Introduction to Complementarity

Konstantin Matchev

Cosmic Frontier Workshop CF2/CF4 joint session March 6, 2013

Complementarity

Dark Matter

Eqmplementarity

Dark Matter

What is dark matter?

- We are completely ignorant about its properties
 - mass, spin, lifetime, gauge quantum numbers
 - there could even be several DM species
- No single experiment will provide all this information
- In general, DM may couple to any of the following:

CF4 Subgroup and activities

- Who are we?
 - Conveners: D. Hooper, M. Kaplinghat, K. Matchev
 - Members: TBD... (please volunteer)
- What do we do?
 - Deliver deliverables
 - Short complementarity document in draft form (done!)
 - to be discussed tonight in EV1:CF4 session
 - Long Snowmass write-up to be completed in August
 - Talk to the other CF subgroups
 - joint sessions with CF1, CF2, CF3 at this meeting
 - Have the other CF subgroups talk to each other

How to illustrate complementarity?

CPM Meeting, Fermilab 2012

• Qualitatively: the presence of a signal in:

The point being this:

How to illustrate complementarity?

- Quantitatively: compare rates for the three probes
- Problem: different things are being plotted

• How can we uniquely correlate those results?

I. Specific theory models

- Choose a complete new physics model with a dark matter candidate
 - See tomorrow afternoon's CF4 sessions for talks on
 - MSSM (Baer)
 - MSUGRA (Sanford)
 - NMSSM (McCaskey)
 - UED (Kong)
 - Hidden charged DM (Yu)
- Compute the three types of signals as a function of the model parameters. Impose constraints.
- Problem: too many free input parameters
 - fewer parameters come at the cost of introducing model dependent assumtions 7

II. Model-independent approaches

- Alternatively, be agnostic about the underlying theory model
- Parameterize our ignorance about
 - the origin of SUSY breaking
 - pMSSM talks (Ismail, Cotta, Cahill-Rowley, Drlica-Wagner)
 - the type of DM-SM interactions and their mediators
 - effective operators (Shepherd)
- Effective Lagrangian considered in the complementarity document:

$$\frac{1}{M_q^2} \bar{\chi} \gamma^{\mu} \gamma_5 \chi \sum_q \bar{q} \gamma_{\mu} \gamma_5 q + \frac{\alpha_S}{M_g^3} \bar{\chi} \chi G^{a\mu\nu} G^a_{\mu\nu} + \frac{1}{M_\ell^2} \bar{\chi} \gamma^{\mu} \chi \sum_{\ell} \bar{\ell} \gamma_{\mu} \ell$$

$$D8 \qquad D11 \qquad D5 \qquad 8$$

Comparing different DM signals

- Within this simplified model description, all DM signals can be parameterized in 4 equivalent ways
 - Production rate at colliders
 - Direct detection cross-section
 - Annihilation cross-section
 - New physics scale M_q
- Good news for CF2:
 - We chose annihilation xsec
 - but measured in funny units
- Relic density connection

10

 $\frac{\Omega_{\chi}}{\Omega_{DM}} \sim \frac{\sigma_{thermal}}{\sigma(\chi\bar{\chi} \to qq) + \sigma(\chi\bar{\chi} \to other)}$

Summary

- What CF4 needs from CF2 more plots like this one:
 - both current and projected experimental limits
 - extended to other channels: neutrinos, antimatter
 - adding other final states (WW,ZZ,hh)

• What does CF2 need from CF4?

BACKUPS

The importance of complementarity

com·ple·men·ta·ry (kmpl-mnt-r, -tr)

adj.

1. Forming or serving as a complement; completing.

2. Supplying mutual needs or offsetting mutual lacks.

- Observation of several signals will be needed to confirm a DM discovery
- All four probes are needed to get the full picture
- The limitations of one probe might be overcome by the strengths of the other probes
- A negative result from a given search also brings important complementary information
 - we need to find out not only what DM couples to, but also what it does <u>not</u> couple to.

Different levels of complementarity

- Between different types of probes
 direct, indirect, colliders, astro
 this document
 Summer CF4 report
- Between different approaches within each probe
 - hadron colliders versus lepton colliders
 - indirect detection: neutrinos vs. gammas vs e⁺ subgroup reports

Summer

- direct detection: techniques, targets, scale...
- Between different designs within each approach
 e.g. D0 vs CDF, ATLAS vs CMS.
- Plots will be labelled simply as: "colliders", "indirect detection", direct detection". The limit comes from the best experiment at that point.