An argument that the dark matter is axions

Pierre Sikivie

Cosmic Frontier Workshop SLAC, March 6-8, 2013

Collaborators: Ozgur Erken, Heywood Tam, Qiaoli Yang

Outline

1. Cold dark matter axions thermalize and form a Bose-Einstein condensate.
2. The axion BEC rethermalizes sufficiently fast that axions about to fall onto a galactic halo almost all go to the lowest energy state for given total angular momentum.
3. As a result the axions produce

- caustic rings of dark matter
- in the galactic plane
- with radii $a_{n} \propto 1 / n \quad n=1,2,3, \ldots$

4. There is observational evidence for the existence of caustic rings of dark matter

- in the galactic plane
- with radii $a_{n} \propto 1 / n \quad n=1,2,3, \ldots$
- with overall size consistent with tidal torque theory $(\lambda \simeq 0.05)$

5. The evidence for caustic rings is not explained by other forms of dark matter. Ordinary cold dark matter (WIMPs, sterile neutrinos, non-rethermalizing BEC, ...) forms tent-like inner caustics.

The Strong CP Problem

$$
L_{\mathrm{QCD}}=\ldots+\theta \frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \theta^{\left(f \sigma^{\mu v}\right.}
$$

Because the strong interactions conserve P and CP, $\quad \theta \leq 10^{-10}$.

The Standard Model does not provide a reason for θ to be so tiny,
but a relatively small modification of the model does provide a reason...

> If a $\mathrm{U}_{\mathrm{PQ}}(1)$ symmetry is assumed,
> $L=\ldots+\frac{a}{f_{a}} \frac{g^{2}}{32 \pi^{2}} G^{a}{ }_{\mu \nu} q^{q} \mathscr{f}^{\mu v}+\frac{1}{2} \partial_{\mu} a \partial^{\mu} a+\ldots$
> $\theta=\frac{a}{f_{a}} \quad$ relaxes to zero,
and a light neutral pseudoscalar particle is predicted: the axion.

$$
m_{a} ; 6 \mathrm{eV} \frac{10^{6} \mathrm{GeV}}{f_{a}}
$$

$$
L_{a \overline{f f}}=i g_{f} \frac{a}{f_{a}} \bar{f} \gamma_{5} f
$$

$$
L_{a \gamma \gamma}=g_{\gamma} \frac{\alpha}{\pi} \frac{a}{f_{a}} \stackrel{\mathbf{\mathbf { u }}}{E} \cdot \stackrel{\mathbf{r}}{B}
$$

$$
\begin{aligned}
& g_{\gamma}= 0.97 \text { in KSVZ model } \\
& 0.36 \text { in DFSZ model }
\end{aligned}
$$

The remaining axion window

laboratory

There are two cosmic axion populations: hot and cold.

When the axion mass turns on, at QCD time,

$$
\begin{aligned}
& T_{1} ; 1 \mathrm{GeV} t_{1} ; 2 \cdot 10^{-7} \mathrm{sec} \\
& p_{a}\left(t_{1}\right)=\frac{1}{t_{1}} ; 3 \cdot 10^{-9} \mathrm{eV}
\end{aligned}
$$

Axion production by vacuum realignment

$$
T \geq 1 \mathrm{GeV}
$$

$$
n_{a}\left(t_{1}\right) ; \frac{1}{2} m_{a}\left(t_{1}\right) a\left(t_{1}\right)^{2} ; \quad \frac{1}{2 t_{1}} f_{a}^{2} \alpha\left(t_{1}\right)^{2}
$$

$$
\rho_{a}\left(t_{0}\right) ; m_{a} n_{a}\left(t_{1}\right)\left(\frac{R_{1}}{R_{0}}\right)^{3} \propto m_{a}^{-\frac{7}{6}}
$$

misalignment angle

Cold axion properties

- number density

$$
n(t): \frac{4 \cdot 10^{47}}{\mathrm{~cm}^{3}}\left(\frac{f_{a}}{10^{12} \mathrm{GeV}}\right)^{\frac{5}{3}}\left(\frac{a\left(t_{1}\right)}{a(t)}\right)^{3}
$$

- velocity dispersion

$$
\delta \mathrm{v}(t): \frac{1}{m_{a} t_{1}} \frac{a\left(t_{1}\right)}{a(t)} \quad \begin{gathered}
\text { if } \\
\text { decoupled }
\end{gathered}
$$

- phase space density

$$
\varkappa: n(t) \frac{(2 \pi)^{3}}{\frac{4 \pi}{3}\left(m_{a} \delta \mathrm{v}\right)^{3}}: 10^{61}\left(\frac{f_{a}}{10^{12} \mathrm{GeV}}\right)^{\frac{8}{3}}
$$

Bose-Einstein Condensation

if identical bosonic particles
are highly condensed in phase space and their total number is conserved and they thermalize
then most of them go to the lowest energy available state

why do they do that?

by yielding their energy to the non-condensed particles, the total entropy is increased.

the axions thermalize and form a BEC after a time τ

$t>\tau$

the axion fluid obeys classical field equations, behaves like CDM
the axion fluid does not obey classical field equations, does not behave like CDM

the axion BEC rethermalizes

the axion fluid obeys classical field equations, behaves like CDM
the axion fluid does not obey classical field equations, does not behave like CDM

Thermalization occurs due to gravitational interactions

$$
\text { PS + Q. Yang, PRL } 103 \text { (2009) } 111301
$$

$$
\begin{aligned}
& \Gamma_{g} \sim 4 \pi G n m^{2} l^{2} \quad \text { with } l=(m \delta \mathrm{v})^{-1} \\
& \sim 5 \cdot 10^{-7} H\left(t_{1}\right)\left(\frac{f}{10^{12} \mathrm{GeV}}\right)^{\frac{2}{3}} \\
& \text { at time } t_{1}
\end{aligned}
$$

$$
\Gamma_{g}(t) / H(t) \propto t a(t)^{-1} \propto a(t)
$$

Gravitational interactions thermalize the axions and cause them to form a BEC when the photon temperature

$$
T_{\gamma} \sim 500 \mathrm{eV}\left(\frac{f}{10^{12} \mathrm{GeV}}\right)^{\frac{1}{2}}
$$

After that

$$
\Gamma_{g}(t) / H(t) \propto t^{3} a(t)^{-3}
$$

Caustics of light at the bottom of a swimming pool on a sunny breezy day

DM forms caustics in the non-linear regime

Phase space structure of spherically symmetric halos

Figure 7-22. The giant elliptical galaxy NGC 3923 is surrounded by faint ripples of brightness. Courtesy of D. F. Malin and the Anglo-Australian Telescope Board.

Figure 7-23. Ripples like those shown in Figure $7-22$ are formed when a numerical disk galaxy is tidally disrupted by a fixed galaxy-like potential. (See Hernquist \& Quinn 1987.)

Phase space structure of spherically symmetric halos

Galactic halos have inner caustics as well as outer caustics.

If the initial velocity field is dominated by net overall rotation, the inner caustic is a 'tricusp ring'.

If the initial velocity field is irrotational, the inner caustic has a 'tent-like’ structure.
(Arvind Natarajan and PS, 2005).
simulations by Arvind Natarajan

in case of net overall rotation

The caustic ring cross-section

D-4
an elliptic umbilic catastrophe

in case of irrotational flow

On the basis of the self-similar infall model (Filmore and Goldreich, Bertschinger) with angular momentum (Tkachev, Wang + PS), the caustic rings were predicted to be
in the galactic plane
with radii $(n=1,2,3 . .$.

$$
a_{n}=\frac{40 \mathrm{kpc}}{n}\left(\frac{\mathrm{~V}_{\mathrm{rot}}}{220 \mathrm{~km} / \mathrm{s}}\right)\left(\frac{\mathrm{j}_{\max }}{0.18}\right)
$$

$\mathrm{j}_{\text {max }} \cong 0.18$ was expected for the Milky Way halo from the effect of angular momentum on the inner rotation curve.

Effect of a caustic ring of dark matter upon the galactic rotation curve

Composite rotation curve

 (W. Kinney and PS, astro-ph/9906049)- combining data on 32 well measured extended external rotation curves
- scaled to our own galaxy

Inner Galactic rotation curve

from Massachusetts-Stony Brook North Galactic Pane CO Survey (Clemens, 1985)

Outer Galactic rotation curve

R.P. Olling and M.R. Merrifield, MNRAS 311 (2000) 361

Monoceros Ring of stars

H. Newberg et al. 2002; B. Yanny et al., 2003; R.A. Ibata et al., 2003;
H.J. Rocha-Pinto et al, 2003; J.D. Crane et al., 2003; N.F. Martin et al., 2005
in the Galactic plane
at galactocentric distance r; 20 kpc
appears circular, actually seen for $100^{\circ}<l<270^{\circ}$
scale height of order 1 kpc
velocity dispersion of order 20 km/s
may be caused by the $\mathrm{n}=2$ caustic ring of
dark matter (A. Natarajan and P.S. ' 07)

Rotation curve of Andromeda Galaxy

from L. Chemin, C. Carignan \& T. Foster, arXiv: 0909.3846

Fig. 10.- Hi rotation curve of Messier 31. Filled diamonds are for both halves of the disc fitted simultaneously while blue downward/red upward triangles are for the approaching/receding sides fitted separately (respectively).

$10 \operatorname{arcmin}=2.2 \mathrm{kpc}$

The caustic ring halo model assumes
 L. Duffy \& PS PRD78 (2008) 063508

- net overall rotation
- axial symmetry
- self-similarity

The specific angular momentum

 distribution on the turnaround sphere$$
\begin{array}{ll}
\mathrm{r}(\hat{n}, t)=j_{\max } \hat{n} \times(\hat{z} \times \hat{n}) \frac{R(t)^{2}}{t} & \\
& R(t) \propto t^{\frac{2}{3}+\frac{2}{9 \varepsilon}} \\
& 0.25<\varepsilon<0.35
\end{array}
$$

Is it plausible in the context of tidal torque theory?

Tidal torque theory

neighboring protogalaxy

Tidal torque theory with ordinary CDM

neighboring protogalaxy

$\stackrel{\mathbf{u}}{\nabla} \times \stackrel{\mathbf{1}}{\mathrm{V}}=0$

the velocity field remains irrotational

in case of irrotational flow

Tidal torque theory with axion BEC

$\stackrel{\mathbf{u}}{\nabla} \times \stackrel{\mathbf{1}}{\mathrm{v}} \neq 0$

net overall rotation is obtained because, in the lowest energy state, all axions fall with the same angular momentum

in case of net overall rotation

The specific angular momentum

 distribution on the turnaround sphere$$
\begin{array}{ll}
\mathrm{r}(\hat{n}, t)=j_{\max } \hat{n} \times(\hat{z} \times \hat{n}) \frac{R(t)^{2}}{t} & \\
& R(t) \propto t^{\frac{2}{3}+\frac{2}{9 \varepsilon}} \\
& 0.25<\varepsilon<0.35
\end{array}
$$

Is it plausible in the context of tidal torque theory?

Tidal torque theory with axion BEC

$\stackrel{\mathbf{u}}{\nabla} \times \stackrel{\mathbf{1}}{\mathrm{v}} \neq 0$

net overall rotation is obtained because, in the lowest energy state, all axions fall with the same angular momentum

Magnitude of angular momentum

$$
\begin{aligned}
& \lambda=\frac{L|E|^{\frac{1}{2}}}{G M^{\frac{5}{2}}}=\sqrt{\frac{6}{5-3 \varepsilon}} \frac{8}{10+3 \varepsilon} \frac{1}{\pi} j_{\max } \\
& \lambda \approx 0.05
\end{aligned}
$$

G. Efstathiou et al. 1979, 1987
fits perfectly $(0.25<\varepsilon<0.35)$

The specific angular momentum

 distribution on the turnaround sphere$$
\begin{array}{ll}
\mathrm{r}(\hat{n}, t)=j_{\max } \hat{n} \times(\hat{z} \times \hat{n}) \frac{R(t)^{2}}{t} & \\
& R(t) \propto t^{\frac{2}{3}+\frac{2}{9 \varepsilon}} \\
& 0.25<\varepsilon<0.35
\end{array}
$$

Is it plausible in the context of tidal torque theory?

Self-Similarity

$$
\begin{aligned}
& \left.\stackrel{r}{\tau}(t)=\int_{r(t)} d^{3} r \text { a comoving volume } \stackrel{r}{r}_{r}^{r}, t\right) \stackrel{r}{r} \times(-\stackrel{r}{\nabla} \phi(\stackrel{r}{r}, t) \\
& \frac{1}{r}=a(t) \frac{1}{x} \quad \phi\left(\frac{1}{r}=a(t) \frac{1}{x}, t\right)=\phi\left(\frac{1}{x}\right) \\
& \delta\left(\frac{r}{r}, t\right) \equiv \frac{\delta \rho\left(\frac{1}{r}, t\right)}{\rho_{0}(t)} \quad \delta\left(\stackrel{1}{r}=a(t) \stackrel{\stackrel{1}{x}, t)=a(t) \delta\left(\frac{1}{x}\right)}{ }\right. \\
& \stackrel{\mathrm{r}}{\tau}(t)=\rho_{0}(t) a(t)^{4} \int_{V} d^{3} x \delta(\stackrel{\mathrm{r}}{x}) \stackrel{\mathrm{r}}{x} \times\left(-\stackrel{\mathrm{I}}{\nabla}_{x} \phi(\stackrel{\mathrm{r}}{x})\right)
\end{aligned}
$$

Self-Similarity (yes!)

$$
\begin{gathered}
\stackrel{\mathrm{r}}{\tau}(t) \propto \hat{z} a(t) \propto \hat{z} t^{\frac{2}{3}} \\
\stackrel{\mathrm{r}}{L}(t) \propto \hat{z} t^{\frac{5}{3}}
\end{gathered}
$$

time-independent axis of rotation

$$
\stackrel{\mathrm{r}}{\mathrm{l}}(\hat{n}, t) \propto \frac{R(t)^{2}}{t} \propto t^{\frac{1}{3}+\frac{4}{9 \varepsilon}}=t^{\frac{5}{3}}
$$

$$
\text { provided } \quad \varepsilon=0.33
$$

Conclusion:

The dark matter looks like axions

Baryons and photons may enter into thermal contact with the axions by gravitational interactions as well

O. Erken, PS, H.Tam and Q. Yang, PRL 108 (2012) 061304

Relativistic axion modes and photons reach thermal contact with the cold axions if the cold axion correlation length reaches horizon size by the time of equality

$$
\begin{aligned}
& \propto a(t) \text { for } t<t_{e q} \\
& \sim \frac{\ell\left(t_{e q}\right)}{t_{e q}} \text { at } t=t_{e q} \\
& \sim \text { constant for } t>t_{e q}
\end{aligned}
$$

If photons, baryons and axions all reach the same temperature before decoupling

photons cool

$$
T_{\gamma, \mathrm{f}}=0.904 T_{\gamma, \mathrm{i}}
$$

baryon to photon ratio

$$
\eta_{\mathrm{BBN}}=0.738 \eta_{\mathrm{WMAP}}
$$

effective number of neutrinos

$$
N_{\nu, \mathrm{eff}}=6.7
$$

Effective number of neutrinos

$$
\begin{aligned}
\rho_{\mathrm{rad}}= & \rho_{\gamma}+\rho_{a}+\rho_{\nu} \\
= & \rho_{\gamma}\left[1+N_{\mathrm{eff}} \frac{7}{8}\left(\frac{4}{11}\right)^{\frac{4}{3}}\right] \\
& N_{\mathrm{eff}}=6.7
\end{aligned}
$$

WMAP 7 year: $\quad 4.34 \pm 0.87$ ($68 \% \mathrm{CL}$) J. Hamann et al. (SDSS): $\quad 4.8 \pm 2.0$ (95% CL) Atacama Cosmology Telescope: $5.3 \pm 1.3(68 \% \mathrm{CL})$

we will see ...

