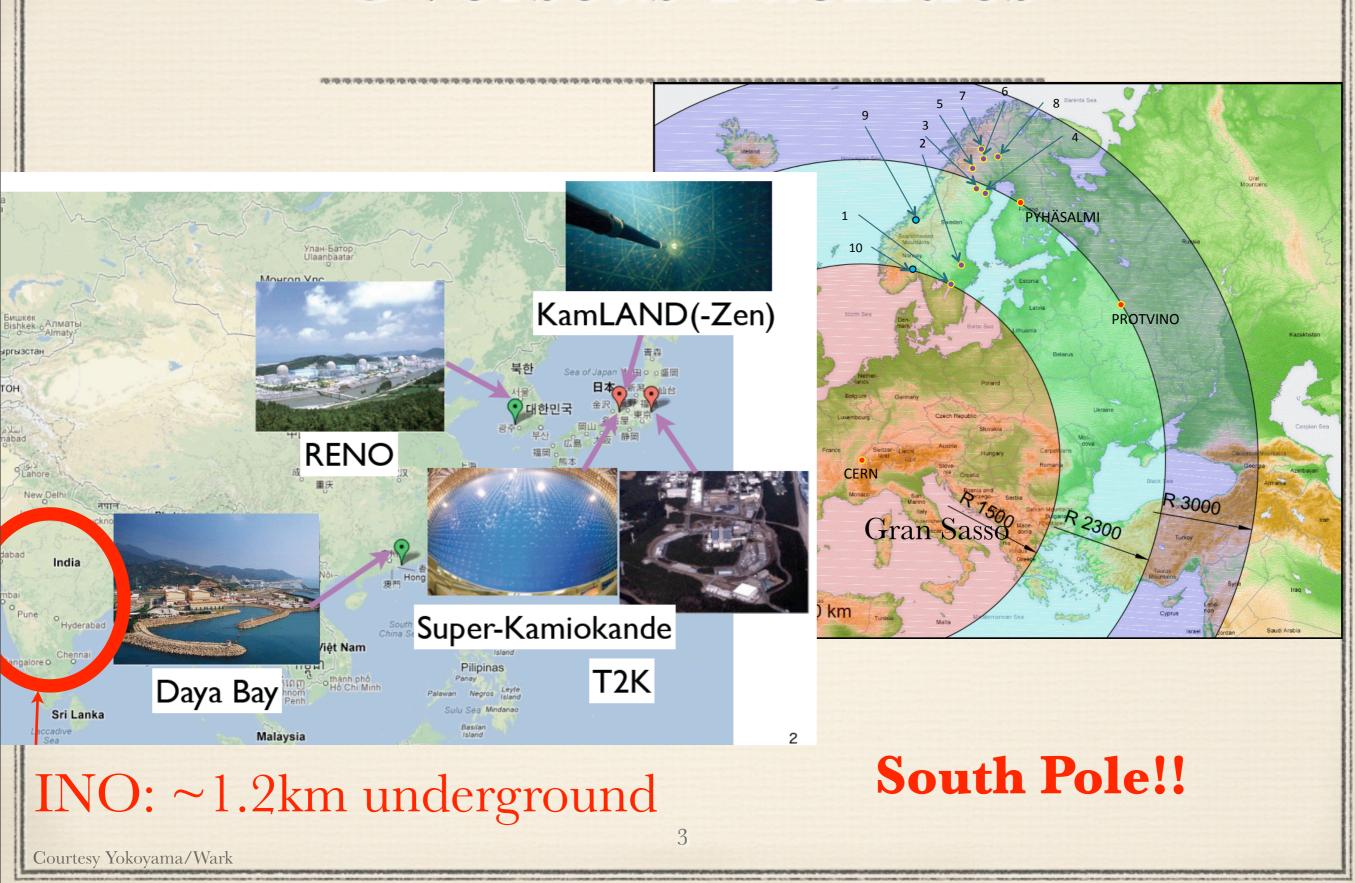
Requirements for Large Neutrino/Astrophysics Faclities


"Snowmass" Cosmic Frontier Meeting SLAC, March 8th 2013 Michael Smy, UC Irvine

Disclaimer

- * I'm no real expert in underground facilities (I've visited SNOLAB, SURF, and Gran Sasso; and work at Kamioka)
- * impossible to follow <u>all</u> relevant discussions since many were in parallel (although I tried hard by racing madly from session to session)
- this talk therefore is colored by my personal taste

Overseas Facilities

- * address v mass hierarchy with giant detectors at
 - South Pole (PINGU) using atmospheric neutrino interactions in ice
 - * ICAL@INO using atmospheric neutrino interactions in a magnetized iron calorimeter
 - * Kamioka using atmospheric neutrino interactions in water
 - Daya-Bay II/Reno 50 using reactor anti-neutrino interactions in liquid scintillators
 - Pyhäsalmi using CERN beam neutrino interactions in liquid argon

4

- * search for CP violation in neutrino oscillation at
 - * Kamioka using the J-PARC beam
 - * Pyhäsalmi using the CERN beam neutrino
- precision oscillation parameter measurements and nonstandard oscillation physics at
 - ❖ Daya-Bay II/RENO-50 using reactor neutrinos
 - * Kamioka using the J-PARC beam
 - * Pyhäsalmi using the CERN beam neutrino

- search for nucleon decay at
 - Kamioka (water)
 - * Pyhäsalmi (liquid argon/scintillator)
 - * ICAL@INO (iron)?
 - Daya-Bay-II/RENO-50 (liquid scintillator)
- * observe galactic supernova neutrino burst everywhere
- study solar neutrinos at
 - Kamioka
 - Pyhäsalmi (scintillator)
 - Daya-Bay-II/RENO-50??

- observe geo-antineutrinos at
 - * Pyhäsalmi (liquid scintillator)
 - Daya-Bay-II (liquid scintillator)
 - * RENO (liquid scintillator)
- * search for neutrino-less double beta decay at
 - Pyhäsalmi (liquid scintillator)
 - Kamioka (liquid scintillator, CaF₂)
 - Gran Sasso (multiple projects)

North American Facilities

- *SNO-LAB
- *SURF
- *Soudan
- *WIPP
- *KURF

North American Facility Physics Goals

- on top of SURF (liquid argon) using a Fermilab beam:
 - address v mass hierarchy
 - * search for CP violation in neutrino oscillation
 - precision oscillation parameter measurements
 - * non-standard oscillation physics
- * observe galactic supernova neutrino burst everywhere
- study solar neutrinos at
 - SNO-Lab (Nd loaded scintillator)
 - * KURF (In loaded scintillator) 9

M. Smy, UC Irvine

North American Facility Physics Goals

- oscillation parameter measurements at Soudan using Fermilab beam
- * search for neutrino-less double beta decay at
 - * WIPP (Xe)
 - * SNOLAB (Nd, Xe)
 - ⇒ SURF (Ge)
 - * KURF (Ge)
- * Reactor monitoring feasibility at KURF

- * Depends on the measurement! Requirements differ widely.
- example: large liquid Argon TPC (Kate Scholberg)

Signal	Energy range	Expected Signal Rate per kton of LAr (s-1 kton-1)	Easy to pick from
Beam neutrinos (CP violation/ mass hierarchy)	~ GeV	5 x 10 ⁻⁴ osc v_e in beam window	bg due to beam time & direction
Proton decay	~ GeV	< 2 x 10 ⁻⁹	Easy to pick from bg, but highly intolerant of bg
Atmospheric neutrinos	0.1-10 GeV	~10-5	Easy to pick, somewhat more
Supernova burst neutrinos	few-50 MeV	~3 @ 10 kpc over ~30 secs	tolerant of bg
Solar neutrinos	few-15 MeV	~4 x 10 ⁻⁵	
Supernova relic neutrinos	20-50 MeV	< 2 x 10 ⁻⁹	Potentially harder to select (esp. low energy end)
Very hard to select and intolerant of bg			but arrive in a burst (and bg can be well known)

M. Smy, UC Irvine

- * neutrino-less double beta decay search
 - depth
 - low radioactivity environment
 - underground infrastructure: clean room facilities, crystal-growing, "cool" materials, isotope enrichment??
- solar neutrino studies
 - * depth
 - low radioactivity environment
 - large, stable cavities
 - underground infrastructure

19

- * atmospheric neutrino studies & nucleon decay search
 - modest depth
 - * large, stable cavities
- * reactor and geo anti-neutrino studies
 - * modest depth/nominal depth
 - large, stable cavities
- galactic supernova neutrino burst
 - modest depth

- * beam neutrino physics
 - * nominal depth (or surface)
 - large, stable cavities (or buildings)
- * other issues:
 - * access (drive in, shaft size, elevator speeds, rock removal)
 - * surface infrastructure (e.g. access)
 - underground infrastructure (e.g. cryogenics)

Intensity Frontier Discussions of Facilities

My impression:

- just starting this kind of discussion; so far we mostly discuss experiments rather than facilities
- often, each experiment seems to finds its own solutions using already existing facilities and infrastructure or creating their own

Conclusion

from Alan Poon:

Underground Laboratory

Who needs an underground lab?

We do!

- The recommendation on underground laboratory from LRP 2007 has been realized (although not exactly as originally envisioned). Its importance was reaffirmed in the recent LRP 2007 implementation review
- Sanford Underground Research Facility (SURF) is a new asset for the scientific community:
 - · Deepest underground laboratory in the US
 - Attracted \$75M in private funding
 - Hosting Majorana Demonstrator (NP), LUX (HEP), and experiments from other fields
- Other facilities are also playing important roles in the field.

