stands for one-loop
couplings between level 2 and SM particles. The shaded region corresponds to the 3σ
preferred region obtained by WMAP [13].

impact on the relic density, see Fig. 1. This is mainly because the new contribution from
the process γ1h1+ → h2+ → tb̄ benefits from a resonance enhancement thus increasing
significantly the effective annihilation cross section. This result depends very sensitively
on the mass of the level-2 particle, a small downward shift in the mass, such as in the
MUED model used in [11], where the renormalization scale is set to µ = 2R−1 for the
level 2 masses, means that the pole effect is avoided at the LKP decoupling temperature.
When including the contribution of h2 and neglecting level 2 KK-particles in the final
state, the prediction for the relic abundance is close to the one obtained including only
annihilation processes.

When allowing level-2 particles in the final state, mainly γ2 and h2, a2, a±2, the relic
abundance decreases sharply shifting the preferred value of the DM mass above the TeV
scale. This is due to the important contribution of the coannihilation channels (l1γ1 →
lγ2) that are enhanced by the exchange near resonance of the n = 2 KK singlet lepton.
Together these channels make up more than 50% of the (co)annihilation channels. As
previously, other coannihilation channels each contribute to a small fraction of the total
effective cross section. The contribution of the most important channels is illustrated in
Fig. 2, where we have summed the contribution of all leptons in the initial states and all
SM particles in the final state. Coannihilation channels involving lepton pairs contribute
around 15% and their contribution is comparable to the one of Higgs channels γ1H1

at large values of R−1. Contributions of the order of a few percent are found for the
annihilation channels, γ1γ1, as well as coannihilations of the type l1H1, H1H1 or γ1l1 into
only SM particles. This still leaves around 10% contribution from all remaining channels,
among these one finds notably channels involving gauge bosons such as V 1H1 or V 1l1.

The value of the cut-off scale Λ has an impact on the mass of the KK particles through
logarithmic one-loop corrections, Eq. 11. Increasing the scale to ΛR = 50 leads to heavier
KK particles, in particular for KK lepton doublets and KK quarks, and has an impact on
Ωh2. For example when ignoring the level 2 particles in the final state the contribution
of coannihilation channels with KK leptons suffers from a larger Bolzmann suppression
factor, this is partly compensate by an increase in the contribution of the h2+ pole (as
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KK Dark Matter: abundance

Figure 10: The change in the cosmologically preferred value for R−1 as a result of varying the
different KK masses away from their nominal MUED values. Along each line, the LKP relic density
is Ωχh2 = 0.1. To draw the lines, we first fix the MUED spectrum, and then vary the corresponding
KK mass and plot the value of R−1 which is required to give Ωχh2 = 0.1. We show variations of
the masses of one (red dotted) or three (red solid) generations of SU(2)W -singlet KK leptons; three
generations of SU(2)W -doublet leptons (magenta); three generations of SU(2)W -singlet quarks
(blue) (the result for three generations of SU(2)W -doublet quarks is almost identical); KK gluons
(cyan) and electroweak KK gauge bosons (green). The circle on each line denotes the MUED values
of ∆ and R−1.

(green). The circle on each line denotes the MUED values of ∆ and R−1.

Fig. 10 summarizes our results from Section 5. It also provides a quick reference

guide for the expected variations in the predicted value of Ωh2 as we move away from the

Minimal UED model. For example, it is clear that unlike the case of coannihilations with

!R1, which was considered in [6], coannihilations with all other KK particles will lower the

prediction for Ωh2 and correspondingly increase the preferred range of R−1. This is due to

the larger couplings of those particles. Fig. 10 can also be used to quantitatively estimate

the variations in the preferred value of R−1 in non-minimal models.

On a final note, in the non-minimal UED model, other neutral KK particles such as Z1

can also be dark matter candidates. On dimensional grounds, the relic density is inversely

proportional to the square of the LKP mass,

Ωh2 ∼
g4
1

m2
γ1

, (6.1)

Ωh2 ∼
g4
2

m2
Z1

. (6.2)

Due to the larger coupling g2 of the SU(2)W gauge interactions, we expect the upper bound

– 21 –
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• Beyond minimal model, change KK masses one at a time.



KK Dark Matter: direct detection

• Direct detection hard
• Treat mass splitting as a 

free parameter (better 
chance for direct detection)

3

FIG. 1: Predicted spin-dependent proton cross sections (dark-
shaded, blue), along with the projected sensitivity of a 100
kg NAIAD array [14]; and predicted spin-independent pro-
ton cross sections (light-shaded, red), along with the current
EDELWEISS sensitivity [15], and projected sensitivities of
CDMS [16], GENIUS [17], and CRESST [18]. (The CRESST
projection is long-term and conditional upon increased expo-
sure and improved background rejection.) The predictions are
for mh = 120 GeV and 0.01 ≤ r = (mq1 − mB1)/mB1 ≤ 0.5,
with contours for specific intermediate r labeled.

is compensated in large nuclei where spin-independent
rates are enhanced by ∼ A2. In the case of bosonic KK
dark matter, the latter effect dominates, and the spin-
independent experiments have the best prospects for de-
tection, with sensitivity to mB1 far above current limits.

Dark matter may also be detected when it annihilates
in the galactic halo, leading to positron excesses in space-
based and balloon experiments. The positron flux is [19]

dΦe+

dΩdE
=

ρ2

m2
B1

∑

i

〈σiv〉B
i
e+

∫

dE0fi(E0)G(E0, E) , (12)

where ρ is the local dark matter mass density, the sum
is over all annihilation channels i, and Bi

e+ is the e+

branching fraction in channel i. The initial positron en-
ergy distribution is given by f(E0), and the Green func-
tion G(E0, E) propagates positrons in the galaxy.

Several channels contribute to the positron flux. Here
we focus on the narrow peak of primary positrons
from direct B1B1 → e+e− annihilation. (Annihilation
to muons, taus and heavy quarks also yield positrons
through cascade decays, but with relatively soft and
smeared spectra.) In this case, the source is monoen-
ergetic, and Eq. (12) simplifies to

dΦe+

dΩdE
= 2.7 × 10−8cm−2s−1sr−1GeV−1 〈σeev〉

pb

×

[

ρ

0.3 GeV/cm3

]2 [

1 TeV

mB1

]2

g

(

1,
E

mB1

)

, (13)

FIG. 2: Predicted positron signals (dark shaded) above back-
ground (light shaded) as a function of positron energy for
mB1 = me1

L
= me1

R
= 100, 500, 750, and 1000 GeV.

where the annihilation cross section is

〈σeev〉 =
e4

9π cos4 θW

[

Y 4
e1

L

m2
B1 + m2

e1
L

+ (L → R)

]

, (14)

and the reduced Green function g is as in Ref. [20].
Positron spectra and an estimated background (model

C from Ref. [19]) are given in Fig. 2. The sharp peak at
Ee+ = mB1 is spectacular — while propagation broad-
ens the spectrum, the mono-energetic source remains ev-
ident. This feature is extremely valuable, as the back-
ground, although resulting from many sources, should be
smooth. Maximal Ee+ also enhances detectability since
the background drops rapidly with energy. Both of these
virtues are absent for neutralinos, where Majorana-ness
implies helicity-suppressed annihilation amplitudes, and
positrons are produced only in cascades, leading to soft,
smooth spectra [21]. A peak in the e+ spectrum will not
only be a smoking gun for B1 dark matter, it will also
exclude neutralinos as the source.

Of the many positron experiments, the most promis-
ing is AMS [22], the anti-matter detector to be placed
on the International Space Station. AMS will distin-
guish positrons from electrons even at 1 TeV energies [23].
With aperture 6500 cm2sr and a runtime of 3 years, AMS
will detect ∼ 1000 positrons with energy above 500 GeV,
and may detect a positron peak from B1 dark matter.

Photons from dark matter annihilation in the center of
the galaxy also provide an indirect signal. The line signal
from B1B1 → γγ is loop-suppressed, and so we consider
continuum photon signals. The integrated photon flux
above some photon energy threshold Eth is [20]

Φγ(Eth) = 5.6 × 10−12 cm−2 s−1J̄(∆Ω)∆Ω

×

[

1 TeV

mB1

]2
∑

q

〈σqqv〉

pb

∫ mB1

Eth

dE
dN q

γ

dE
, (15)
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FIG. 4: Tree-level diagrams for the elastic scattering of γ1 LKP with quarks. The diagrams for
the case of Z1 LKP are similar.

computation done in [26]7. The spin-independent cross section is given by

σscalar =
m2

T

4π (mγ1 + mT )2
[Zfp + (A − Z)fn]2 , (15)

where mT is the mass of the target nucleus, Z and A are respectively the nuclear charge

and atomic number, while

fp =
∑

u,d,s

(βq + γq)〈p|q̄q|p〉 =
∑

u,d,s

βq + γq

mq
mpf

p
Tq

, (16)

and similarly for fn. In eq. (16) mp (mn) stands for the proton (neutron) mass. For the

nucleon matrix elements we take f p
Tu

= 0.020±0.004, f p
Td

= 0.026±0.005, fn
Tu

= 0.014±0.003,

fn
Td

= 0.036 ± 0.008, and f p,n
Ts

= 0.118 ± 0.062 [61]. The numerical coefficients βq and γq in

eq. (16) are defined as8

βq =
e2

cos2 θW

[

Eq(Y
2
qL

cos2 α + Y 2
qR

sin2 α)
m2

q1
L

+ m2
γ1

(m2
q1
L
− m2

γ1
)2

+
YqL

YqR
mq1

L
sin 2α

m2
γ1
− m2

q1
L

+ (L → R)
]

(17)

≈Eq
e2

cos2 θW

[

Y 2
qL

m2
γ1

+ m2
q1
L

(m2
q1
L
− m2

γ1
)2

+ (L → R)

]

for α = 0, (18)

γq = mq
e2

2 cos2 θW

1

m2
h

, (19)

7 The precise calculation of the heavy quark contribution to the processes of Fig. 4 is rather involved – the

heavy flavors contribute only at the loop level, through the gluon content of the nucleon. In the absence of

an exact calculation of these effects in the literature, we choose to conservatively ignore the heavy flavor

contributions altogether, as was done in [26].
8 Ref. [34] contains a typo in the overall sign of the coefficient βq, which was denoted there as Sq.
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KK Dark Matter: indirect detection

• Indirect detection: lepton final states, positron/neutrino/photon flux
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FIG. 1: Predicted spin-dependent proton cross sections (dark-
shaded, blue), along with the projected sensitivity of a 100
kg NAIAD array [14]; and predicted spin-independent pro-
ton cross sections (light-shaded, red), along with the current
EDELWEISS sensitivity [15], and projected sensitivities of
CDMS [16], GENIUS [17], and CRESST [18]. (The CRESST
projection is long-term and conditional upon increased expo-
sure and improved background rejection.) The predictions are
for mh = 120 GeV and 0.01 ≤ r = (mq1 − mB1)/mB1 ≤ 0.5,
with contours for specific intermediate r labeled.
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and the reduced Green function g is as in Ref. [20].
Positron spectra and an estimated background (model

C from Ref. [19]) are given in Fig. 2. The sharp peak at
Ee+ = mB1 is spectacular — while propagation broad-
ens the spectrum, the mono-energetic source remains ev-
ident. This feature is extremely valuable, as the back-
ground, although resulting from many sources, should be
smooth. Maximal Ee+ also enhances detectability since
the background drops rapidly with energy. Both of these
virtues are absent for neutralinos, where Majorana-ness
implies helicity-suppressed annihilation amplitudes, and
positrons are produced only in cascades, leading to soft,
smooth spectra [21]. A peak in the e+ spectrum will not
only be a smoking gun for B1 dark matter, it will also
exclude neutralinos as the source.

Of the many positron experiments, the most promis-
ing is AMS [22], the anti-matter detector to be placed
on the International Space Station. AMS will distin-
guish positrons from electrons even at 1 TeV energies [23].
With aperture 6500 cm2sr and a runtime of 3 years, AMS
will detect ∼ 1000 positrons with energy above 500 GeV,
and may detect a positron peak from B1 dark matter.

Photons from dark matter annihilation in the center of
the galaxy also provide an indirect signal. The line signal
from B1B1 → γγ is loop-suppressed, and so we consider
continuum photon signals. The integrated photon flux
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FIG. 2: Examples of Feynman diagrams which contribute to (a) B(1)B(1) → γ + Z and (b)

B(1)B(1) → γ +H.

of the final state photon normalized to the LKP mass. Comparing curves for LKP masses

of 300, 500, and 1000 TeV, we see little difference in the photon spectrum, which is easily

explained by the fact that the annihilations are almost entirely into light SM particles.

IV. GAMMA RAY LINE CROSS SECTIONS

In addition to a diffuse continuum of gamma rays, WIMP annihilations are also expected

to produce prompt photons via loop-level processes. These types of annihilations produce

γ + X final states (where X can be either a vector gauge boson or a scalar) and result

in mono-energetic “lines” superimposed on the continuum. The energy of these lines are

determined almost solely by the mass of the WIMP and the X particle:

Eγ = MWIMP

(

1−
M2

X

4M2
WIMP

)

. (8)

Due to the non-relativistic nature of WIMPs, the possible final states (i.e., the identity of

X) are determined by the spin of the DM particle. In the case of the 5d UED model, the

WIMP is a vector gauge boson and, hence, X can be either a vector or a scalar. In other

words, WIMP annihilations in the 5d UED model are capable of producing γγ, γZ and (if

kinematically-accessible) γH final states (where H is the SM Higgs boson).

The production of the γγ final state in the 5d UED model was first considered in Ref [14].

Here, we will focus on the other two possible final states (γZ and γH) and we refer the

interested reader to the above reference for details on the calculation of the γγ cross section.

We have verified the results from the previous analysis and we present the numerical results

for the flux in the following sections.
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FIG. 3: The annihilation cross sections for the γγ, γZ and γH final states.

Equation (17) allows one to separate the factors contributing to the predicted incoming

gamma ray flux. In particular, while the dNγ/dE term is sensitive only to the particle

physics under consideration, the remaining factors are sensitive to the modeling of the halo

density profile ρ("x). For a given dark matter model, these latter factors are the main source

of uncertainty in the prediction of the detectability of a dark matter signal. To proceed

further, we define with J the dimensionless integral along the line-of- sight appearing in

Eq. (17) and with J̄ its average value computed for a solid angle ∆Ω centered on the GC

J ≡
∫

l.o.s.

ds

r!

[

ρ[r(s,ψ)]

ρ!

]2

,

J̄(∆Ω) =
1

∆Ω

∫

∆Ω

J(ψ) dΩ. (19)

The J̄ factor thus defines the normalization of the gamma ray flux signal and allows one to

quantify the impact of astrophysical uncertainties due to the lack of knowledge of the halo

11

FIG. 6: The gamma ray flux as a function of the photon’s energy for a WIMP of mass 300 GeV.

Shown are three different experimental energy resolutions.

the ∼ 10% resolution typical of current experiments, to an aggressive 0.5% resolution which

might be possible in future experiments. We find that at 10% energy resolution, lines in

the 5d UED model are very difficult to distinguish from the continuum. At a 5% energy

resolution, broad lines may appear for LKP masses around 300 GeV, slightly above the lower

bound from colliders. At 0.5%, well separated lines for γγ, γZ, and γH are visible for light

LKPs, and some structure related to the γH line is visible for an LKP mass of around 500

GeV.

In principle, we should compare our predicted flux with gamma ray observations, since

data are available from a variety of gamma-ray telescopes, such as the Fermi LAT and Air

Cherenkov Telescopes like HESS and MAGIC. The comparison is however made complicated

by the aforementioned uncertainties on the normalization of the predicted flux on one side,
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FIG. 10: Combined plot of the direct detection limit on the spin-independent cross section, the
limit from the relic abundance and the LHC reach for (a) γ1 and (b) Z1, in the parameter plane

of the LKP mass and the mass splitting ∆q1. The remaining KK masses have been fixed as in
Fig. 1 and the SM Higgs mass is mh = 120 GeV. The black solid line accounts for all of the
dark matter (100%) and the two black dotted lines show 10% and 1%, respectively. The green

band shows the WMAP range, 0.1037 < ΩCDMh2 < 0.1161. The blue (red) solid line labelled
by CDMS (XENON10) shows the current limit of the experiment whereas the dashed and dotted

lines represent projected limits of future experiments as shown in Fig. 8. In the case of γ1 LKP,
a ton-scale experiment will rule out most of the parameter space while there is little parameter
space left in the case of Z1 LKP. The yellow region in the case of γ1 LKP shows parameter space

that could be covered by the collider search in the 4" + /ET channel at the LHC with a luminosity
of 100 fb−1 [45].

This signature results from the pair production (direct or indirect) of SU(2)W -doublet KK

quarks, which subsequently decay to Z1’s and jets. The leptons (electrons or muons) arise

from the Z1 → !+!−γ1 decay, whose branching fraction is approximately 1/3 [45]. Requiring

a 5σ excess at a luminosity of 100 fb−1, the LHC reach extends up to R−1 ≈ mγ1 ∼ 1.5 TeV,

which is shown as the right-most boundary of the (yellow) shaded region in Fig. 10a. The

slope of that boundary is due to the fact that as ∆q1 increases, so do the KK quark masses,

and their production cross sections are correspondingly getting suppressed, diminishing the

reach. We account for the loss in cross section according to the results from Ref. [75],

assuming also that, as expected, the level-2 KK particles are about two times heavier than

those at level 1. Points which are well inside the (yellow) shaded region, of course, would be

discovered much earlier at the LHC. Notice, however, that the LHC reach in this channel

completely disappears for ∆q1 less than about 8%. This is where the KK quarks become
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• Yellow: 4 leptons plus MET at 14 TeV LHC with 100 fb-1

• Green: relic abundance
Arrenberg, Baudis, Kong, Matchev, Yoo 2008

• Treat the LKP mass and mass splitting as free parameters.

• Gives a better chance for the LHC, and direct detection.

KK Dark Matter: complementarity



FIG. 12: Experimental upper bounds (90% C.L.) on the spin-dependent elastic scattering cross

sections on (a) neutrons and (b) protons in the mLKP -∆q1 plane. The solid (dashed) curves are
limits on γ1 (Z1) for each experiment. Shaded regions and dotted lines are defined in the same way
as in Fig. 10. The depicted LHC reach (yellow shaded region) applies only to the case of γ1 LKP.

has been fixed as in Figs. 1 and 10, and mh = 120 GeV. The solid (dashed) curves are limits

on γ1 (Z1) for each experiment. The constraints from LHC and WMAP on the mLKP -∆q1

parameter space are the same as in Fig. 10.

By comparing Figs. 10 and 12 we see that, as expected, the parameter space constraints

from SI interactions are stronger than those from SD interactions. For example, in perhaps

the most interesting range of LKP masses from 300GeV to 1 TeV, the SI limits on ∆q1 in

Fig. 10 range from a few times 10−2 down to a few times 10−3. On the other hand, the SD

bounds on ∆q1 for the same range of mLKP are about an order of magnitude smaller (i.e.

weaker). We also notice that the constraints for γ1 LKP are stronger than for Z1 LKP. This

can be easily understood by comparing Fig. 6a and Fig. 6b: for the same LKP mass and

KK mass splitting, the γ1 SD cross sections are typically larger.

Fig. 12 also reveals that the experiments rank differently with respect to their SD limits

on protons and neutrons. For example, KIMS and COUPP are more sensitive to the proton

cross section, while XENON10 is more sensitive to the neutron cross section. As a result,

the current best SD limit on protons comes from KIMS, but the current best SD limit on

neutrons comes from XENON10. Combining all experimental results can give a very good

constraint on the ap-an parameter space. Fig. 13a (Fig. 13b) shows combined results for

mLKP = 50GeV (mLKP = 500GeV) in the (model-independent) ap-an parameter space.
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1. The action S
5

which is invariant under the five dimensional Lorentz symmetry.

2. The boundary action Sbdy�(y � yi) where yi = (±)L denotes the location of the end

point. The boundary terms are invariant under the four dimensional sub-symmetry

of the full five dimensional Lorentz symmetry.

The fermion field content of the model (with a possible extension with the right handed

neutrino for the non-vanishing neutrino mass) is given with their charges under the gauge

symmetry as follows,
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where the superscript (0) denotes the zero mode of the Kaluza-Klein tower of the five

dimensional field. The bulk action is given by

S
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=
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where A denotes the gluon (G), weak gauge bosons (W ) and the hypercharge gauge boson

(B) appearing in the gauge covariant derivatives DM = @M + ig5s� · GM + ig5w⌧ · WM +

ig5Y Y BM , where g5i s are five dimensional couplings of the SM, and �s and ⌧s are the

generators of SU(3)c and SU(2)W , respectively. The gauge group indices are suppressed.

 
 !
DM = 1

2

{ (DM ) � (DM ) }. The gamma matrix in five dimensions is �M =

(�µ, i�
5

), which satisfies {�A,�B} = 2⌘AB = 2diag(1,�1,�1,�1,�1). The bulk mass

term is chosen to be odd under the inversion about the middle point (y = 0) of the extra

dimension to keep the Kaluza-Klein parity preserved: M
 

(y) = �M
 

(�y).
The five dimensional Lagrangian for the Higgs and Yukawa interactions is

LH = (DMH)†DMH � V (H), (2.5)
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5
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|H|4 , (2.6)
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QH̃D + h.c. , (2.7)
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still gets KK mode mixing the EW sector, unless rB = rW = rH . For simplicity, we

assume a common EW boundary parameter.

• In principle, one can introduce two bulk masses and two boundary terms for QCD

and EW sectors: rQ = rU = rD and rL = rE , and MQ = MU = MD and ML = ME .

For simplicity, in this article we assume universal parameters.

Summarizing, in what follows, we make the simplifying assumption of a universal boundary

parameter r ⌘ rQ,U,D,L,E = rG,W,B = rH,µ,� = r�U,D,E and a universal KK-odd fermion

bulk mass µ✓(y) = MQ,L = �MU,D,E where ✓(y) = 2H(y) � 1 is the step function where

H(y) is the Heaviside theta function. Therefore, the remaining free parameters are

L =
⇡R

2
: compactification scale , (2.13)

r : universal boundary parameter , (2.14)

µ : universal bulk mass . (2.15)

Generically one would expect, r ⇠ L and µ ⇠ L�1 ( rL ⇠ µL ⇠ O(1)), since they are

allowed by all symmetries of the model. The cuto↵ scale is also a parameter but as shown

in literature, the dependence on the cuto↵ in masses and couplings is usually logarithmic

and leads to subdominant e↵ects due to the low cuto↵ scale.

2.2 Kaluza-Klein Decomposition

In this section, we perform the Kaluza-Klein decomposition of the UED model with bound-

ary terms and fermion bulk masses. We apply the following standard procedure.

1. Derive the 5D equations of motion from the quadratic part of the action Eq. (2.2).

We do not include contributions from electroweak symmetry breaking in this step,

but treat them as corrections after the KK decomposition.

2. Separate the equations of motion into a xµ and a y dependent part.

3. Determine the wave functions and KK masses from the solutions to the y dependent

equation of motion (EOM) with the boundary conditions at y = ±L dictated by the

boundary action.

4. Determine the overall factor by canonically normalizing the KK mode kinetic terms.

Here we only summarize the results. The detailed calculation can be found in Appendix B.

A fermion  with a left-handed zero mode (i.e. Q and L) in the presence of a boundary

parameter r and a bulk mass M
 

= µ✓(y) is decomposed as follows.

 (x, y) =
1
X

n=0

⇣

 
(n)
L (x)f L

n (y) +  
(n)
R (x)f R

n (y)
⌘

, (2.16)
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where H̃ = i⌧
2

H⇤.

Now for each term in the bulk action, one can add KK-parity conserving boundary

terms, that are allowed by gauge invariance and 4 dimensional Lorentz symmetry:

Sbdy =

Z

d4x

Z L

�L
dy (L@V + L@ + L@H + L@Y uk) [�(y � L) + �(y + L)] , (2.8)

with

L@V =
G,W,B
X

A
�rA

4
Aµ⌫ · Aµ⌫ , (2.9)

L@ =
X

 =Q,L

ir
 

 LDµ�
µ L +

X

 =U,D,E

ir
 

 RDµ�
µ R, (2.10)

L@H = rH (DµH)†DµH + rµµ
2

5

|H|2 � r��5

|H|4 , (2.11)

L@Y uk = r�E�E
5

LHE + r�D�D
5

QHD + r�U�U
5

QH̃D + h.c. . (2.12)

As shown above, the general KK parity preserving 5D UED model contains a large

number of new parameters. Beyond the size L of the extra dimension, and the bulk parame-

ters gA, µ5

, �
5

, �U,D,E
5

– which in MUED can be directly expressed in terms of the standard

model parameters – the model includes five fermion bulk masses MQ,U,D,L,E , as well as the

boundary gauge parameters rG, rW , rB, the boundary Higgs parameters rH , rµ, r�, five

boundary fermion parameters rQ,U,D,L,E , and three boundary Yukawa couplings r�U,D,E ,

amounting to a total of 19 additional parameters. Studying the full parameter space is be-

yond the scope of this article, and we need an ansatz to reduce the number of parameters.

• First of all, above 19 parameters already assume absence of possible flavor changing

neutral current (FCNC). A priory, the fermion bulk masses, the fermion boundary

parameters and the boundary Yukawa couplings are matrices in flavor space. How-

ever, for generic choices, FCNCs are induced at tree-level (c.f. Ref.[7]) which are

strongly constrained by various experiments. As shown explicitly in Appendix A,

tree level FCNCs are absent if all M
 

, r
 

and r�U,D,E are chosen flavor-blind, which

reduces the number of free parameters in the fermion sector to 13.

• Di↵erent r�s in Eqs. (2.11)-(2.12) generate (flavor-conserving) mass mixing terms

between the di↵erent KK fermion modes from the Yukawa interactions. As their

e↵ects are negligible due to the Yukawa suppression, we already set them to be equal

at this stage.

• For rµ 6= r�, the bulk and boundary vacuum expectation values (VEV) do not co-

incide, which leads to a y-dependent VEV. This is a priori not excluded, but it

complicates the KK decomposition in the electroweak sector. For rµ = r� 6= rH , one

can do the KK decomposition of the Higgs field from the 5D Higgs kinetic term, but

in this case, the mass terms induced from the Higgs potential are not diagonal in

this KK basis. They induce mixing between the Higgs KK modes which requires to

re-diagonalize the basis, which is to be done numerically. Even for rH = rµ = r�, one
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NMUED: mass spectrum

Figure 1. Masses of KK vectors and KK fermions for R�1 = 500GeV .

where we used m2

n = �k2n + µ2

 

(identical to split UED). NOTE: Here in every case, I

only used one of the EOM to determine the conditions. The other EOM is satisfied IFF

m2

n = �k2n + µ2

 

AND m2 � 0. Tachyonic solutions are excluded by the first order EOM

(as opposed to the case for scalars / gauge bosons, where they are excluded due to consis-

tency with boundary conditions). This in particular implies that the above quantization

conditions only lead to valid solutions if |kn|  |µ|.

5 Summary: Set up for PHENO

5.1 Spectrum

m2

Vn
= f(R�1, rB) = k2n +m2

V0
(5.1)

! with mass from SSB

(

cot knL = rBkn , for odd n

tan knL = �rBkn , for even n
(5.2)

m2

Hn
= h(R�1, rV ) = k2n +m2

H0
(5.3)

! with Tachyonic mass for SSB

(

cot knL = rBkn , for odd n

tan knL = �rBkn , for even n
(5.4)

mfn = g(R�1, µ
 

, rF ) =
q

µ2

 

+ k2n (5.5)

! We are only interested in ’heavy’ solutions

(

kn cos(knL) = (rFm2

n + µ
 

) sin(knL) , for odd n

rFkn cos(knL) = �(1 + rFµ ) sin(knL) , for even n
(5.6)

where n = 1, 2, 3, · · · and L = ⇡R
2

. We assume the universal parameter, rB(rF ), for

‘bosonic’ (‘sermonic’) boundary terms, respectively.
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NMUED: couplings
where m

 

denotes the respective standard model quark and lepton masses.3

The couplings of Kaluza-Klein mode particles are determined from overlap integrals

of the corresponding wave functions. KK parity guarantees the absence of any KK parity

violating interactions. Furthermore, the orthogonality relations guarantee that several

couplings are absent (for example KK number violating couplings of fermions to a zero

mode gauge boson) or equal to the analogous standard model couplings (for example the

coupling between a zero mode gauge boson and two n-mode fermions or the coupling

between two Higgs zero modes and two n-mode gauge bosons).

Other couplings are modified, compared to minimal UED. The KK number preserving

couplings

gA
110

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
1

f L
1

f L
0

⌘ gAF
110

, (2.41)

between a zero mode fermion and a one-mode fermion and gauge boson play the dominant

role in dark matter annihilation as well as for the production of KK particle pairs and

their cascade decays into the LKP at LHC. For MUED (at tree level), these couplings are

equal to the corresponding standard model couplings. As can be seen in the left panel of

Fig. 2, which shows the ratio gA
110

/gA as a function of µL and r/L, the couplings remain

equal to the standard model value if no fermion bulk mass term is present (and under

the assumption of equal fermion and gauge boundary kinetic terms). This directly follows

from the orthogonality relations Eq. (2.31) and the fact that for µ = 0, the wave functions

of the KK-fermions and gauge bosons coincide. For general µ, however, we observe O(1)

deviations from the standard model couplings. In the usually discussed MUED model,

deviations from the standard model couplings are one-loop suppressed.

The KK number conserving couplings

gA
220

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
2

f L
0

⌘ gAF
220

, (2.42)

between a 2-mode gauge boson and fermion and a zero mode fermion, and

gA
211

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
1

f L
1

⌘ gAF
211

, (2.43)

between a two 1-mode fermions and a 2-mode gauge boson are also shown in Fig. 2. Both

contribute potential decay channels of the 2-mode gauge boson.

Apart from KK number conserving couplings, the KK number violating couplings

gA
200

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
0

f L
0

⌘ gAF
200

, (2.44)

between two zero mode fermions and a level-2 KK mode gauge boson play an important role

for collider phenomenology. Via these couplings, 2-mode gauge bosons can be produced as

an s-channel resonance, which implies Z 0-, W 0- or coloron-like signatures. In MUED, these

3

The details about the Yukawa contribution to the KK fermion masses and the relation between the

gauge- and the mass eigenbasis for KK quarks and leptons can be found in Appendix D.
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NMUED: couplings

Figure 2. Modified KK couplings: V1f1f0 (top-left), V2f2f0 (top-right), V2f1f1 (bottom-left), and
V2f0f0 (bottom-right).

couplings are only induced at one-loop level and therefore small [22], but still potentially

observable at LHC when upgraded to 14TeV [26]. As can be seen in the right panel of

Fig. 2, for our generalized UED setup, the coupling is absent only for µ = 0 – again due

to coinciding fermion and gauge boson wave functions and the orthogonality relations. For

generic µ, gA
200

is of the order of the corresponding standard model coupling. Therefore,

resonance searches are amongst the most sensitive tests of generalized UED models. We

find that dependence on the brane parameter r is weak in F
110

and F
200

and we expect

that they may be less constrained by experiments. On the other hand, variation of F
220

and F
211

along the r direction is more dramatic.

3 Constraints on Generalized UED Models

In this section, we consider various constraints on the generalized UED model in the pres-

ence of bulk masses and brane localized terms.
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NMUED

Figure 5. Bounds from resonance search at the LHC and relic abundance of KK photon.

the mass splitting is about 1%, i.e., near the MUED limit. It is essentially the size of

1-loop radiative corrections in MUED, where the correction to masses of SU(2)W-singlet

KK leptons is ⇠ 1%. Another important consideration would be resonant (co-)annihilation

through 2-mode particles, but for µL 6= 0 6= r/L, the KK-level masses are not at multiples

of R�1 anymore, such that, unlike in MUED, resonant annihilation generically does not

occur. See [10] for e↵ects of coannihilations and resonances in MUED.

Our results are presented in Fig. 5, where we show contours of R�1, that is consistent

with ⌦h2 = 0.1123. Each contour may serve as an upper bound on R�1 for a given choice

of µ and r, since KK photon could be one kind of dark matter species. However R�1

greater than the corresponding value of the curve is not allowed since the model predicts

too much dark matter. Combining with bounds from electroweak precision measurements

and 4-Fermi interaction, which give lower bounds on R�1, we obtain allowed region of

(µL, r/L) space, shown in cyan in Fig. 5. The yellow shaded region is allowed by the

LHC dilepton search as it will be discussed in the next section. As shown in [4], leptonic

final states of KK photon annihilation are still dominant due to the nature of hypercharge

interaction.

The pattern (slope of curves) shown in Fig. 5 can be understood easily based on KK

masses and couplings. In MUED (r = µ), the WMAP consistent R�1 is about 900 GeV.

An increasing bulk mass parameter lifts up KK fermion mass and reduces the f
1

-f
0

-V
1

coupling, which slows down e�cient dark matter annihilation. This results in lower values

of R�1. Now an increasing brane parameter reduces KK masses, leading to more e�cient

dark matter annihilation and hence increasing the R�1 value. For the r = 0 limit, our

result is consistent with that in [17].
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Two Universal Extra Dimensions
3

electroweak interactions are a few percent. We find that
the corrections to the masses are such that mgn

> mQn
>

mqn
> mWn

∼ mZn
> mLn

> m!n
> mγn

. The light-
est KK particle γ1, is a mixture of the first KK mode
B1 of the U(1)Y gauge boson B and the first KK mode
W 0

1 of the SU(2)W W 3 gauge boson. (The possibility of
the first level KK graviton being the LKP is irrelevant
for collider phenomenology, since the decay lifetime of γ1

to G1 would be of cosmological scales.) We will usually
denote this state by γ1. However, note that the corre-
sponding “Weinberg” angle θ1 is much smaller than the
Weinberg angle θW of the Standard Model [10], so that
the γ1 LKP is mostly B1 and Z1 is mostly W 0

1 . The mass
splittings among the level 1 KK modes are large enough
for the prompt decay of a heavier level 1 KK mode to a
lighter level 1 KK mode. But since the spectrum is still
quite degenerate, the ordinary SM particles emitted from
these decays will be soft, posing a challenge for collider
searches.

The terms localized at the orbifold fixed points also
violate the KK number by even units. However, assum-
ing that no explicit KK-parity violating effects are put
in by hand, KK parity remains an exact symmetry. The
boundary terms allow higher (n > 1) KK modes to decay
to lower KK modes, and even level states can be singly
produced (with smaller cross sections because the bound-
ary couplings are volume suppressed). Thus KK number
violating boundary terms are important for higher KK
mode searches as we will discuss in Section IV.

III. FIRST KK LEVEL

Once the radiative corrections are included, the KK
mass degeneracy at each level is lifted and the KK modes
decay promptly. The collider phenomenology of the first
KK level is therefore very similar to a supersymmetric
scenario in which the superpartners are relatively close
in mass - all squeezed within a mass window of 100-200
GeV (depending on the exact value of R). Each level
1 KK particle has an exact analogue in supersymmetry:
B1 ↔ bino, g1 ↔ gluino, Q1(q1) ↔ left-handed (right-
handed) squark, etc. The decay cascades of the level 1
KK modes will terminate in the γ1 LKP (Fig. 3). Just
like the neutralino LSP is stable in R-parity conserving
supersymmetry, the γ1 LKP in MUEDs is stable due to
KK parity conservation and its production at colliders
results in generic missing energy signals.

It is known that supersymmetry with a stable neu-
tralino LSP is difficult to discover at hadron colliders
if the superpartner spectrum is degenerate. Hence the
discovery of level 1 KK modes in MUEDs at first sight
appears problematic as well – the decay products result-
ing from transitions between level 1 KK states may be
too soft for reliable experimental observation at hadron
colliders. This issue is the subject of this Section.

Before we address the possible level 1 discovery chan-
nels in some detail, we need to determine the allowed

FIG. 3: Qualitative sketch of the level 1 KK spectroscopy de-
picting the dominant (solid) and rare (dotted) transitions and
the resulting decay product.

decays at level 1 and estimate their branching fractions.
For any given set of input parameters (3) the mass spec-
trum and couplings of the KK modes in MUEDs are
exactly calculable [10]. Hence one obtains very robust
predictions for the main branching ratios of interest for
phenomenology.

KK gluon.— The heaviest KK particle at level 1 is the
KK gluon g1. Its two-body decays to KK quarks Q1 and
q1 are always open and have similar branching fractions:
B(g1 → Q1Q0) $ B(g1 → q1q0) $ 0.5.

KK quarks.— The case of SU(2)-singlet quarks (q1)
is very simple – they can only decay to the hyper-
charge gauge boson B1, hence their branchings to Z1

are suppressed by the level 1 Weinberg angle θ1 % θW :
B(q1 → Z1q0) $ sin2 θ1 ∼ 10−2 − 10−3 while B(q1 →
γ1q0) $ cos2 θ1 ∼ 1. Thus q1 production yields jets
plus missing energy, the exception being t1 → W+

1 b0 and
t1 → H+

1 b0 (the latter will be in fact the dominant source
of H+

1 production at hadron colliders).
SU(2)-doublet quarks (Q1) can decay to W±

1 , Z1 or
γ1. In the limit sin θ1 % 1 SU(2)W -symmetry implies

B(Q1 → W±
1 Q′

0) $ 2B(Q1 → Z1Q0) (4)

and furthermore for massless Q0 we have

B(Q1 → Z1Q0)

B(Q1 → γ1Q0)
$

g2
2 T 2

3Q (m2
Q1

− m2
Z1

)

g2
1 Y 2

Q (m2
Q1

− m2
γ1

)
, (5)

where g2 (g1) is the SU(2)W (U(1)Y ) gauge coupling, and
T3 and Y stand for weak isospin and hypercharge, corre-
spondingly. We see that the Q1 decays to SU(2) gauge
bosons, although suppressed by phase space, are numeri-
cally enhanced by the ratio of the couplings and quantum
numbers. With typical values for the mass corrections
from Fig. 2, eqs. (4) and (5) yield B(Q1 → W±

1 Q′
0) ∼

65%, B(Q1 → Z1Q0) ∼ 33% and B(Q1 → γ1Q0) ∼ 2%.



• Extra “spinless” states: GH, ZH, WH, BH

• KK photon is NOT DM and decays to spinless photon via 1-loop or 
3 body decay

• Spinless (1,1) decays to top pair

Two Universal Extra DimensionsFigure 4: ISR-corrected production cross sections of (a) (1,0) KK vector bosons and (b) (1,0)
spinless adjoints, as a function of R−1.

Figure 5: Schematic diagram for the decays of (1,0) KK particles. The typical particle spectrum
and decay patterns of the 5DSM are shown in red, while the 6DSM encompasses the particles and
decay modes depicted both in red and blue.

pairs plus B(1)
H .

In figure 5 we summarize the decay patterns of (1,0) particles of the 6DSM in a pictorial

way in comparison with the 5DSM [27]. There are two separate groups of particles: one

(left in red) arising in both 5DSM and 6DSM, and the other (right in blue) that exists

only in the 6DSM. These additional states are all spinless adjoints that are lighter than

the B(1)
µ . One important consequence of this is that (1,0) fermions (circled) decay into

these spinless adjoints with non-negligible branching fractions, thus completely changing

the collider phenomenology.

– 7 –
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• We propose the following:
– Consider 5D UED only

• 6D model needs to address an issue with DM (too low KK scale)

– Minimal UED
• two parameters: R and Lambda (cutoff)
• cutoff dependence is only logarithmic
• mass spectrum from radiative correction (no boundary terms)
• compressed mass spectrum

– Non-minimal UED with brane terms for strong sector
• two additional parameters: rG and rQ (for universal brane terms)

– Signatures (standard SUSY search + resonances)
• level 1: jets + n-leptons + met,       n=0,1,2,3,4
• level 2: dijet, dilepton and lepton-neutrino final states

HF4: UED Benchmarks



• UED provides alternative DM candidates

• spin-1: KK photon, KK Z

• spin-0: spinless photon, spinless Z, KK Higgs 

• spin-2: KK graviton

• spin-1/2: KK neutrino

• Different aspect of DM detection

• Natural set up for a model with degenerate mass spectrum

• Importance of complementarity: LHC vs DD

Summary I



• MUED (5D): two parameters (cutoff, radius of ED)

• interesting indirect detection: leptons/photons

• direct detection hard

• collider: level 1 vs SUSY, level 2 resonances

• 2UED (chiral squre)

• resembles SUSY DM

• has an issue with low mass DM and LHC constraints

• Next-to-Minimal UED: bulk-masses, brane kinetic terms

• detection needs more study

Summary II



more slides



NMUED

1. The action S
5

which is invariant under the five dimensional Lorentz symmetry.

2. The boundary action Sbdy�(y � yi) where yi = (±)L denotes the location of the end

point. The boundary terms are invariant under the four dimensional sub-symmetry

of the full five dimensional Lorentz symmetry.

The fermion field content of the model (with a possible extension with the right handed

neutrino for the non-vanishing neutrino mass) is given with their charges under the gauge

symmetry as follows,
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where the superscript (0) denotes the zero mode of the Kaluza-Klein tower of the five

dimensional field. The bulk action is given by

S
5

=

Z

d4x

Z L

�L
dy [LV + L

 

+ LH + LY uk] , (2.2)

where

LV =
G,W,B
X

A
�1

4
AMN · AMN (2.3)

L
 

=
Q,U,D,L,E

X

 

i 
 !
DM�

M �M
 

  (2.4)

where A denotes the gluon (G), weak gauge bosons (W ) and the hypercharge gauge boson

(B) appearing in the gauge covariant derivatives DM = @M + ig5s� · GM + ig5w⌧ · WM +

ig5Y Y BM , where g5i s are five dimensional couplings of the SM, and �s and ⌧s are the

generators of SU(3)c and SU(2)W , respectively. The gauge group indices are suppressed.

 
 !
DM = 1

2

{ (DM ) � (DM ) }. The gamma matrix in five dimensions is �M =

(�µ, i�
5

), which satisfies {�A,�B} = 2⌘AB = 2diag(1,�1,�1,�1,�1). The bulk mass

term is chosen to be odd under the inversion about the middle point (y = 0) of the extra

dimension to keep the Kaluza-Klein parity preserved: M
 

(y) = �M
 

(�y).
The five dimensional Lagrangian for the Higgs and Yukawa interactions is

LH = (DMH)†DMH � V (H), (2.5)

V (H) = �µ2

5

|H|2 + �
5

|H|4 , (2.6)

LY uk = �E
5

LHE + �D
5

QHD + �U
5

QH̃D + h.c. , (2.7)

– 4 –

where H̃ = i⌧
2

H⇤.

Now for each term in the bulk action, one can add KK-parity conserving boundary

terms, that are allowed by gauge invariance and 4 dimensional Lorentz symmetry:

Sbdy =

Z

d4x

Z L

�L
dy (L@V + L@ + L@H + L@Y uk) [�(y � L) + �(y + L)] , (2.8)

with

L@V =
G,W,B
X

A
�rA

4
Aµ⌫ · Aµ⌫ , (2.9)

L@ =
X

 =Q,L

ir
 

 LDµ�
µ L +

X

 =U,D,E

ir
 

 RDµ�
µ R, (2.10)

L@H = rH (DµH)†DµH + rµµ
2

5

|H|2 � r��5

|H|4 , (2.11)

L@Y uk = r�E�E
5

LHE + r�D�D
5

QHD + r�U�U
5

QH̃D + h.c. . (2.12)

As shown above, the general KK parity preserving 5D UED model contains a large

number of new parameters. Beyond the size L of the extra dimension, and the bulk parame-

ters gA, µ5

, �
5

, �U,D,E
5

– which in MUED can be directly expressed in terms of the standard

model parameters – the model includes five fermion bulk masses MQ,U,D,L,E , as well as the

boundary gauge parameters rG, rW , rB, the boundary Higgs parameters rH , rµ, r�, five

boundary fermion parameters rQ,U,D,L,E , and three boundary Yukawa couplings r�U,D,E ,

amounting to a total of 19 additional parameters. Studying the full parameter space is be-

yond the scope of this article, and we need an ansatz to reduce the number of parameters.

• First of all, above 19 parameters already assume absence of possible flavor changing

neutral current (FCNC). A priory, the fermion bulk masses, the fermion boundary

parameters and the boundary Yukawa couplings are matrices in flavor space. How-

ever, for generic choices, FCNCs are induced at tree-level (c.f. Ref.[7]) which are

strongly constrained by various experiments. As shown explicitly in Appendix A,

tree level FCNCs are absent if all M
 

, r
 

and r�U,D,E are chosen flavor-blind, which

reduces the number of free parameters in the fermion sector to 13.

• Di↵erent r�s in Eqs. (2.11)-(2.12) generate (flavor-conserving) mass mixing terms

between the di↵erent KK fermion modes from the Yukawa interactions. As their

e↵ects are negligible due to the Yukawa suppression, we already set them to be equal

at this stage.

• For rµ 6= r�, the bulk and boundary vacuum expectation values (VEV) do not co-

incide, which leads to a y-dependent VEV. This is a priori not excluded, but it

complicates the KK decomposition in the electroweak sector. For rµ = r� 6= rH , one

can do the KK decomposition of the Higgs field from the 5D Higgs kinetic term, but

in this case, the mass terms induced from the Higgs potential are not diagonal in

this KK basis. They induce mixing between the Higgs KK modes which requires to

re-diagonalize the basis, which is to be done numerically. Even for rH = rµ = r�, one
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still gets KK mode mixing the EW sector, unless rB = rW = rH . For simplicity, we

assume a common EW boundary parameter.

• In principle, one can introduce two bulk masses and two boundary terms for QCD

and EW sectors: rQ = rU = rD and rL = rE , and MQ = MU = MD and ML = ME .

For simplicity, in this article we assume universal parameters.

Summarizing, in what follows, we make the simplifying assumption of a universal boundary

parameter r ⌘ rQ,U,D,L,E = rG,W,B = rH,µ,� = r�U,D,E and a universal KK-odd fermion

bulk mass µ✓(y) = MQ,L = �MU,D,E where ✓(y) = 2H(y) � 1 is the step function where

H(y) is the Heaviside theta function. Therefore, the remaining free parameters are

L =
⇡R

2
: compactification scale , (2.13)

r : universal boundary parameter , (2.14)

µ : universal bulk mass . (2.15)

Generically one would expect, r ⇠ L and µ ⇠ L�1 ( rL ⇠ µL ⇠ O(1)), since they are

allowed by all symmetries of the model. The cuto↵ scale is also a parameter but as shown

in literature, the dependence on the cuto↵ in masses and couplings is usually logarithmic

and leads to subdominant e↵ects due to the low cuto↵ scale.

2.2 Kaluza-Klein Decomposition

In this section, we perform the Kaluza-Klein decomposition of the UED model with bound-

ary terms and fermion bulk masses. We apply the following standard procedure.

1. Derive the 5D equations of motion from the quadratic part of the action Eq. (2.2).

We do not include contributions from electroweak symmetry breaking in this step,

but treat them as corrections after the KK decomposition.

2. Separate the equations of motion into a xµ and a y dependent part.

3. Determine the wave functions and KK masses from the solutions to the y dependent

equation of motion (EOM) with the boundary conditions at y = ±L dictated by the

boundary action.

4. Determine the overall factor by canonically normalizing the KK mode kinetic terms.

Here we only summarize the results. The detailed calculation can be found in Appendix B.

A fermion  with a left-handed zero mode (i.e. Q and L) in the presence of a boundary

parameter r and a bulk mass M
 

= µ✓(y) is decomposed as follows.

 (x, y) =
1
X

n=0

⇣

 
(n)
L (x)f L

n (y) +  
(n)
R (x)f R

n (y)
⌘

, (2.16)
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where H̃ = i⌧
2

H⇤.

Now for each term in the bulk action, one can add KK-parity conserving boundary

terms, that are allowed by gauge invariance and 4 dimensional Lorentz symmetry:

Sbdy =

Z

d4x

Z L

�L
dy (L@V + L@ + L@H + L@Y uk) [�(y � L) + �(y + L)] , (2.8)

with

L@V =
G,W,B
X

A
�rA

4
Aµ⌫ · Aµ⌫ , (2.9)

L@ =
X

 =Q,L

ir
 

 LDµ�
µ L +

X

 =U,D,E

ir
 

 RDµ�
µ R, (2.10)

L@H = rH (DµH)†DµH + rµµ
2

5

|H|2 � r��5

|H|4 , (2.11)

L@Y uk = r�E�E
5

LHE + r�D�D
5

QHD + r�U�U
5

QH̃D + h.c. . (2.12)

As shown above, the general KK parity preserving 5D UED model contains a large

number of new parameters. Beyond the size L of the extra dimension, and the bulk parame-

ters gA, µ5

, �
5

, �U,D,E
5

– which in MUED can be directly expressed in terms of the standard

model parameters – the model includes five fermion bulk masses MQ,U,D,L,E , as well as the

boundary gauge parameters rG, rW , rB, the boundary Higgs parameters rH , rµ, r�, five

boundary fermion parameters rQ,U,D,L,E , and three boundary Yukawa couplings r�U,D,E ,

amounting to a total of 19 additional parameters. Studying the full parameter space is be-

yond the scope of this article, and we need an ansatz to reduce the number of parameters.

• First of all, above 19 parameters already assume absence of possible flavor changing

neutral current (FCNC). A priory, the fermion bulk masses, the fermion boundary

parameters and the boundary Yukawa couplings are matrices in flavor space. How-

ever, for generic choices, FCNCs are induced at tree-level (c.f. Ref.[7]) which are

strongly constrained by various experiments. As shown explicitly in Appendix A,

tree level FCNCs are absent if all M
 

, r
 

and r�U,D,E are chosen flavor-blind, which

reduces the number of free parameters in the fermion sector to 13.

• Di↵erent r�s in Eqs. (2.11)-(2.12) generate (flavor-conserving) mass mixing terms

between the di↵erent KK fermion modes from the Yukawa interactions. As their

e↵ects are negligible due to the Yukawa suppression, we already set them to be equal

at this stage.

• For rµ 6= r�, the bulk and boundary vacuum expectation values (VEV) do not co-

incide, which leads to a y-dependent VEV. This is a priori not excluded, but it

complicates the KK decomposition in the electroweak sector. For rµ = r� 6= rH , one

can do the KK decomposition of the Higgs field from the 5D Higgs kinetic term, but

in this case, the mass terms induced from the Higgs potential are not diagonal in

this KK basis. They induce mixing between the Higgs KK modes which requires to

re-diagonalize the basis, which is to be done numerically. Even for rH = rµ = r�, one
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• To avoid tree-level FCNC, set all M and r flavor blind -> 19.

• For             , bulk VEV and boundary VEV different.

• To avoid KK mode mixing, set all r’s the same.

• Assume universal bulk masses.
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complicates the KK decomposition in the electroweak sector. For rµ = r� 6= rH , one

can do the KK decomposition of the Higgs field from the 5D Higgs kinetic term, but

in this case, the mass terms induced from the Higgs potential are not diagonal in

this KK basis. They induce mixing between the Higgs KK modes which requires to

re-diagonalize the basis, which is to be done numerically. Even for rH = rµ = r�, one
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still gets KK mode mixing the EW sector, unless rB = rW = rH . For simplicity, we

assume a common EW boundary parameter.

• In principle, one can introduce two bulk masses and two boundary terms for QCD

and EW sectors: rQ = rU = rD and rL = rE , and MQ = MU = MD and ML = ME .

For simplicity, in this article we assume universal parameters.

Summarizing, in what follows, we make the simplifying assumption of a universal boundary

parameter r ⌘ rQ,U,D,L,E = rG,W,B = rH,µ,� = r�U,D,E and a universal KK-odd fermion

bulk mass µ✓(y) = MQ,L = �MU,D,E where ✓(y) = 2H(y) � 1 is the step function where

H(y) is the Heaviside theta function. Therefore, the remaining free parameters are

L =
⇡R

2
: compactification scale , (2.13)

r : universal boundary parameter , (2.14)

µ : universal bulk mass . (2.15)

Generically one would expect, r ⇠ L and µ ⇠ L�1 ( rL ⇠ µL ⇠ O(1)), since they are

allowed by all symmetries of the model. The cuto↵ scale is also a parameter but as shown

in literature, the dependence on the cuto↵ in masses and couplings is usually logarithmic

and leads to subdominant e↵ects due to the low cuto↵ scale.

2.2 Kaluza-Klein Decomposition

In this section, we perform the Kaluza-Klein decomposition of the UED model with bound-

ary terms and fermion bulk masses. We apply the following standard procedure.

1. Derive the 5D equations of motion from the quadratic part of the action Eq. (2.2).

We do not include contributions from electroweak symmetry breaking in this step,

but treat them as corrections after the KK decomposition.

2. Separate the equations of motion into a xµ and a y dependent part.

3. Determine the wave functions and KK masses from the solutions to the y dependent

equation of motion (EOM) with the boundary conditions at y = ±L dictated by the

boundary action.

4. Determine the overall factor by canonically normalizing the KK mode kinetic terms.

Here we only summarize the results. The detailed calculation can be found in Appendix B.

A fermion  with a left-handed zero mode (i.e. Q and L) in the presence of a boundary

parameter r and a bulk mass M
 

= µ✓(y) is decomposed as follows.

 (x, y) =
1
X

n=0

⇣

 
(n)
L (x)f L

n (y) +  
(n)
R (x)f R

n (y)
⌘

, (2.16)

– 6 –

where the wave functions f
 L/R
n are given by

n = 0 : f L
0

= N 

0

eµ|y|, (2.17)

odd n :

(

f L
n = N 

n sin(kny) ,

f R
n = N 

n

⇣

� kn
mfn

cos(kny) +
µ

mfn
✓(y) sin(kny)

⌘

,
(2.18)

even n :

(

f L
n = N 

n

⇣

kn
mfn

cos(kny) +
µ

mfn
✓(y) sin(kny)

⌘

,

f R
n = N 

n sin(kny) .
(2.19)

The wave numbers kn are the solutions of the mass quantization condition

kn cos(knL) = (r (mfn)
2 + µ) sin(knL) for odd n ,

rkn cos(knL) = �(1 + rµ) sin(knL) for even n ,
(2.20)

and the masses mfn of the KK fermions follow from the wave numbers by

mfn =
p

k2n + µ2, (2.21)

while the chiral zero mode is massless. The normalizations

N 

n =

8

>

>

>

>

<

>

>

>

>

:

q

µ
(1+2r µ) exp(2µL)�1

for n = 0 ,
1q

L� cos(knL) sin(knL)

kn
+2r sin2(knL)

for odd n ,

1q
L� cos(knL) sin(knL)

kn

for even n ,

(2.22)

are determined from the modified orthogonality relations
Z L

�L
dy f L

m f L
n [1 + r (�(y + L) + �(y � L)] = �mn,

Z L

�L
dy f R

m f R
n = �mn. (2.23)

A fermion with a right-handed zero mode (i.e. U,D,E) yields analogous results when

replacing µ with �µ (see Appendix B.3 for details). 1

As has been pointed out in Ref. [20], in the absence of a bulk mass term, negative

boundary parameters lead to a KK spectrum which, depending on the value of r, contain

ghosts and/or tachyons. In the presence of a bulk mass term, we arrive at the same

conclusion (see Appendix B.2 for details), and therefore demand r > 0, for which neither

ghosts nor tachyons are present.

The KK reduction of gauge bosons and scalars has been discussed in Ref. [21]. The

fields are decomposed according to

Aµ(x, y) =
1
X

n=0

A(n)
µ (x)fA

n (y) , (2.24)

H(x, y) =
1
X

n=0

H(n)(x)fA
n (y) . (2.25)

1

As we defined our bulk mass term as µ✓(y) = MQ.L = �MU,D,E , the KK masses of the SU(2)-doublet

and -singlet fields are equal (up to corrections from electroweak symmetry breaking), and in this sense, this

choice leads to a “universal” bulk mass.
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kn
+2r sin2(knL)

for odd n ,

1q
L� cos(knL) sin(knL)

kn

for even n ,

(2.22)

are determined from the modified orthogonality relations
Z L

�L
dy f L

m f L
n [1 + r (�(y + L) + �(y � L)] = �mn,

Z L

�L
dy f R

m f R
n = �mn. (2.23)

A fermion with a right-handed zero mode (i.e. U,D,E) yields analogous results when

replacing µ with �µ (see Appendix B.3 for details). 1

As has been pointed out in Ref. [20], in the absence of a bulk mass term, negative

boundary parameters lead to a KK spectrum which, depending on the value of r, contain

ghosts and/or tachyons. In the presence of a bulk mass term, we arrive at the same

conclusion (see Appendix B.2 for details), and therefore demand r > 0, for which neither

ghosts nor tachyons are present.

The KK reduction of gauge bosons and scalars has been discussed in Ref. [21]. The

fields are decomposed according to

Aµ(x, y) =
1
X

n=0

A(n)
µ (x)fA

n (y) , (2.24)

H(x, y) =
1
X

n=0

H(n)(x)fA
n (y) . (2.25)

1

As we defined our bulk mass term as µ✓(y) = MQ.L = �MU,D,E , the KK masses of the SU(2)-doublet

and -singlet fields are equal (up to corrections from electroweak symmetry breaking), and in this sense, this

choice leads to a “universal” bulk mass.
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⇣
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⇣
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ogously one finds

µ
5

= µH , (2.34)

�
5

= �H

⇣

2L
⇣

1 +
r

L

⌘⌘

, (2.35)

�U,D,E
5

= �U,D,E

r

2L
⇣

1 +
r

L

⌘

. (2.36)

These simple, analytic results hold for our simplifying choice of universal bulk masses and

boundary parameters. For more general choice, the matching can be performed via the

same procedure, but as the r parameters in the orthogonality relations Eqs.(2.23) and (2.31)

for di↵erent fields do not coincide, the matching can in general only be performed numer-

ically (see Ref. [21] for an example of non-universal boundary terms in the electroweak

sector).

With the 5D parameters determined, the masses and couplings of all KK modes are

fixed. Beyond the dominant contribution in Eq. (2.21) and Eq. (2.30) to the KK mode

masses, electroweak symmetry breaking yields an additional contribution to the electroweak

gauge boson and fermion KK mode masses. For KK gauge bosons, the relevant term arising

from the 5D action in Eq. (2.2) reads

Seff �
Z

d4x

(

X

m,n

✓

�(g5Y )
2v2

5

8
B(m)

µ B(n)µ � g5Y g
5

wv
2

5

4
W 3(m)

µ B(n)µ � (g5w)
2v2

5

8
W 3(m)

µ W 3(n)µ

�(g5w)
2v2

5

8
W+(m)

µ W�(n)µ

◆

⇥
Z L

�L
dyfA

mfA
n [1 + r (�(y + L) + �(y � L))]

�

=

Z

d4x

(

X

n

✓

�m2

Z

2
Z(n)
µ Z(n)µ �m2

WW+(n)
µ W�(n)µ

◆

)

, (2.37)

where in the last step, we used the orthogonality relation Eq. (2.31), and diagonalized the

mass matrix in the neutral sector, which yields the mass eigenstates
 

A(n)

Z(n)

!

=

 

cos ✓W sin ✓W
� sin ✓W cos ✓W

! 

B(n)

W 3(n)

!

, (2.38)

where ✓W is the standard model Weinberg angle. Note that inclusion of radiative correction

reduces the Weinberg angle for KK states [22]. Together with the mass contributions from

the KK decomposition, the full masses of the gauge boson KK modes are given by

mAn =
q

k2n +m2

A
0

, (2.39)

where here, A denotes the gluon, photon, Z-, and W -boson, and mA
0

is the mass of the

respective standard model particle. Similarly to the gauge sector, the Yukawa interactions

yield additional mass contributions to the KK fermions beyond mfn from Eq. (2.21). The

resulting fermion KK masses are given by

m
 n =

q

m2

fn
+m2

 

, (2.40)
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NMUED: Bosons

where the wave functions f
 L/R
n are given by

n = 0 : f L
0

= N 

0

eµ|y|, (2.17)

odd n :

(

f L
n = N 

n sin(kny) ,

f R
n = N 

n

⇣

� kn
mfn

cos(kny) +
µ

mfn
✓(y) sin(kny)

⌘

,
(2.18)

even n :

(

f L
n = N 

n

⇣

kn
mfn

cos(kny) +
µ

mfn
✓(y) sin(kny)

⌘

,

f R
n = N 

n sin(kny) .
(2.19)

The wave numbers kn are the solutions of the mass quantization condition

kn cos(knL) = (r (mfn)
2 + µ) sin(knL) for odd n ,

rkn cos(knL) = �(1 + rµ) sin(knL) for even n ,
(2.20)

and the masses mfn of the KK fermions follow from the wave numbers by

mfn =
p

k2n + µ2, (2.21)

while the chiral zero mode is massless. The normalizations

N 

n =

8

>

>

>

>

<

>

>

>

>

:

q

µ
(1+2r µ) exp(2µL)�1

for n = 0 ,
1q

L� cos(knL) sin(knL)

kn
+2r sin2(knL)

for odd n ,

1q
L� cos(knL) sin(knL)

kn

for even n ,

(2.22)

are determined from the modified orthogonality relations
Z L

�L
dy f L

m f L
n [1 + r (�(y + L) + �(y � L)] = �mn,

Z L

�L
dy f R

m f R
n = �mn. (2.23)

A fermion with a right-handed zero mode (i.e. U,D,E) yields analogous results when

replacing µ with �µ (see Appendix B.3 for details). 1

As has been pointed out in Ref. [20], in the absence of a bulk mass term, negative

boundary parameters lead to a KK spectrum which, depending on the value of r, contain

ghosts and/or tachyons. In the presence of a bulk mass term, we arrive at the same

conclusion (see Appendix B.2 for details), and therefore demand r > 0, for which neither

ghosts nor tachyons are present.

The KK reduction of gauge bosons and scalars has been discussed in Ref. [21]. The

fields are decomposed according to

Aµ(x, y) =
1
X

n=0

A(n)
µ (x)fA

n (y) , (2.24)

H(x, y) =
1
X

n=0

H(n)(x)fA
n (y) . (2.25)

1

As we defined our bulk mass term as µ✓(y) = MQ.L = �MU,D,E , the KK masses of the SU(2)-doublet

and -singlet fields are equal (up to corrections from electroweak symmetry breaking), and in this sense, this

choice leads to a “universal” bulk mass.
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For a uniform boundary kinetic term as considered in this article, the resulting wave func-

tions are2

n = 0 : fA
0

(y) =
1

p

2L(1 + r
L)

(2.26)

odd n : fA
n (y) =

s

1

L+ r sin2(knL)
sin(kny) , (2.27)

even n : fA
n (y) =

s

1

L+ r cos2(knL)
cos(kny) , (2.28)

where the wave numbers kn are determined by

cot(knL) = rkn for odd n, (2.29)

tan(knL) = �rkn for even n ,

and the corresponding KK masses are

m�n = kn . (2.30)

The wave functions satisfy the orthogonality relation

Z L

�L
dyfA

mfA
n [1 + r (�(y + L) + �(y � L))] = �mn. (2.31)

As expected, the masses and wave functions of KK scalars and gauge bosons are identical

to the masses and Z
2

-even fermion wave function solutions in the limit µ ! 0 (up to EWSB

e↵ects).

We close our discussion on the KK decomposition with an illustration of the dependence

of the KK masses on the fermion bulk mass and the boundary parameter shown in Fig.1.

These masses directly follow from Eqs. (2.20-2.21). In the left panel, we plot masses of the

first and second KK fermions, mf
1

and mf
2

, as a function of the dimensionless ratio r/L

for di↵erent values of the dimensionless parameter µL. For µL = 0, these masses coincide

with the first and second gauge KK mode masses m�
1

and m�
2

. As can be seen, all KK

masses decrease with increasing boundary parameter, while the bulk mass µ e↵ects the

first and second KK modes in opposite ways. While the first KK mode mass is increased

for negative µ, the second KK mode mass is decreased in this case – at least for su�ciently

large r/L. This non-trivial behavior is a consequence of the di↵erent mass quantization

conditions Eq. (2.20) for even- and odd-numbered KK modes and can be seen in more

detail in the right panel of Fig. 1, where we plot contours of constant mf
1

and mf
2

in

the r/L vs. µL parameter space. For illustration, we chose a compactification radius

R�1 ⌘ 2L/⇡ = 500GeV in both figures, but the masses for other compactification radii

can easily be deduced, because, as can be seen from Eq. (2.20), the product mfnL can

be expressed as a function of the dimensionless parameters r/L and µL, only. In some of

2

For generic choices of the boundary parameters, the KK decomposition in the electroweak sector is

more involved. For a detailed discussion and the general solutions, we refer to Ref. [21].

– 8 –

For a uniform boundary kinetic term as considered in this article, the resulting wave func-

tions are2

n = 0 : fA
0

(y) =
1

p

2L(1 + r
L)

(2.26)

odd n : fA
n (y) =

s

1

L+ r sin2(knL)
sin(kny) , (2.27)

even n : fA
n (y) =

s

1

L+ r cos2(knL)
cos(kny) , (2.28)

where the wave numbers kn are determined by

cot(knL) = rkn for odd n, (2.29)

tan(knL) = �rkn for even n ,

and the corresponding KK masses are

m�n = kn . (2.30)

The wave functions satisfy the orthogonality relation

Z L

�L
dyfA

mfA
n [1 + r (�(y + L) + �(y � L))] = �mn. (2.31)

As expected, the masses and wave functions of KK scalars and gauge bosons are identical

to the masses and Z
2

-even fermion wave function solutions in the limit µ ! 0 (up to EWSB

e↵ects).

We close our discussion on the KK decomposition with an illustration of the dependence

of the KK masses on the fermion bulk mass and the boundary parameter shown in Fig.1.

These masses directly follow from Eqs. (2.20-2.21). In the left panel, we plot masses of the

first and second KK fermions, mf
1

and mf
2

, as a function of the dimensionless ratio r/L

for di↵erent values of the dimensionless parameter µL. For µL = 0, these masses coincide

with the first and second gauge KK mode masses m�
1

and m�
2

. As can be seen, all KK

masses decrease with increasing boundary parameter, while the bulk mass µ e↵ects the

first and second KK modes in opposite ways. While the first KK mode mass is increased

for negative µ, the second KK mode mass is decreased in this case – at least for su�ciently

large r/L. This non-trivial behavior is a consequence of the di↵erent mass quantization

conditions Eq. (2.20) for even- and odd-numbered KK modes and can be seen in more

detail in the right panel of Fig. 1, where we plot contours of constant mf
1

and mf
2

in

the r/L vs. µL parameter space. For illustration, we chose a compactification radius

R�1 ⌘ 2L/⇡ = 500GeV in both figures, but the masses for other compactification radii

can easily be deduced, because, as can be seen from Eq. (2.20), the product mfnL can

be expressed as a function of the dimensionless parameters r/L and µL, only. In some of

2

For generic choices of the boundary parameters, the KK decomposition in the electroweak sector is

more involved. For a detailed discussion and the general solutions, we refer to Ref. [21].

– 8 –

For a uniform boundary kinetic term as considered in this article, the resulting wave func-

tions are2

n = 0 : fA
0

(y) =
1

p

2L(1 + r
L)

(2.26)

odd n : fA
n (y) =

s

1

L+ r sin2(knL)
sin(kny) , (2.27)

even n : fA
n (y) =

s

1

L+ r cos2(knL)
cos(kny) , (2.28)

where the wave numbers kn are determined by

cot(knL) = rkn for odd n, (2.29)

tan(knL) = �rkn for even n ,

and the corresponding KK masses are

m�n = kn . (2.30)

The wave functions satisfy the orthogonality relation

Z L

�L
dyfA

mfA
n [1 + r (�(y + L) + �(y � L))] = �mn. (2.31)

As expected, the masses and wave functions of KK scalars and gauge bosons are identical

to the masses and Z
2

-even fermion wave function solutions in the limit µ ! 0 (up to EWSB

e↵ects).

We close our discussion on the KK decomposition with an illustration of the dependence

of the KK masses on the fermion bulk mass and the boundary parameter shown in Fig.1.

These masses directly follow from Eqs. (2.20-2.21). In the left panel, we plot masses of the

first and second KK fermions, mf
1

and mf
2

, as a function of the dimensionless ratio r/L

for di↵erent values of the dimensionless parameter µL. For µL = 0, these masses coincide

with the first and second gauge KK mode masses m�
1

and m�
2

. As can be seen, all KK

masses decrease with increasing boundary parameter, while the bulk mass µ e↵ects the

first and second KK modes in opposite ways. While the first KK mode mass is increased

for negative µ, the second KK mode mass is decreased in this case – at least for su�ciently

large r/L. This non-trivial behavior is a consequence of the di↵erent mass quantization

conditions Eq. (2.20) for even- and odd-numbered KK modes and can be seen in more

detail in the right panel of Fig. 1, where we plot contours of constant mf
1

and mf
2

in

the r/L vs. µL parameter space. For illustration, we chose a compactification radius

R�1 ⌘ 2L/⇡ = 500GeV in both figures, but the masses for other compactification radii

can easily be deduced, because, as can be seen from Eq. (2.20), the product mfnL can

be expressed as a function of the dimensionless parameters r/L and µL, only. In some of

2

For generic choices of the boundary parameters, the KK decomposition in the electroweak sector is

more involved. For a detailed discussion and the general solutions, we refer to Ref. [21].

– 8 –

ogously one finds

µ
5

= µH , (2.34)

�
5

= �H

⇣

2L
⇣

1 +
r

L

⌘⌘

, (2.35)

�U,D,E
5

= �U,D,E

r

2L
⇣

1 +
r

L

⌘

. (2.36)

These simple, analytic results hold for our simplifying choice of universal bulk masses and

boundary parameters. For more general choice, the matching can be performed via the

same procedure, but as the r parameters in the orthogonality relations Eqs.(2.23) and (2.31)

for di↵erent fields do not coincide, the matching can in general only be performed numer-

ically (see Ref. [21] for an example of non-universal boundary terms in the electroweak

sector).

With the 5D parameters determined, the masses and couplings of all KK modes are

fixed. Beyond the dominant contribution in Eq. (2.21) and Eq. (2.30) to the KK mode

masses, electroweak symmetry breaking yields an additional contribution to the electroweak

gauge boson and fermion KK mode masses. For KK gauge bosons, the relevant term arising

from the 5D action in Eq. (2.2) reads

Seff �
Z

d4x

(

X

m,n

✓

�(g5Y )
2v2

5

8
B(m)

µ B(n)µ � g5Y g
5

wv
2

5

4
W 3(m)

µ B(n)µ � (g5w)
2v2

5

8
W 3(m)

µ W 3(n)µ

�(g5w)
2v2

5

8
W+(m)

µ W�(n)µ

◆

⇥
Z L

�L
dyfA

mfA
n [1 + r (�(y + L) + �(y � L))]

�

=

Z

d4x

(

X

n

✓

�m2

Z

2
Z(n)
µ Z(n)µ �m2

WW+(n)
µ W�(n)µ

◆

)

, (2.37)

where in the last step, we used the orthogonality relation Eq. (2.31), and diagonalized the

mass matrix in the neutral sector, which yields the mass eigenstates
 

A(n)

Z(n)

!

=

 

cos ✓W sin ✓W
� sin ✓W cos ✓W

! 

B(n)

W 3(n)

!

, (2.38)

where ✓W is the standard model Weinberg angle. Note that inclusion of radiative correction

reduces the Weinberg angle for KK states [22]. Together with the mass contributions from

the KK decomposition, the full masses of the gauge boson KK modes are given by

mAn =
q

k2n +m2

A
0

, (2.39)

where here, A denotes the gluon, photon, Z-, and W -boson, and mA
0

is the mass of the

respective standard model particle. Similarly to the gauge sector, the Yukawa interactions

yield additional mass contributions to the KK fermions beyond mfn from Eq. (2.21). The

resulting fermion KK masses are given by

m
 n =

q

m2

fn
+m2

 

, (2.40)
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NMUED: mass spectrum

Figure 1. Masses of KK vectors and KK fermions for R�1 = 500GeV .

where we used m2

n = �k2n + µ2

 

(identical to split UED). NOTE: Here in every case, I

only used one of the EOM to determine the conditions. The other EOM is satisfied IFF

m2

n = �k2n + µ2

 

AND m2 � 0. Tachyonic solutions are excluded by the first order EOM

(as opposed to the case for scalars / gauge bosons, where they are excluded due to consis-

tency with boundary conditions). This in particular implies that the above quantization

conditions only lead to valid solutions if |kn|  |µ|.

5 Summary: Set up for PHENO

5.1 Spectrum

m2

Vn
= f(R�1, rB) = k2n +m2

V0
(5.1)

! with mass from SSB

(

cot knL = rBkn , for odd n

tan knL = �rBkn , for even n
(5.2)

m2

Hn
= h(R�1, rV ) = k2n +m2

H0
(5.3)

! with Tachyonic mass for SSB

(

cot knL = rBkn , for odd n

tan knL = �rBkn , for even n
(5.4)

mfn = g(R�1, µ
 

, rF ) =
q

µ2

 

+ k2n (5.5)

! We are only interested in ’heavy’ solutions

(

kn cos(knL) = (rFm2

n + µ
 

) sin(knL) , for odd n

rFkn cos(knL) = �(1 + rFµ ) sin(knL) , for even n
(5.6)

where n = 1, 2, 3, · · · and L = ⇡R
2

. We assume the universal parameter, rB(rF ), for

‘bosonic’ (‘sermonic’) boundary terms, respectively.
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NMUED: couplings
where m

 

denotes the respective standard model quark and lepton masses.3

The couplings of Kaluza-Klein mode particles are determined from overlap integrals

of the corresponding wave functions. KK parity guarantees the absence of any KK parity

violating interactions. Furthermore, the orthogonality relations guarantee that several

couplings are absent (for example KK number violating couplings of fermions to a zero

mode gauge boson) or equal to the analogous standard model couplings (for example the

coupling between a zero mode gauge boson and two n-mode fermions or the coupling

between two Higgs zero modes and two n-mode gauge bosons).

Other couplings are modified, compared to minimal UED. The KK number preserving

couplings

gA
110

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
1

f L
1

f L
0

⌘ gAF
110

, (2.41)

between a zero mode fermion and a one-mode fermion and gauge boson play the dominant

role in dark matter annihilation as well as for the production of KK particle pairs and

their cascade decays into the LKP at LHC. For MUED (at tree level), these couplings are

equal to the corresponding standard model couplings. As can be seen in the left panel of

Fig. 2, which shows the ratio gA
110

/gA as a function of µL and r/L, the couplings remain

equal to the standard model value if no fermion bulk mass term is present (and under

the assumption of equal fermion and gauge boundary kinetic terms). This directly follows

from the orthogonality relations Eq. (2.31) and the fact that for µ = 0, the wave functions

of the KK-fermions and gauge bosons coincide. For general µ, however, we observe O(1)

deviations from the standard model couplings. In the usually discussed MUED model,

deviations from the standard model couplings are one-loop suppressed.

The KK number conserving couplings

gA
220

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
2

f L
0

⌘ gAF
220

, (2.42)

between a 2-mode gauge boson and fermion and a zero mode fermion, and

gA
211

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
1

f L
1

⌘ gAF
211

, (2.43)

between a two 1-mode fermions and a 2-mode gauge boson are also shown in Fig. 2. Both

contribute potential decay channels of the 2-mode gauge boson.

Apart from KK number conserving couplings, the KK number violating couplings

gA
200

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
0

f L
0

⌘ gAF
200

, (2.44)

between two zero mode fermions and a level-2 KK mode gauge boson play an important role

for collider phenomenology. Via these couplings, 2-mode gauge bosons can be produced as

an s-channel resonance, which implies Z 0-, W 0- or coloron-like signatures. In MUED, these

3

The details about the Yukawa contribution to the KK fermion masses and the relation between the

gauge- and the mass eigenbasis for KK quarks and leptons can be found in Appendix D.
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NMUED: couplings

Figure 2. Modified KK couplings: V1f1f0 (top-left), V2f2f0 (top-right), V2f1f1 (bottom-left), and
V2f0f0 (bottom-right).

couplings are only induced at one-loop level and therefore small [22], but still potentially

observable at LHC when upgraded to 14TeV [26]. As can be seen in the right panel of

Fig. 2, for our generalized UED setup, the coupling is absent only for µ = 0 – again due

to coinciding fermion and gauge boson wave functions and the orthogonality relations. For

generic µ, gA
200

is of the order of the corresponding standard model coupling. Therefore,

resonance searches are amongst the most sensitive tests of generalized UED models. We

find that dependence on the brane parameter r is weak in F
110

and F
200

and we expect

that they may be less constrained by experiments. On the other hand, variation of F
220

and F
211

along the r direction is more dramatic.

3 Constraints on Generalized UED Models

In this section, we consider various constraints on the generalized UED model in the pres-

ence of bulk masses and brane localized terms.
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Two Universal Extra Dimensions
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Figure 1: Chiral square compactification (left) and level-1 KK function f (1)
0 (x4, x5) for standard

model fields (right).

ral, and therefore may represent the observed quarks and leptons. Furthermore, this ‘chiral

square’ is invariant under rotations by π about its center. The ensuing Z2 symmetry, known

as KK parity, implies that the lightest KK-odd particle is stable.

Equality of the Lagrangian densities on adjacent sides of the square is achieved by enforc-

ing that bulk fields and their first derivatives vary smoothly across the boundary. Applying

these boundary conditions to solve the 6D equations of motion for these fields, by separation

of variables, we find that the dependence on x4 and x5 can be expressed in terms of one

of four complete and orthonormal sets of functions f (j,k)
n with n = 0, 1, 2, 3, where the KK

numbers (j, k) are integers and j ≥ 1, k ≥ 0 or j = k = 0. All (j, k) modes have tree-level

mass
√

j2 + k2/R before electroweak symmetry breaking.

2.1 Interactions of the (1,0) modes

We are primarily interested in the phenomenology of the (1, 0) modes here. We loosely refer

to these as ‘level-1’ modes because they are the lightest nonzero KK modes. For notational

brevity we will label them using the superscript (1).

The level-1 KK modes belonging to a tower that includes a zero mode has a KK function

f (1)
0 (x4, x5) = cos

(x4

R

)

+ cos
(x5

R

)

, (2.1)

which is plotted in Figure 1. This is the case for the KK modes of all spin-1 fields and

fermions of the same chirality as the observed quarks and leptons, as well as the Higgs doublet.

The spinless adjoint field, A(1)
H , which is the uneaten combination of the extra-dimensional

polarizations of the 6D gauge field, is associated with a KK function which is independent of

x4,

f (1)
H = −

1

2

[

f (1)
1 (x4, x5) − f (1)

3 (x4, x5)
]

= − sin
x5

R
, (2.2)
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boson MR fermion MR

G(1)
µ 1.392 Q(1)3

+ 1.265 + 1
2 (mtR)2

W (1)
µ 1.063 + 1

2(MW R)2 T (1)
− 1.252 + 1

2 (mtR)2

G(1)
H 1.0 Q(1)

+ 1.247

B(1)
µ 0.974 U (1)

− 1.216

W (1)
H 0.921 + 1

2(mW R)2 D(1)
− 1.211

B(1)
H 0.855 L(1)

+ 1.041

E(1)
− 1.015

400.

450.

500.

550.

600.

650.

700.

M
[G

eV
]

G(1)
µ

W (1)
µ

B(1)
µ

G(1)
H

W (1)
H

B(1)
H

Q3(1)
+

Q(1)
+

D(1)
−

T (1)
−

U (1)
−

L(1)
+

E(1)
−

1/R = 500 GeV

Table 1: Masses of the (1,0) particles in 1/R units (left). The (1,0) Higgs particles are not included
here because their masses are quadratically sensitive to the cutoff scale. The right-hand panel shows
the spectrum for 1/R = 0.5 TeV.

while only the spinless adjoints in the electroweak sector have mass corrections:

δM
G

(1)
H

= 0

δM
W

(1)
H

= −
51

8
g2 l0

R
+

m2
W R

2
,

δM
B

(1)
H

= −
307

8
g′2

l0
R

. (2.10)

The above mass shifts include negative contributions from fermions in loops, allowing for

overall negative corrections to masses. This is especially important when there are no self-

interactions to compete with the fermion interactions, as is the case with for the hypercharge

bosons.

The masses of the (1,0) particles are given in Table 1 in units of 1/R. The mass shifts

are evaluated there for gauge couplings gs = 1.16, g = 0.65 and g′ = 0.36, which are the

values obtained using the standard model one-loop running up to the scale 1/R = 500 GeV,

We will use the masses from Table 1 throughout the paper, ignoring further running of the

gauge couplings above 500 GeV (note that the standard model running of the gauge couplings

between 500 GeV and 1 TeV results in only a 3% change in gs and negligible changes in g and

g′; however, above ∼ 1/R the running is accelerated by the presence of the level-1 modes).

The KK modes of the Higgs doublet have mass-squared shifts which are quadratically

sensitive to the cutoff scale Λ [12]. Hence, the masses of the (1,0) Higgs scalars may be treated

– 6 –
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3

electroweak interactions are a few percent. We find that
the corrections to the masses are such that mgn

> mQn
>

mqn
> mWn

∼ mZn
> mLn

> m!n
> mγn

. The light-
est KK particle γ1, is a mixture of the first KK mode
B1 of the U(1)Y gauge boson B and the first KK mode
W 0

1 of the SU(2)W W 3 gauge boson. (The possibility of
the first level KK graviton being the LKP is irrelevant
for collider phenomenology, since the decay lifetime of γ1

to G1 would be of cosmological scales.) We will usually
denote this state by γ1. However, note that the corre-
sponding “Weinberg” angle θ1 is much smaller than the
Weinberg angle θW of the Standard Model [10], so that
the γ1 LKP is mostly B1 and Z1 is mostly W 0

1 . The mass
splittings among the level 1 KK modes are large enough
for the prompt decay of a heavier level 1 KK mode to a
lighter level 1 KK mode. But since the spectrum is still
quite degenerate, the ordinary SM particles emitted from
these decays will be soft, posing a challenge for collider
searches.

The terms localized at the orbifold fixed points also
violate the KK number by even units. However, assum-
ing that no explicit KK-parity violating effects are put
in by hand, KK parity remains an exact symmetry. The
boundary terms allow higher (n > 1) KK modes to decay
to lower KK modes, and even level states can be singly
produced (with smaller cross sections because the bound-
ary couplings are volume suppressed). Thus KK number
violating boundary terms are important for higher KK
mode searches as we will discuss in Section IV.

III. FIRST KK LEVEL

Once the radiative corrections are included, the KK
mass degeneracy at each level is lifted and the KK modes
decay promptly. The collider phenomenology of the first
KK level is therefore very similar to a supersymmetric
scenario in which the superpartners are relatively close
in mass - all squeezed within a mass window of 100-200
GeV (depending on the exact value of R). Each level
1 KK particle has an exact analogue in supersymmetry:
B1 ↔ bino, g1 ↔ gluino, Q1(q1) ↔ left-handed (right-
handed) squark, etc. The decay cascades of the level 1
KK modes will terminate in the γ1 LKP (Fig. 3). Just
like the neutralino LSP is stable in R-parity conserving
supersymmetry, the γ1 LKP in MUEDs is stable due to
KK parity conservation and its production at colliders
results in generic missing energy signals.

It is known that supersymmetry with a stable neu-
tralino LSP is difficult to discover at hadron colliders
if the superpartner spectrum is degenerate. Hence the
discovery of level 1 KK modes in MUEDs at first sight
appears problematic as well – the decay products result-
ing from transitions between level 1 KK states may be
too soft for reliable experimental observation at hadron
colliders. This issue is the subject of this Section.

Before we address the possible level 1 discovery chan-
nels in some detail, we need to determine the allowed

FIG. 3: Qualitative sketch of the level 1 KK spectroscopy de-
picting the dominant (solid) and rare (dotted) transitions and
the resulting decay product.

decays at level 1 and estimate their branching fractions.
For any given set of input parameters (3) the mass spec-
trum and couplings of the KK modes in MUEDs are
exactly calculable [10]. Hence one obtains very robust
predictions for the main branching ratios of interest for
phenomenology.

KK gluon.— The heaviest KK particle at level 1 is the
KK gluon g1. Its two-body decays to KK quarks Q1 and
q1 are always open and have similar branching fractions:
B(g1 → Q1Q0) $ B(g1 → q1q0) $ 0.5.

KK quarks.— The case of SU(2)-singlet quarks (q1)
is very simple – they can only decay to the hyper-
charge gauge boson B1, hence their branchings to Z1

are suppressed by the level 1 Weinberg angle θ1 % θW :
B(q1 → Z1q0) $ sin2 θ1 ∼ 10−2 − 10−3 while B(q1 →
γ1q0) $ cos2 θ1 ∼ 1. Thus q1 production yields jets
plus missing energy, the exception being t1 → W+

1 b0 and
t1 → H+

1 b0 (the latter will be in fact the dominant source
of H+

1 production at hadron colliders).
SU(2)-doublet quarks (Q1) can decay to W±

1 , Z1 or
γ1. In the limit sin θ1 % 1 SU(2)W -symmetry implies

B(Q1 → W±
1 Q′

0) $ 2B(Q1 → Z1Q0) (4)

and furthermore for massless Q0 we have

B(Q1 → Z1Q0)

B(Q1 → γ1Q0)
$

g2
2 T 2

3Q (m2
Q1

− m2
Z1

)

g2
1 Y 2

Q (m2
Q1

− m2
γ1

)
, (5)

where g2 (g1) is the SU(2)W (U(1)Y ) gauge coupling, and
T3 and Y stand for weak isospin and hypercharge, corre-
spondingly. We see that the Q1 decays to SU(2) gauge
bosons, although suppressed by phase space, are numeri-
cally enhanced by the ratio of the couplings and quantum
numbers. With typical values for the mass corrections
from Fig. 2, eqs. (4) and (5) yield B(Q1 → W±

1 Q′
0) ∼

65%, B(Q1 → Z1Q0) ∼ 33% and B(Q1 → γ1Q0) ∼ 2%.



Figure 4: ISR-corrected production cross sections of (a) (1,0) KK vector bosons and (b) (1,0)
spinless adjoints, as a function of R−1.

Figure 5: Schematic diagram for the decays of (1,0) KK particles. The typical particle spectrum
and decay patterns of the 5DSM are shown in red, while the 6DSM encompasses the particles and
decay modes depicted both in red and blue.

pairs plus B(1)
H .

In figure 5 we summarize the decay patterns of (1,0) particles of the 6DSM in a pictorial

way in comparison with the 5DSM [27]. There are two separate groups of particles: one

(left in red) arising in both 5DSM and 6DSM, and the other (right in blue) that exists

only in the 6DSM. These additional states are all spinless adjoints that are lighter than

the B(1)
µ . One important consequence of this is that (1,0) fermions (circled) decay into

these spinless adjoints with non-negligible branching fractions, thus completely changing

the collider phenomenology.
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• Spinless (1,1) decays to top pair

Dobrescu, Kong, Mahbubani, 2007



Decay of KK photon

is suppressed due to the smaller hypercharge and larger mass of the (1,0) fermion, which

is L(1)
+ in this case. For the same reasons, the B(1)

µ decay into a B(1)
H and qq pairs has a

small decay width. B(1)
µ decays to W (1)

H plus fermion pairs are highly suppressed due to the

dependence on the 7th power of the small difference between initial and final (1,0) masses

[see Eqs. (C.12) and (C.18) in Appendix C].

Besides these tree-level 3-body decays, B(1)
µ also has 2-body decays via the dimension-5

operator shown in Eq. (2.11), which is induced at one loop (see Appendix B). The decay

width is given by

Γ
(

B(1)
µ → B(1)

H γ
)

=
α3

96π2 cos4θw

1

M
B

(1)
µ



1 −
M2

B
(1)
H

M2
B

(1)
µ





(

∑

F

σF

(YF

2

)2
QF EF

)2

, (3.5)

where the sum over F includes all quarks and leptons, σF is +1 for SU(2)W doublets and −1

for SU(2)W singlets, QF is the electric charge, YF is the hypercharge normalized to be twice

the electric charge for SU(2)W singlets, and EF is given in Eq. (B.10) and depends only on the

masses of B(1)
H , B(1)

ν , and of the (1,0) and (1,1) fermions. Using the values for the standard

model gauge couplings given at the end of section 2.2, i.e., α = 1/127 and sin2θw = 0.235, we

find the following branching fractions for B(1)
µ :

Br
(

B(1)
µ → B(1)

H γ
)

≡ bBγ ≈ 34.0% ,

Br
(

B(1)
µ → B(1)

H e+e−
)

≡ bBe ≈ 21.3% . (3.6)

The branching fractions into e+e−B(1)
H , µ+µ−B(1)

H and τ+τ−B(1)
H are equal. The fact that the

tree-level 3-body decay and the one-loop 2-body decay have comparable branching fractions

in the case of B(1)
µ is an accidental consequence of the mass spectrum given in Table 1. The

B(1)
µ decays into B(1)

H plus neutrinos or quarks have small branching fractions (1.4% and 0.6%,

respectively) which may be safely ignored in what follows.

The (1,0) leptons can decay into (1,0) modes of the electroweak gauge bosons or spinless

adjoints, and a standard model lepton. The decay widths of the SU(2)W -doublet (1,0) leptons,

L(1)
+ ≡ (N (1)

+ , E(1)
+ ), to neutral (1,0) particles are given at tree level by:

Γ
(

L(1)
+ → W (1)3

H lL
)

=
α

32 sin2θw
ML(1)



1 −
M2

W
(1)
H

M2
L(1)





2

,

Γ
(

L(1)
+ → B(1)

µ lL
)

=
α

16 cos2θw
ML(1)



1 −
M2

B
(1)
µ

M2
L(1)





2 

1 +
M2

L(1)

2M2
B

(1)
µ



 ,

Γ
(

L(1)
+ → B(1)

H lL
)

=
α

32 cos2θw
ML(1)



1 −
M2

B
(1)
H

M2
L(1)





2

, (3.7)
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B(1)
ν

B(1)
H

Aµ

F (j′,k′)

F (j,k)

F (j,k)

!
p !

p − p′

!
p′

"l

Figure 15: Dimension-5 operator induced by fermion loops.

Here we have defined

dj,k;j′,k′

nn′ = (−1)nδk′,k

(

δj′,j−1 + (−1)n
′
δj′,j+1

)

+ (−1)nδj′,j

(

δk′,k+1 + (−1)n
′
δk′,k−1

)

+ in
′−nδj,1δk′,0δj′,k + in+2n′

δj′,1δk,0δk′,j , (B.2)

where rj,k are complex phases,

rj,k =
j + ik

√

j2 + k2
(B.3)

and YF is the hypercharge of the fermion, normalized to −1 for lepton doublets. In the case

of fermions with 6D chirality −, which contain right-handed zero modes, the same formulas

apply with the PL and PR chirality projection operators interchanged.

Dimension-5 operators coupling a (1,0) vector boson to a (1,0) spinless adjoint and a

standard-model gauge boson are induced at one loop by the diagram in Figure 15, with

fermion KK modes running in the loop. The contribution of a fermion F+ to the amplitude

for B(1)
ν → B(1)

H γµ is given by

M
(

B(1)
ν → B(1)

H γµ

)

F+

= −
1

4

(

g′
YF+

2

)2

eQF+ ε∗µ(p − p′) εν(p) Iµν(j,k;j′,k′)
F+

, (B.4)

where

Iµν(j,k;j′,k′)
F+

=

∫

d4l

(2π)4
Tr

mj,k;j′,k′

F [l/γµ + γµ(l/ + p/ − p′/)] (l/ + p/) − mj′,k′;j,k
F l/γµ(l/ + p/ − p′/)

(

l2 − M2
F (j,k)

) [

(l + p − p′)2 − M2
F (j,k)

] [

(l + p)2 − M2
F (j′,k′)

] γνγ5

(B.5)

and

mj,k;j′,k′

F = MF (j,k) Re
[

rjk

(

dj,k;j′,k′

00 dj′,k′;j,k
01 − dj′,k′;j,k

10 dj,k;j′,k′

01

)]

. (B.6)

After integrating over the loop momentum l, and summing over fermions, we find the ampli-

tude

M
(

B(1)
ν → B(1)

H γµ

)

= −
g′2e

8π2
εµναβ

ε∗µ(p − p′)εν(p)pαp′β
M2

B
(1)
ν

− M2
B

(1)
H

∑

F

σF

(

YF

2

)2

QF EF , (B.7)
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•

•

A2 A1

F

f

f̄

+

•

•
A2

f

A1

F

f̄

Figure 16: The diagrams for 3-body decay of (1,0) particles. A2 and A1 are heavy bosons of spin 0
or 1, F is a heavier fermion, and f is a much lighter fermion.

where σF = ±1 when F has 6D chirality ±, and

EF =
∑

j,k;j′,k′

mj,k;j′,k′

F Jj,k;j′,k′

F , (B.8)

with JF given by an integral over a Feynman parameter:

Jj,k;j′,k′

F =

∫ 1

0

dx

x
ln









1 +

x(1 − x)

(

M2
B

(1)
ν

− M2
B

(1)
H

)

(1 − x)M2
F (j,k) + xM2

F (j′,k′) − x(1 − x)M2
B

(1)
ν









. (B.9)

The mj,k;j′,k′
quantities vanish unless the set of KK numbers (j, k; j′, k′) is given by

(1,0;1,1), (1,1;1,0) or (1,0; 0,0). This is a consequence of the vectorlike nature of the fermion

higher KK modes. Therefore,

EF = MF (1,0)

(

2J1,0;0,0
F + J1,0;1,1

F

)

+
√

2MF (1,1)J
1,1;1,0
F . (B.10)

Note that EF depends only on the (1,0) masses and on the masses of the (0,0) and (1,1)

fermions. The mass corrections for (1,1) fermions,
{

Q3
+, T−, Q1,2

+ , U1,2
− ,D1,2,3

− , L+ and E−

}

,

are given by
√

2/R multiplied by the coefficients {1.33, 1.31, 1.31, 1.27, 1.26, 1.05, 1.02} respec-

tively [5], ignoring electroweak symmetry breaking effects. Note also that in the limit that

all the fermions at each KK level are degenerate, EF becomes independent of F and so can

be taken out of the sum in Eq. (B.7), which then vanishes identically by anomaly cancella-

tion. This completes the computation of the amplitude for B(1)
ν → B(1)

H γ, which determines

the coefficient of the dimension-5 operator shown in Eq. (2.11), and the decay width of B(1)
ν

shown in Eq. (3.5).

Appendix C: Tree-level 3-body decays of (1,0) bosons

In this Appendix we compute the width for 3-body decays of (1,0) bosons. Let us consider a

generic 3-body decay of a boson A2 of mass M2 into a boson A1 of mass M1 and a fermion-

antifermion pair f f̄ , via an off-shell fermion F , of mass MF > M2 > M1. There are two
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• 3 body decay

• 1-loop 2-body decay

as free parameters (determined by the underlying theory above Λ, which is not specified in

our framework). Furthermore, additional structures such as the Twin Higgs mechanism [15]

may be used to cancel the quadratic divergences in models with universal extra dimensions

[16], potentially affecting the (1,0) Higgs sector. We assume here that the (1,0) Higgs particles

are heavier than 1/R. In that case, the hadron collider phenomenology is mostly independent

of the exact (1,0) Higgs masses.

2.3 Loop-induced bosonic operators

In addition to lifting the degeneracy of the (1, 0) masses, loop corrections also contribute to the

following dimension-5 operators that are of particular interest for computing the branching

fractions of the (1, 0) bosons:

−
R

4

(

CBεµναβFµνB(1)
αβ B(1)

H + CGεµναβGµνB(1)
αβ G(1)

H

)

, (2.11)

where Fµν and Gµν are the field strengths of the photon and gluon, respectively, B(1)
αβ is the

field strength of the (1, 0) hypercharge vector boson B(1)
α , and B(1)

H is the U(1)Y spinless

adjoint. These operators account for the only significant 2-body decay channels open to the

level-1 KK modes G(1)
H and B(1)

µ . The analogous operator with the photon replaced by the Z

boson is less relevant because the corresponding decay width is phase-space suppressed. The

coefficients of the above dimension-5 operators are computed in Appendix B, with the result:

CB =
g′2e

8π2R

1

M2
B

(1)
ν

− M2
B

(1)
H

∑

F

σF

(YF

2

)2
QFEF , (2.12)

where σF = ±1 for a 6D fermion F of chirality ±, QF is the electric charge, YF is the

hypercharge normalized to be twice the electric charge for SU(2)W singlets and EF is a

function of the masses of B(1)
H , B(1)

ν , and of the (1,0) and (1,1) fermions given in Eq. (B.10).

CG is given by an analogous expression, but it is suppressed by the small mass difference

between the initial- and final-state (1, 0) bosons.

One might also naively expect higher-dimension operators of the form

Gµν∂µB(1)
H ∂νG(1)

H + Zµν∂
µB(1)

H ∂νW (1)3
H +

(

W+
µν∂

µB(1)
H ∂νW (1)−

H + H.c.
)

, (2.13)

to be generated, where W (1)
H is the level-1 SU(2)W spinless adjoint and Wµν and Zµν are

the standard model field strengths for the W and Z bosons. However, the first of these

terms is identically zero as can be seen after integrating by parts and using the gluon field

equation. By the same method one can see that the coefficients of the last two terms are

small, being proportional to (mW R)2, and furthermore the resulting decay widths for W (1)
H

are also phase-space suppressed.
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