AGNs as Particle Accelerators

Henric Krawczynski, March 6, 2013

- Particle acceleration sites: from the black hole horizon to radio lobes.
- AGN observations with X-ray and gamma-ray telescopes.
- Theoretical Results.
- Summary and Conclusions.

Edited by M. Boettcher, D. E. Harris, and H. Krawczynski

WILEY-VCH

Relativistic Jets from Active Galactic Nuclei

Edited by M. Boettcher, D. E. Harris, (9)W and H. Krawczynski

WILEY-VCH

Relativistic Jets from Active Galactic Nuclei

SPACE SCIENCES SERIES OF ISSI

Particle Acceleration in Cosmic Plasmas

André Balogh - Andrei Bykov - Robert P. Lin John Raymond - Manfred Scholer Editors

Deringer

Particle acceleration in relativistic outflows

Andrei Bykov · Neil Gehrels · Henric Krawczynski · Martin Lemoine · Guy Pelletier · Martin Pohl

Particle acceleration in relativistic outflows

Andrei BykovNeil GehrelsHenricKrawczynskiMartin LemoineGuy PelletierMartin PohlarXiv:1205.2208

Astrophysics:

- How do AGNs work?
- Role of AGNs in galaxies & galaxy clusters.
- Particle acceleration in cosmic plasmas.

Astrophysics:

- How do AGNs work?
- Role of AGNs in galaxies & galaxy clusters.
- Particle acceleration in cosmic plasmas.

Fundamental and Particle Physics:

- Study high-energy processes.
- Test of Alternative Theories of Gravitation.

Astrophysics:

- How do AGNs work?
- Role of AGNs in galaxies & galaxy clusters.
- Particle acceleration in cosmic plasmas.

Fundamental and Particle Physics:

- Study high-energy processes.
- Test of Alternative Theories of Gravitation.

... and ...

Astrophysics:

- How do AGNs work?
- Role of AGNs in galaxies & galaxy clusters.
- Particle acceleration in cosmic plasmas.

Fundamental and Particle Physics:

- Study high-energy processes.
- Test of Alternative Theories of Gravitation.

... and ...

AGNs provide test beams to look for:

- Study of CPT invariance and Lorentz invariance violation (γ , UHECRs, Mattingly LRR 2005).
- Search for electromagnetic radiation from decayed particles.
- Measurement of extragalactic magnetic fields.

Astrophysics:

- How do AGNs work?
- Role of AGNs in galaxies & galaxy clusters.
- Particle acceleration in cosmic plasmas.

Fundamental and Particle Physics:

- Study high-energy processes.
- Test of Alternative Theories of Gravitation.

... and ...

AGNs provide test beams to look for:

- Study of CPT invariance and Lorentz invariance violation (γ , UHECRs, Mattingly LRR 2005).
- Search for electromagnetic radiation from decayed particles.
- Measurement of extragalactic magnetic fields.

Astrophysics:

- How do AGNs work?
- Role of AGNs in galaxies & galaxy clusters.
- Particle acceleration in cosmic plasmas.

Fundamental and Particle Physics:

- Study high-energy processes.
- Test of Alternative Theories of Gravitation.

... and ...

AGNs provide test beams to look for:

- Study of CPT invariance and Lorentz invariance violation (γ , UHECRs, Mattingly LRR 2005).
- Search for electromagnetic radiation from decayed particles.
- Measurement of extragalactic magnetic fields.

Added motivation: understand AGNs to perform background subtraction for DM searches.

Active Galactic Nuclei:

Active Galactic Nuclei:

Black Holes in X-ray Binaries

Active Galactic Nuclei:

Black Holes in X-ray Binaries

Gamma-Ray Bursts:

Active Galactic Nuclei:

Gamma-Ray Bursts:

Black Holes in X-ray Binaries

Pulsar Wind Nebulae

1.6 arcmin (~1 pc)

Event Horizon
Black Hole Magnetosphere

 $\sim r_g = GM / c^2 \sim 10^{-4} \text{ pc}$

• Event Horizon **Black Hole Magnetosphere** $\sim r_g = GM / c^2 \sim 10^{-4} \text{ pc}$

 $-2(1+\sqrt{1+a}) < l < 2(1+\sqrt{1-a})$

Bañados, Silk, West (2009)

$$-2(1+\sqrt{1+a}) < l < 2(1+\sqrt{1-a})$$

Bañados, Silk, West (2009)

 Production of exotic particles? (Piran & al. 1975, Bañados, Silk, & West 2009)

 $-2(1+\sqrt{1+a}) < l < 2(1+\sqrt{1-a})$

Bañados, Silk, West (2009)

- Production of exotic particles? (Piran & al. 1975, Bañados, Silk, & West 2009)
- The center of mass energy is limited! (Thorne 1974, Piran et al. 1977, Bertie et al. 2009, Jacobson 2010).

 $-2(1+\sqrt{1+a}) < l < 2(1+\sqrt{1-a})$

Bañados, Silk, West (2009)

- Production of exotic particles? (Piran & al. 1975, Bañados, Silk, & West 2009)
- The center of mass energy is limited! (Thorne 1974, Piran et al. 1977, Bertie et al. 2009, Jacobson 2010).
- Dark matter annihilation close to black hole (Williams 2013).

Pattern of synchrotron/IC emission from electrons accelerated in vacuum gaps.

Pattern of synchrotron/IC emission from electrons accelerated in vacuum gaps.

Energy spectrum (direct & indirect) from high-energy electrons:

Pattern of synchrotron/IC emission from electrons accelerated in vacuum gaps.

Model with similarities to particle acceleration pulsar vacuum gaps.

Energy spectrum (direct & indirect) from high-energy electrons:

Magnetic Acceleration and Collimation of Jets

Basic Mechanisms:

- Magnetic acceleration and confinement (Blandford & Payne 1982, Li, Chiueh, Begelman 1992, Vlahakis & Königl, 2003, and others).
- Blandford-Znajek effect (Blandford & Znajek 1977).

Magnetic Acceleration and Collimation of Jets

Basic Mechanisms:

- Magnetic acceleration and confinement (Blandford & Payne 1982, Li, Chiueh, Begelman 1992, Vlahakis & Königl, 2003, and others).
- Blandford-Znajek effect (Blandford & Znajek 1977).

Numerical results (De Villiers et al. 2005, McKinney 2006, Krolik, Hawley, Hirose, 2007, Komissarov 2007, and others):

- Possible jet structure: matter dominated funnel wall, electromagnetic core.
- Magnetic acceleration & collimation on scales of $10^{3-}10^4 r_g$.
- Asymptotic flow: ~50% of magnetic energy converted into kinetic energy.

$$\sigma = B^2/4\pi\Gamma\rho c^2$$

• $\Gamma \sim 10-1000$ seems feasible.

Acceleration at Strong Shocks?

Acceleration at Strong Shocks?

- Internal shocks:
 - Shells ejected with different velocities: cannot explain high flare duty cycle (Tanihata et al. 2003).
 - Recollimation shocks (e.g. Bromberg & Levinson 2009).
Acceleration at Strong Shocks?

- Internal shocks:
 - Shells ejected with different velocities: cannot explain high flare duty cycle (Tanihata et al. 2003).
 - Recollimation shocks (e.g. Bromberg & Levinson 2009).
 - Standing shocks:

Acceleration at Strong Shocks?

- Internal shocks:
 - Shells ejected with different velocities: cannot explain high flare duty cycle (Tanihata et al. 2003).
 - Recollimation shocks (e.g. Bromberg & Levinson 2009).
 - Standing shocks:

- External shocks.

Acceleration at Strong Shocks?

- Internal shocks:
 - Shells ejected with different velocities: cannot explain high flare duty cycle (Tanihata et al. 2003).
 - Recollimation shocks (e.g. Bromberg & Levinson 2009).
 - Standing shocks:

- External shocks.

$$\sigma = B^2/4\pi\Gamma\rho c^2 \ll 1$$

Acceleration through Magnetic Reconnection?

- Relativistic generalization of Petschek-type reconnection (Lyubarsky, 2005):
- Lorentz factor of minijets: $\Gamma_{\rm co} = \sqrt{\sigma}$
- Thermal electron γ -factors are not high enough and particle acceleration is needed.
- Reconnection: kink instabilities or B-field reversals in BH magnetosphere.

Synchrotron Emission:

Inverse Compton Emission:

 $dE/dt ~\sim~ B^2~E^2$

dE/dt ~ Urad E^2

Most important: Thomson-Klein-Nishina transition regime, $E_{\gamma} \sim \delta_{\rm jet} E_e$

Synchrotron Emission:

Inverse Compton Emission:

 $dE/dt \sim B^2 E^2$

dE/dt ~ Urad E²

Most important: Thomson-Klein-Nishina transition regime, $E_{\gamma} \sim \delta_{\text{jet}} E_e$

Benefits:

 \oplus Relativistic beaming: $L \sim \delta^4$

 \oplus Jet formation and composition $\ \rightarrow$ black hole accretion.

 \oplus Time resolved studies of particle acceleration.

Benefits:

 \oplus Relativistic beaming: $L\sim\delta^4$

 \oplus Jet formation and composition $\ \rightarrow$ black hole accretion.

 \oplus Time resolved studies of particle acceleration.

Difficulties:

- ⊖ So Far: Lack of spatial resolution.
- ⊖ Continuum energy spectra: limited information.
- ⊖ Anisotropic emission and uncertain viewing angles.

Synchrotron Emission:

Inverse Compton Emission:

 $dE/dt \sim B^2 E^2$

dE/dt ~ Urad E²

Most important: Thomson-Klein-Nishina transition regime, $E_{\gamma} \sim \delta_{\rm jet} E_e$

Benefits:

 \oplus Relativistic beaming: $L\sim\delta^4$

 \oplus Jet formation and composition $\ \rightarrow$ black hole accretion.

 \oplus Time resolved studies of particle acceleration.

Difficulties:

- ⊖ So Far: Lack of spatial resolution.
- ⊖ Continuum energy spectra: limited information.
- ⊖ Anisotropic emission and uncertain viewing angles.

Swift (Suzaku, NuSTAR!)

Mrk 421 - Leptonic SSC Models of Diurnal SEDs:

 $\frac{dn_{\rm e}}{d\gamma} = \begin{cases} N_1 \gamma^{-2.2} \text{ for } \gamma_{\rm min} < \gamma < \gamma_b \\ N_2 \gamma^{-3.2} \text{ for } \gamma_b < \gamma < \gamma_{\rm max} \end{cases}$ $\gamma_b \text{ given by } t_{\rm synch} \equiv \frac{\gamma}{\dot{\gamma}} = \frac{t_{\rm flare}}{\delta_{\rm iet}}$

 $\frac{dn_{\rm e}}{d\gamma} = \begin{cases} N_1 \gamma^{-2.2} \text{ for } \gamma_{\rm min} < \gamma < \gamma_b \\ N_2 \gamma^{-3.2} \text{ for } \gamma_b < \gamma < \gamma_{\rm max} \end{cases}$ $\gamma_b \text{ given by } t_{\rm synch} \equiv \frac{\gamma}{\dot{\gamma}} = \frac{t_{\rm flare}}{\delta_{\rm jet}}$

Fitting-results:

$$\delta_{jet} = 200 \frac{B_{\gamma}}{G},$$

e.g. $\delta_{jet} = 40, B_{\gamma} = 0.2 \text{ G},$
 $R_{\gamma} = 2.5 \times 10^{15} \text{ cm}$

Acciari et al. 2011

 $\frac{dn_{\rm e}}{d\gamma} = \begin{cases} N_1 \gamma^{-2.2} \text{ for } \gamma_{\rm min} < \gamma < \gamma_b \\ N_2 \gamma^{-3.2} \text{ for } \gamma_b < \gamma < \gamma_{\rm max} \end{cases}$ $\gamma_b \text{ given by } t_{\rm synch} \equiv \frac{\gamma}{\dot{\gamma}} = \frac{t_{\rm flare}}{\delta_{\rm iet}}$

Fitting-results:

$$\delta_{jet} = 200 \frac{B_{\gamma}}{G},$$

e.g. $\delta_{jet} = 40, B_{\gamma} = 0.2 \text{ G},$
 $R_{\gamma} = 2.5 \times 10^{15} \text{ cm}$

- Absence of internal Y-Y abs.: $\delta_{\rm jet} \ge 15$
- 5-min Flares & Causality: $\delta_{\rm jet} \sim 50$ Begelman et al. 2007

 $\delta_{\gamma} = 40, \ B_{\gamma} = 0.2 \text{ G}, \ R_{\gamma} = 2.5 \times 10^{15} \text{ cm}$

date	$u_{ m e}$	$\log(E_{\max})$	$\log(E_{ m brk})$	$u_{ m e}/u_{ m B}$
[MJD]	$[ergs/cm^3]$			
54475.4	0.45	10.8	10.5	283
54478.4	0.65	10.9	10.4	408
54508.3	0.50	11.0	10.6	314
54509.3	0.60	11.1	10.5	377
54536.4	0.40	11.0	10.6	251
54538.4	0.35	10.9	10.6	220
54555.4	0.40	11.2	11.2	251
54556.3	0.35	11.2	11.1	220
54557.3	0.40	11.3	11.0	251
54559.2	0.40	11.4	10.8	251
54562.2	0.40	11.3	10.6	251
54564.2	0.40	11.4	10.7	251
54566.2	0.40	11.2	10.6	251
54588.3	0.55	11.6	11.0	345
54589.3	0.43	11.5	10.6	270
54591.3	0.48	11.2	10.5	301
54592.3	0.35	11.0	10.6	220
54593.3	0.35	11.0	10.6	220

Mrk 421 - Leptonic SSC Models of Diurnal SEDs:

 $\delta_{\gamma} = 40, \ B_{\gamma} = 0.2 \text{ G}, \ R_{\gamma} = 2.5 \times 10^{15} \text{ cm}$

date	$u_{ m e}$	$\log(E_{\max})$	$\log(E_{\rm brk})$	$u_{ m e}/u_{ m B}$
[MJD]	$[ergs/cm^3]$			
54475.4	0.45	10.8	10.5	283
54478.4	0.65	10.9	10.4	408
54508.3	0.50	11.0	10.6	314
54509.3	0.60	11.1	10 5	377
54536.4	0.40	11.0	10.6	251
54538.4	0.35	10.9	10.6	220
54555.4	0.40	11.2	11 <mark>.2</mark>	251
54556.3	0.35	11.2	11.1	220
54557.3	0.40	11.3	11 <mark>.</mark> 0	251
54559.2	0.40	11.4	108	251
54562.2	0.40	11.3	106	251
54564.2	0.40	11.4	10 7	251
54566.2	0.40	11.2	10.6	251
54588.3	0.55	11.6	11.	345
54589.3	0.43	11.5	10.6	270
54591.3	0.48	11.2	10.5	301
54592.3	0.35	11.0	10.6	220
54593.3	0.35	11.0	10.6	220

Mrk 421 - Leptonic SSC Models of Diurnal SEDs:

 $\delta_{\gamma} = 40, \ B_{\gamma} = 0.2 \text{ G}, \ R_{\gamma} = 2.5 \times 10^{15} \text{ cm}$

date	$u_{ m e}$	$\log(E_{\max})$	$\log(E_{\rm brk})$	$u_{ m e}/u_{ m B}$
[MJD]	$[ergs/cm^3]$			
54475.4	0.45	10.8	10.5	283
54478.4	0.65	10.9	10.4	408
54508.3	0.50	11.0	10.6	314
54509.3	0.60	11.1	10 5	377
54536.4	0.40	11.0	10.6	251
54538.4	0.35	10.9	10.6	220
54555.4	0.40	11.2	11 <mark>.2</mark>	251
54556.3	0.35	11.2	11.1	220
54557.3	0.40	11.3	11 <mark>.</mark> 0	251
54559.2	0.40	11.4	108	251
54562.2	0.40	11.3	10 <mark>.</mark> 6	251
54564.2	0.40	11.4	10 7	251
54566.2	0.40	11.2	10.6	251
54588.3	0.55	11.6	11.	345
54589.3	0.43	11.5	10.6	270
54591.3	0.48	11.2	10.5	301
54592.3	0.35	11.0	10.6	220
54593.3	0.35	11.0	10.6	220

 $(u_e)_{\text{cold}}, u_{\text{P}}?$

Rieger, Kirk, Mastichiadis 2000:

Rieger, Kirk, Mastichiadis 2000:

 $\frac{\partial N}{\partial t} + \frac{\partial}{\partial \gamma} \Big[\Big(\frac{\gamma}{t_{acc}} - \beta_s \gamma^2 \Big) N \Big] + \frac{N}{t_{esc}} = Q\delta(\gamma - \gamma_0)$ u_1 u_1 u_2 u_2 u_2 u_2 u_2 u_2 u_3 u_3 u_4 u_4

 $u_s = 0.26 c$

Rieger, Kirk, Mastichiadis 2000:

 $u_{s} = 0.26 c$ $\frac{\partial N}{\partial t} + \frac{\partial}{\partial \gamma} \left[\left(\frac{\gamma}{t_{acc}} - \beta_{s} \gamma^{2} \right) N \right] + \frac{N}{t_{esc}} = Q\delta(\gamma - \gamma_{0})$ u_{1} u_{1} u_{2} u_{2} u_{1} $\frac{u_{1}}{2}$ $\frac{u_{2}}{2}$ u_{2} $\frac{u_{1}}{2}$ $\frac{u_{2}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{2}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{2}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{2}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{2}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{2}}{2}$ $\frac{u_{2}}{2}$ $\frac{u_{1}}{2}$ $\frac{u_{2}}{2}$ $\frac{u$

$$I(
u, \bar{t}) = \int \mathrm{d}\gamma P(
u, \gamma) \int \mathrm{d}x \, n(x, \gamma, \bar{t} + x/c)$$

Rieger, Kirk, Mastichiadis 2000:

 $u_{s} = 0.26 c$ $\frac{\partial N}{\partial t} + \frac{\partial}{\partial \gamma} \left[\left(\frac{\gamma}{t_{acc}} - \beta_{s} \gamma^{2} \right) N \right] + \frac{N}{t_{esc}} = Q\delta(\gamma - \gamma_{0})$ u_{1} u_{1} u_{2} u_{2} u_{2} u_{2} u_{3} u_{4} u_{2} u_{5} u_{5}

$$rac{\partial n}{\partial t} - rac{\partial}{\partial \gamma} (eta_{
m s} \, \gamma^2 \, n) \;\; = \;\; rac{N(\gamma,t)}{t_{
m esc}} \delta(x-x_{
m s}(t))$$

$$I(\nu,\bar{t}) = \int d\gamma P(\nu,\gamma) \int dx \, n(x,\gamma,\bar{t}+x/c)$$

Rieger, Kirk, Mastichiadis 2000:

2.2

2.3

ర ^{2.4}

2.5

2.6

0.01

 $t_{\rm acc} \ll t_{\rm cool}$

 $u_s = 0.26 c$ $rac{\partial N}{\partial t} + rac{\partial}{\partial \gamma} \Big[\left(rac{\gamma}{t_{
m acc}} - eta_s \, \gamma^2
ight) N \Big] + rac{N}{t_{
m esc}} = Q \delta(\gamma - \gamma_0)$ u 1 2 acceleration zone downstream radiating region upstream х $rac{\partial n}{\partial t} - rac{\partial}{\partial \gamma} (eta_{
m s} \, \gamma^2 \, n) \;\; = \;\; rac{N(\gamma,t)}{t_{
m esc}} \delta(x-x_{
m s}(t))$ $I(
u, \bar{t}) = \int \mathrm{d}\gamma P(
u, \gamma) \int \mathrm{d}x \, n(x, \gamma, \bar{t} + x/c)$ 2.8 $t_{\rm acc} \sim t_{\rm cool}$ 2.85 2.9 ರ 2.95 3 3.05 0.015 0.0002 0.0003 Intensity Intensity

Clockwise or anti-clockwise index-intensity correlations!

High Accuracy X-Ray Observations With Suzaku

Garson, Baring & HK 2010

High Accuracy X-Ray Observations With Suzaku

High Accuracy X-Ray Observations With Suzaku

Observations do not validate simple predictions of models with shock acceleration and cooling!

Chandra X-ray (color) and VLA 8 GHz (contours) images of Cen A

Right ascension (J2000)

M. Hardcastle (priv. comm), Kataoka et al. 2006

Interpretation:

- Synchrotron em. of $\gamma \sim 10^7$ electrons.
- Radiative cooling time: ~ years → distributed acceleration!

Harris & Krawczynski, ARA&A, 2006.

Interpretation:

Relativistic motion at kpc distances from central source:

$$u'(CMB) = 4 \times 10^{-13} (1 + z)^4 \Gamma^2 \text{erg cm}^{-3}$$

⇒ detectable CMB/IC emission for $\delta \sim \Gamma \sim 10$.

Tavecchio et al. (2000) Celotti, Ghisellini & Chiaberge (2001)

Harris & Krawczynski, ARA&A, 2006.

 $\log_{10} (v/Hz)$

Harris & Krawczynski, ARA&A, 2006.

Harris & Krawczynski, ARA&A, 2006. Interpretation:

Relativistic motion at kpc distances from central source:

$$u'(CMB) = 4 \times 10^{-13} (1 + z)^4 \Gamma^2 \text{erg cm}^{-3}$$

⇒ detectable CMB/IC emission for $\delta \sim \Gamma \sim 10$.

Tavecchio et al. (2000) Celotti, Ghisellini & Chiaberge (2001)

Electrons responsible for acceleration:

$$\gamma \sim 100$$

Problems:

- Explanation of jet knots;
- Length of deprojected X-ray jets (Harris & HK 2001): B2 0738+313 (1.7 Mpc), 0827+243 (1.1 Mpc);
- Energy in low-energy electrons: $\geq 7 \times 10^{46} \text{ erg s}^{-1} (PKS0637-752) (Dermer & Atoyan 2004)$

Dependence of particle acceleration on:

- plasma composition (P, e[±], B),
- Mach number of shock,
- magnetic field obliquity.

Dependence of particle acceleration on:

- plasma composition (P, e^{\pm} , B),
- Mach number of shock,
- magnetic field obliquity.

Importance of:

- Diffusive shock acceleration,
- Shock-drift acceleration,
- Shock surfing acceleration.

Dependence of particle acceleration on:

- plasma composition (P, e^{\pm} , B),
- Mach number of shock,
- magnetic field obliquity.

Importance of:

- Diffusive shock acceleration,
- Shock-drift acceleration,
- Shock surfing acceleration.

Highly non-linear process:

Dependence of particle acceleration on:

- plasma composition (P, e^{\pm} , B),
- Mach number of shock,
- magnetic field obliquity.

Importance of:

- Diffusive shock acceleration,
- Shock-drift acceleration,
- Shock surfing acceleration.

Highly non-linear process:

Particle Acceleration at Shocks -- Theory

Dependence of particle acceleration on:

- plasma composition (P, e^{\pm} , B),
- Mach number of shock,
- magnetic field obliquity.

Importance of:

- Diffusive shock acceleration,
- Shock-drift acceleration,
- Shock surfing acceleration.

Highly non-linear process:

Particle Acceleration at Shocks -- Theory

Dependence of particle acceleration on:

- plasma composition (P, e^{\pm} , B),
- Mach number of shock,
- magnetic field obliquity.

Importance of:

- Diffusive shock acceleration,
- Shock-drift acceleration,
- Shock surfing acceleration.

Particle Acceleration at Shocks -- Theory

Dependence of particle acceleration on:

- plasma composition (P, e^{\pm} , B),
- Mach number of shock,
- magnetic field obliquity.

Importance of:

- Diffusive shock acceleration,
- Shock-drift acceleration,
- Shock surfing acceleration.

Numerical results: Sironi & Spitkovsky (2009,2011) Analytical results: Lemoine & Pelletier (2011)

PIC Simulations

Collisionless Shocks in Pair Plasmas (Sironi & Spitkovsky 2009)

Study energy gains (Sironi & Spitkovsky 2009)

PIC Simulations

Collisionless Shocks in Electron-Ion Plasmas (Sironi & Spitkovsky 2011)

PIC Simulations

Ion and electron acceleration (Sironi & Spitkovsky 2011)

Electron acceleration limited to low magnetization!

Relativistic Electrons in Quasi-Parallel Shock Wave Observed by the Cassini Spacecraft

Y-Rays From UHECRs

UHECRs interacting in source with photons or with ISM and/or ICM, initiating electromagnetic cascades.

Y-Rays From UHECRs

UHECRs interacting in source with photons or with ISM and/or ICM, initiating electromagnetic cascades.

Prediction for Cen-A of Kachelrieß et al. 2008, also Gupta et al. 2008.

Y-Rays From UHECRs

UHECRs interacting in source with photons or with ISM and/or ICM, initiating electromagnetic cascades.

Prediction for Cen-A of Kachelrieß et al. 2008, also Gupta et al. 2008.

 γ -ray fluxes strongly depend on energy spectrum of UHECRs (normalized E>6×10¹⁹ eV).

LOFAR (30-240 MHz)

eVLA: I-50 GHz

LOFAR (30-240 MHz)

eVLA: I-50 GHz

Hard X-ray

+ ASTRO-H

LOFAR (30-240 MHz)

eVLA: I-50 GHz

Hard X-ray

+ ASTRO-H

X-ray/ γ -Ray Polarimetry

X-Calibur/InFOCuS

LOFAR (30-240 MHz)

eVLA: I-50 GHz

γ -Ray Observations

Hard X-ray NuSTAR Deployable Mast Focal Plane/ Detectors

+ ASTRO-H

X-ray/ γ -Ray Polarimetry

X-Calibur/InFOCuS

LOFAR (30-240 MHz)

eVLA: I-50 GHz

Hard X-ray

+ ASTRO-H

X-ray/ γ -Ray Polarimetry

X-Calibur/InFOCuS

γ -Ray Observations

The street of the state of the

High-Performance Computing

LOFAR (30-240 MHz)

eVLA: I-50 GHz

Hard X-ray

+ ASTRO-H

X-ray/ γ -Ray Polarimetry

X-Calibur/InFOCuS

γ -Ray Observations

A DESIGN OF THE OWNER OWNER

High-Performance Computing

In-Situ Observations

