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Vanilla* inflation predicts:

•Flat universe (ΩK=1) with nearly scale-invariant 
fluctuation spectrum (ns ≈ 1−6ε+2η)

•Stochastic background of gravity waves
•Nearly gaussian density fluctuations
•Homogeneous and isotropic universe

*Single scalar field, canonical kinetic term, in Bunch-Davies vacuum, always slow-rolls, in Einstein GR 

Any departures (as well as measurements of ns) 
shed direct light on inflation



LSS: an under-utilized 
probe of the early universe

CMB LSS

dimension 2D 3D

# modes ∝lmax
2 ∝kmax

3

systematics &
selection func.

relatively 
clean

relatively 
messy

temporal evol. no yes

slice vs. color, 
M, bias... no yes



LSS and
inflationary cosmological parameters



Spatial Curvature:
LSS helps break parameter degeneracies

More complicated if w ≠ −1, or if 
w(a) allowed, but general picture 

still holds:
3
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FIG. 3: Joint contours on Ωk and ns for the three data sets
and priors: BASIC + Prior I (−15 ≤ wi ≤ 1), BASIC +
HST + Prior I, BASIC + Prior II (−1 ≤ wi ≤ 1). Here
BASIC =WMAP7 + SNIa + BBN. Even allowing for general
dark energy models and conservative data choice constrains
the curvature to satisfy Ωk = 0.002 ± 0.009, but all cases
are compatible with ns = 1. One might suspect that the
strong constraining power of H0 implies that the constraints
on Ωk are primarily coming from the supernovae data at low
redshifts. In fact H0 is important primarily because it controls
the Hubble scale which sets the overall scale for dL(z).

two classes of dark energy priors on the wi. Prior I

was flat over the range wi ∈ [−15, 1] [39] while Prior II

was flat over [−1, 1], mimicking quintessence-type mod-
els [14]. We assume adiabatic initial conditions and used
k0 = 0.002 Mpc−1 as the pivot scale for scalar and tensor
power spectra normalization [31]. The parameter set we
used in our MCMC chains, which includes the 9 stan-
dard cosmological parameters in addition to our 20 wi,
is: P = (Ωbh2,Ωch2, [Θ or H0], τ,Ωk, ns, As, r, Asz , wi).

We used two minimal sets of data that are chosen to
be maximally independent of assumptions about curva-
ture and dark energy. The BASIC data package con-
sists of the CMB temperature and polarization data from
WMAP7 [22], the Union2 supernovae [23] and the Big
Bang Nucleosynthesis (BBN) prior Ωbh2 = 0.020± 0.002
(2σ) [24]. We do not include small-scale CMB data since
getting the distance to the surface of last scattering right
ensures that the # > 1000 data are well-fit and hence
provide no additional constraining power.

The BASIC + HST data package adds the Hubble
Space Telescope constraint [25] on the Hubble constant,
H0 = 74.2 ± 3.7 kms−1Mpc−1 [40]. We do not include
BAO and growth information to be conservative, since
the assumption of flatness and ΛCDM comes in subtly,
for example in the N-body simulations used to calibrate
results. As we now show, we do not need extra data to
rule out significant curvature even in the case of the most
general w(z).

Results – In Fig. (2) we show a random selection of 50
splined w(z) curves from our chains with BASIC + HST
data. Here darker and thicker curves have higher likeli-
hood. We also plot the splined 1-σ limits (shown by the
thick white curve bounding the shaded region) on w(z)
showing that current data give very little constraints on
w(z) for z > 1, essentially being determined by the prior.
Three relevant CMB spectra are shown in Fig. (1). The
global best-fit with Prior I and the BASIC data package
where Ωk = −0.1 is shown as the solid blue curve. The
best fit with fixed Ωk = 0.15 and H0 = 71 kms−1Mpc−1

(brown dashed curve) shows why open models are ruled
out by the Integrated Sachs Wolfe (ISW) effect at # < 20.
This is not surprising since to match flat ΛCDM distances
typically requires very rapid w(z) evolution at low red-
shifts [14] with resulting large ISW effect [28–30]. The
C!’s of the model with fixed Ωk = 0.15, WMAP7 best-fit
parameters and the w(z) corresponding to Eq. (1) which
ensures that the distances are identical to the best-fitting
flat ΛCDM model at all redshifts is shown by the red dot-
ted line. Clearly the distance to the surface of last scat-
tering plays little direct role in constraining curvature in
general, unlike the case for ΛCDM. Our main finding is
that with the BASIC + HST data we recover a con-
straint on the curvature: Ωk = 0.002± 0.009, even with
effectively no limits on the wi (Prior I). The HST prior
on the Hubble constant is critical in removing the closed
branch of universes that are excellent fits to the BA-

SIC data package and have low H0. Indeed, without the
HST prior the Ωk posterior peaks around Ωk = −0.085.
Assuming quintessence-like dark energy (Prior II) also
removes the closed branch, irrespective of the HST con-
straint. The importance of allowing crossing of the phan-
tom divide, w(z) = −1, is a consequence of trying to
match distances, since Eq. (1) requires w → −∞ at some
redshift when Ωk < 0. These results are exemplified in
Fig. (3) and summarised in Table (I).

It is a subtle combination of effects, wide coverage and
multiple datasets, that gives good constraints on curva-
ture in the case of general dark energy dynamics. One
of the main reasons for this result is that while it is pos-
sible to match either the flat ΛCDM distances or ex-
pansion rate, H(z), in a curved cosmos, it is not pos-
sible to do both simultaneously over an extended red-
shift range: Ωk = 0 is the only solution to the equation
sin(

√
−Ωkχ)/

√
−Ωk = χ, where χ = H0

∫

dz′/H(z′) is
the usual flat ΛCDM comoving distance. Hence, simul-
taneous low-redshift measurements of both Type Ia su-
pernovae (SNIa) which constrain distances and the ISW
effect, which constrainsH(z), provide constraints on cur-
vature even in the absence of an H0 prior. Our results
are consistent with Fisher matrix projections [37].

In addition to our BASIC and BASIC + HST runs,
we also undertook runs with the CMB lensing results
from the Atacama Cosmology Telescope (ACT) measure-
ments [33] and the time-delay distance to the lens system
B1608+656 at z = 0.63 [34] as alternatives to the HST
prior. However these two additional datasets did not sig-

Okouma, Fantaye & Bassett 2012



Scalar spectral index:
LSS extends the lever arm in k

Tegmark & Zaldarriaga 1998

13

the QUIET Collaboration (2012) reports r < 2.8 (95% CL). A host of forthcoming experiments are targeting B-mode
measurements that have the potential to detect or limit tensor modes at significantly lower levels than can be achieved
with temperature data alone.
In Table 5, we report limits on r from the nine-year WMAP data, analyzed alone and jointly with external data;

the tightest constraint is
r < 0.13 (95% CL) WMAP+eCMB+BAO+H0.

This is e↵ectively at the limit one can reach without B-mode polarization measurements. The joint constraints on ns

and r are shown in Figure 7, along with selected model predictions derived from single-field inflation models. Taken
together, the current data strongly disfavor a pure Harrison-Zel’dovich (HZ) spectrum, even if tensor modes are allowed
in the model fits.

Fig. 7.— Two-dimensional marginalized constraints (68% and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar ratio, r, derived
with the nine-year WMAP in conjunction with: eCMB (green) and eCMB+BAO+H0 (red). The symbols and lines show predictions from
single-field inflation models whose potential is given by V (�) / �↵ (Linde 1983), with ↵ = 4 (solid), ↵ = 2 (long-dashed), and ↵ = 1
(short-dashed; McAllister et al. 2010). Also shown are those from the first inflation model, which is based on an R2 term in the gravitational
Lagrangian (dotted; Starobinsky 1980). Starobinsky’s model gives ns = 1� 2/N and r = 12/N2 where N is the number of e-folds between
the end of inflation and the epoch at which the scale k = 0.002 Mpc�1 left the horizon during inflation. These predictions are the same
as those of inflation models with a ⇠�2R term in the gravitational Lagrangian with a ��4 potential (Komatsu & Futamase 1999). See
Appendix A for details.

4.1.1. Running Spectral Index

Some inflation models predict a scale dependence or “running” in the (nearly) power-law spectrum of scalar pertur-
bations. This is conveniently parameterized by the logarithmic derivative of the spectral index, dns/d ln k, which gives
rise to a spectrum of the form (Kosowsky & Turner 1995)

�2
R(k) = �2

R(k0)

✓
k

k0

◆ns(k0)�1+ 1
2 ln(k/k0)dns/d ln k

. (9)

We do not detect a statistically significant deviation from a pure power-law spectrum with the nine-year WMAP data.
The allowed range of dns/d ln k is both closer to zero and has a smaller confidence range with the nine-year data,
dns/d ln k = �0.019± 0.025. However, with the inclusion of the high-l CMB data, the full CMB data prefer a slightly
more negative value, with a smaller uncertainty, dns/d ln k = �0.022+0.012

�0.011. While not significant, this result might
indicate a trend as the l-range of the data expand. The inclusion of BAO and H0 data does not a↵ect these results.
If we allow both tensors and running as additional primordial degrees of freedom, the data prefer a slight negative

running, but still at less than 3σ significance, and only with the inclusion of the high-l CMB data. Complete results
are given in Table 5.

4.2. Isocurvature Modes
In addition to adiabatic fluctuations, where all species fluctuate in phase and therefore produce curvature fluctuations,

it is possible to have isocurvature perturbations: an over-density in one species compensates for an under-density in
another, producing no net curvature. These entropy, or isocurvature perturbations have a measurable e↵ect on the
CMB by shifting the acoustic peaks in the power spectrum. For cold dark matter and photons, we define the entropy
perturbation field

Sc,� ⌘ δρc
ρc

� 3δρ�
4ρ�

(10)

Hinshaw et al (WMAP9) 2013



LSS and
primordial non-Gaussianity



10 years of Primordial non-Gaussianity
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LSS: over/under accentuation
of density peaks

Dalal, Doré, Huterer & Shirokov 2008
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Effects of primordial non-Gaussianity of local type



fNL = 8 +/- 30 (68%, QSO)      

fNL = 23 +/- 23 (68%, all)      

Slosar et al. 2008

b(k) = bG + fNL(bG � 1) �c
3⌦MH2

0

T (k)D(a)

1

k2

Dalal et al. 2008



More generic NG: fNL(k) forecasts

Becker, Huterer & Kadota 2012, Shandera, Dalal & Huterer 2012

fNL(k) = f⇤
NL
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Halos of mass M probe 
NG on scale k∼M−1/3

CMB and LSS are very complementary

In general, LSS can probe:

ΔbNG ∝ {
•k−2 (local)
•k−1 (folded)
•k0 (equilateral)
•k−α (generic); 0≤α≤3



LSS and
statistical isotropy + homogeneity



Initial conditions in the universe

Statistical Isotropy:

Gaussianity:

�T

T
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Testing homogeneity and 
statistical isotropy with the LSS

2MASS 2MRS

Figure 2: Constraints on the dipole amplitude A, marginalized over direction, from current surveys [Gibelyou

and Huterer, 2012]. The theoretical predictions, based on Eq. (1), are surrounded by yellow shaded regions

that show cosmic variance. The right column panels show 2MRS, while the left panels show 2MASS (which

is a bit deeper than 2MRS, and hence shows a smaller local structure dipole amplitude). The top-row panels

show A vs. the maximum redshift of the survey, while the bottom rows shows the amplitude vs. the Galactic

cut. The cut is symmetric around the Galactic plane, and given in degrees.

of the wide-area spectroscopic surveys. Ho et al. [2008] perfected this method, while Goto et al. [2012]
matched the WISE sources from 13,000 sq. deg. of the sky to redshifts from the Galaxies and Mass
Assembly (GAMA) survey. The mean redshift of more than one million WISE sources matched by
Goto et al. [2012] was z

mean

' 0.2. We would have at our disposal a variety of spectroscopic surveys
beyond GAMA; notably, BOSS (⇠ 106 galaxies over ⇠ 10, 000 sq. deg. with z ⇠ 0.5). By far the
best spectroscopic survey in the near term will be DESpec – spectroscopic extension of the Dark
Energy Survey planned for the near future – with O(106) spectra over up to 15,000 sq. deg. of the
sky and redshift distribution up to at least4 z ⇠ 1. All told, we are essentially guaranteed to probe
WISE sources with mean redshift of at least z ⇠ 0.3–0.5 5. Looking at the theoretical prediction
of the dipole in Fig. 1, we conclude that we will very likely be able to go deep enough with selected

WISE sources to reach low enough signals to probe the kinematic dipole, and make the most stringent
determination of the large-scale structure dipole using to date.

The most important observational systematics involve limiting the contribution of stars and ex-
tended Galactic objects to the sample of infrared sources. There are several handles to achieve this:

• Avoiding the Galactic plane (say, b
cut

' (8� 20) deg).

• Using a color cut, since extended Galactic objects occupy known regions in color space

• Avoiding regions (small cells on the sky) that contain numerous flagged sources (as halos,
ghosts, spikes).

4Utilizing a variety of spectroscopic features, such as OII, H↵, H� and OIII.
5Though not over an entire sky, but a↵ects only the variance (error bars), and not the mean expected signal, in

Fig. 1.

8

Gibelyou & Huterer (2012); method from Hirata (2009)

N(n̂) = N̄(n̂) [1 +A (d̂ · n̂)]

Example I: dipole modulations in number counts:



Testing homogeneity and 
statistical isotropy with the LSS

Wigglez (Scrimgeour et al, 2012)

Example II: testing homogeneity with galaxies:

8 M. I. Scrimgeour et al.

Figure 4. Illustration of our method of defining the homo-
geneity scale, RH , shown here for the D2(r) measurement. We
first fit a model-independent polynomial (red curve) to the data
(black data points). We then find where this intercepts a chosen
value close to homogenenity, e.g. 1 per cent from homogeneity,
D2 = 2.97 (dotted grey line). This gives us RH . We find the
uncertainty in RH from the root mean square variance of 100
lognormal realisations (pink curves).

certainties on RH do), and is less susceptible to noise in the
data, making this a preferable method that allows compar-
isons between different surveys. It also allows easy compar-
ison between the data and a given model, e.g. ΛCDM, and
we can check that the data converges to N = 1 or D2 = 3
as expected for a homogeneous distribution, by choosing a
range of thresholds approaching homogeneity (see Fig. 9).

We can also take this further and construct a likelihood
distribution for the homogeneity scale, as described in Sec-
tion 5.3.

Although our choice of D2 threshold is arbitrary, by
choosing the same threshold for different surveys we obtain
an RH value that can be meaningfully compared, and that
can be easily compared to a theoretical model. Our choice
of threshold may be limited by the amount of noise in the
data, however. For instance, we can measure an intercept 1
per cent away from homogeneity for the WiggleZ data, but
cannot measure 0.1 per cent in two of the redshift slices,
due to noise (the data do not come this close to homogeneity,
although they are consistent with it within the uncertainties)
– see Fig. 9. Nonetheless, we can easily choose a threshold
that is possible given our data, and use this to compare with
a model. The Baryon Acoustic Oscillation (BAO) feature
can also potentially affect the appropriate choice of intercept
value as it causes a small distortion in D2(r) – we discuss
this in Section 7.

For the main results in this paper we have chosen a
threshold of 1 per cent away from homogeneity, since this is
about the closest threshold to homogeneity we can measure,
considering the noisiness of the data.

4 ΛCDM MODEL PREDICTION OF N (< R)
AND D2(R)

In this section we derive theoretical ΛCDM predictions for
the counts-in-spheres and correlation dimension. This allows
us to compare our measurements of the transition to ho-

mogeneity to the predictions of a ΛCDM model that fits
WMAP data.

4.1 N (< r) and D2(r)

For a particular galaxy population, we can calculate the
mean counts-in-spheres N(< r) from the 2-point matter cor-
relation function predicted by ΛCDM. The 2-point correla-
tion function ξ(r) is defined as the excess probability above
random of finding two objects in volumes dV1 and dV2, sep-
arated by distance r (Peebles 1980):

P (r) = ρ̄2[1 + ξ(r)]dV1dV2, (16)

where ρ̄ is the mean number density.
The mean number of galaxies surrounding a random

galaxy up to distance r is found by integrating the correla-
tion function

N(< r) = ρ̄

∫ r

0

[1 + b2ξ(r′)]4πr′2dr′, (17)

where b is the galaxy bias, relating the clustering of a partic-
ular galaxy population to the underlying dark matter distri-
bution. Note that ΛCDM assumes large-scale homogeneity,
and indeed we must assume large-scale homogeneity in order
for a mean density ρ̄ to be defined.

We obtain our model correlation function by transform-
ing a ΛCDM matter power spectrum Pδδ(k) generated us-
ing CAMB (Lewis et al. 2000). Since we make our mea-
surements in redshift space, we first convert Pδδ(k) to the
redshift-space galaxy power spectrum P s

g (k) (described in
the next section), then convert this to the redshift-space
galaxy correlation function ξg(s), where s denotes distance
in redshift-space. Since we use the angle-averaged power
spectrum (assuming the power spectrum is isotropic), we
do not need to integrate the angular part of the k-space in-
tegral, and so use a spherical Hankel transform rather than
a Fourier transform to obtain ξg(s):

ξg(s) =
1

2π2

∫

P s
g (k)

sin ks
ks

k2dk. (18)

To compare with our WiggleZ measurement (Eq. 4),
where we correct for incompleteness, we divide our counts-
in-spheres prediction by the number that would be expected
for a random distribution, i.e. ρ̄ 4

3πr
3:

N (< r) =
3

4πr3

∫ r

0

[1 + ξg(s)]4πs
2ds. (19)

We calculate the model D2(r) by simply applying Eq.
7 to our model N (< r).

4.2 Redshift-space distortions and nonlinear
velocity damping

Here we describe how we implement redshift-space distor-
tions in our analytical model. In practice, we measure the
positions of galaxies in redshift-space, which are affected
by redshift-space distortions. These are due to the peculiar
velocities of galaxies along the line of sight, which add to
the measured redshifts and perturb the inferred galaxy po-
sitions. This anisotropic effect creates anisotropy in the ob-
served redshift-space galaxy power spectrum P s

g (k, µ), and
can be modelled by multiplying (convolving in configuration
space) the real-space matter power spectrum by an angle-
dependent function F (k, µ):

c© 2002 RAS, MNRAS 000, 1–??

N(< r) / rD2



Dark Energy
Survey (2012) BigBOSS (~2018)

LSST (~2018)

Euclid or 
WFIRST 
(~202X)

21cm mapping

▲Harvard-Cfa survey (1980s)



Desiderata for future LSS surveys

Redshifts: enormous amount doable with photometric info 
alone, but the photo-zs are inherently messy; accurate 
knowledge of the full P(zs|zp) is required (or: spectra). 

Well-characterized selection: helps pin down masses of 
halos, and their other properties such as bias

Large volume: at large spatial scales, errors on cosmological 
parameters go as V−1/2

....



EXTRA SLIDES



Figure 6: The same as Figure 5, but with survey parameters for large-scale structure based on
BigBOSS.

The constraints on fNL(k) from a large-scale structure survey are quite sensitive to

the survey parameters. Unlike the constraints on fNL(k) from the CMB bispectrum, the

forecasted constraints from LSS are also sensitive to the choice made for the fiducial model

Projected errors �(f⇤
NL) and �(nfNL), and the corresponding pivots

Variable BigBOSS BigBOSS+Planck C`s Planck bispec BigBOSS+all Planck

�(f⇤
NL) 3.0 2.6 4.4 2.2

�(nfNL) 0.12 0.11 0.29 0.078

FoM(NG) 2.7 3.4 0.78 5.8

kpiv 0.33 0.35 0.080 0.24

Table 1: Forecasted constraints on f⇤
NL

and nfNL from BigBOSS, Planck, and combined data sets
for two fiducial values of f

NL

(k). Each column’s numbers are for the pivot in that column; thus the
errors in the two parameters are uncorrelated in each column. See text for survey specifications.

– 14 –

Forecasts for 
fNL(k)

with BigBOSS

Becker, Huterer & Kadota, arXiv:1206.6165

Planck + BigBOSS



DM halo gets more massive with fNL>0 (and v.v.)
fNL=+5000

M=1.2 1016 M⊙

fNL=+500
M=5.9 1015 M⊙

fNL=+3000
M=1.2 1016 M⊙

fNL=+3000
M=1.2 1016 M⊙

fNL=-500
M=4.3 1015 M⊙

fNL=0
M=5.1 1015 M⊙

Dalal, Doré, Huterer & Shirokov 2008



Missing power above 60°

Hinshaw et al 1996 (COBE);  
Spergel   et al 2003 (WMAP)
Copi et al 2007, 2009;  Sarkar et al 2010



Using LSS to test whether
low P(k) is the cause of low C(θ)

Gibelyou, Huterer & Fang 2010

Can do this with LSS if you have a HUGE number of 
galaxy redshifts, as assumed in plot above

(LSST with gazillion redshifts)


