Prospects for Detecting Dark Matter with CTA

Matthew Wood (SLAC) on behalf of the CTA Consortium

x10 fold sensitivity of current instrumentsx10 fold energy rangeProposed USimproved angular resolutionContribution

Estimated cost ~200 M€ (+100 M\$)

Low Energy (<100 GeV) LST 23 m (x4) Medium Energy (100 GeV – 10 TeV) MST 10-12 m (x25 + 36)

High Energy (> I0 TeV) SST 4-6 m (x30-50)

US Contribution

Enhancement of 36 additional Medium-Sized Telescopes (MSTs) utilizing Dual mirror (SC) design

Optics Schwarzschild-Couder (SC)

Aperture: 9.7 m Mirror Area: 50 m² Camera: 0.5 m² f/D: 0.58 Pixel Size: 0.067 deg FoV: 8 deg

Camera

~10k pixels Compact focal plane electronics Low cost per channel SiPM photosensors

Full-scale SC-MST prototype to be constructed at VERITAS site (2015 completion date)

Gamma-ray Shower Image (E = I TeV)

DC-MST (Single Mirror)

SC-MST (Dual Mirror)

CTA: Point-Source Sensitivity

Prod-1: See K. Bernlohr et al. 2012, arXiv:1210.3503 Hybrid-1: See T. Jogler et al. 2012, arXiv: 1211.3181

km

CTA:Angular Resolution

DM Targets for CTA

Dwarf Galaxies (dSphs)

- Small theoretical uncertainty for massive dwarfs (Draco, Ursa Minor, Sculptor)
- Need boost of at least 10-100 to reach models with relic cross section

Galactic Center Region

- Models with relic cross section could be detectable depending on astrophysical foregrounds
- Large uncertainty on DM distribution in inner galaxy (< 100 pc)

Galaxy Clusters

- Total annihilation flux comparable with dSphs if substructure is included
- Probably not competitive with dSphs given large angular extension
- MW Substructures (Fermi UnID Followup)

Dwarf Galaxies

- Choice of targets will be determined by CTA site
 - Southern Hemisphere: Sculptor, Fornax, Carina
 - Northern Hemisphere: Draco, Ursa Minor, Coma Berenices, Segue I
- Nearly all known dSphs will be spatially extended given CTA angular resolution (~0.1 deg at 100 GeV)
- Astrophysical Modeling
 - Assume NFW DM density profile
 - Fit for profile parameters using Jean's analysis of stellar line of sight velocities (Strigari et al. 2008, Martinez et al. 2011)
 - Theoretical uncertainties on J factor estimated with Bayesian MCMC analysis

Dwarf Galaxy Limits (bb)

Coma Berenices

Sculptor

3/7/13

Galactic Center

- Use an annular search region around the GC (R = 0.3 – 1.0 deg) to minimize astrophysical foregrounds (H.E.S.S.-style analysis; see Abramowski et al. 2011)
- MW Halo Models
 - NFW, Isothermal, and Einasto profiles normalized to 0.4 GeV cm⁻³ at the solar radius
 - NFW and Einasto profiles with 68% uncertainties taken from Catena and Ullio 2010 (recent meta-analysis of MW kinematic data)

MW Density Profile

GC Limits

bb Channel

tau Channel

500 hour exposure and 3 sigma detection threshold

pMSSM Model Scan

- Study of detectability of models in the Phenomenological MSSM (pMSSM; Berger et al. 2009) -- more flexible framework for studying MSSM models than cMSSM or mSUGRA
- Model set generated with numerical scans over the 19- dimensional parameter space of the pMSSM parameters (see Cotta et al. 2011, Cahill-Rowley et al. 2012)
- Model Constraints
 - CMS/ATLAS Searches
 - Direct Detection WIMP-Nucleon Cross Section Limits (XENON100)
 - Upper bound on WIMP Relic Density (WMAP7): $\Omega_{DM}h^2 < 0.123$
- CTA sensitivity to each model calculated for 500 hr GC observation (NFW profile) and 95% C.L. upper limit

pMSSM Model Exclusion

Complementarity with Direct Detection and Accelerators

Models Excluded by LHC

Models Excluded by CTA

More details on pMSSM complementarity studies in talks by A. Ismail (Thurs.), R. Cotta (Thurs.), M. Cahill-Rowley (Thurs.), T. Rizzo (Fri.), R. Cotta (Fri.)

Conclusions

- CTA has good prospects for reaching WIMP models with thermal relic cross section and mass > 300 GeV
- Dwarf Galaxies: Need boosts of 10-100 to reach interesting parameter space
- Galactic Center: Models with thermal relic cross section should be detectable assuming an extrapolation of the MW DM density profile consistent with CDM simulations
 - Large fraction of pMSSM models satisfying current experimental constraints are detectable with CTA – particularly at high LSP masses (~I TeV)
 - CTA will be highly complementary to LHC and direct detection searches in covering the full parameter space of WIMP DM models

Sculptor (bb)

Sculptor (tau)

Dwarf Galaxies: Astrophysical Modeling

Coma Berenices

Sculptor

J Factor (Total Annihilation Flux)

Log-Likelihood Intensity

M = 316 GeV

M = I TeV

Gamma-ray Energy

SLAC Cosmic Fronter Workshop

Gamma (E = I TeV)

Proton (E = 3.5 TeV)

GC Search Region

Analysis Methodology

- 2D likelihood analysis
 - Reconstructed Energy (5 bins per decade)
 - Angular Offset
- Signal Model
 - Spatial profile of DM annihilation signal convolved with energy-dependent PSF
 - DM gamma-ray spectra taken from DarkSUSY (Gondolo et al. 2004)
- Background Model
 - Residual hadronic background (protons + electrons)
 - Assume flat distribution with normalization determined by control region with five times solid angle of signal region

Source Offset

pMSSM Model Boosts

Constraints $\Omega_{DM}h^2 > 0.1$ XENON100 (2011)

Boost = (Detectable Signal)/ (Model Signal)

24

WIMP Mass [GeV]

Boost

pMSSM Model Boosts

Constraints $\Omega_{DM}h^2 > 0.1$ XENON100 (2011) CMS+ATLAS (2012)

Boost = (Detectable Signal)/ (Model Signal)

WIMP Mass [GeV]

Boost