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Cosmogenic neutrino flux
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Aperture and Rates (3 year)

Model and Reference Model Class Predicted N, 10000 ! !
ESS Fig. 4 (v. +v,) [71] No source evo. 30.8 ARIANNA (Ph11) | /A/‘r"
Kotera (2010) Fig. 1 [33] SFR1, Pure Proton 37.1 1000 strawman CA
ESS Fig. 9 [71] Strong evo. 104.9
Kalashev Fig. 2 [69] High By, 2 < 2 96.1 T oo
Barger Fig. 2 [42] Strong evo. 114.9 S /&/
Yuksel, Kistler (2007) [53 SFR evo. 45.4 i "  RIANNA (8
Yuksel, Kistler (2007) [53 QSO evo. 55.5 o =
Yuksel, Kistler (2007) (53 GRB evo. 156.1 w
Ave et al. (2005) [24] Pure Fe comp. 11.3 S ,
Todor Stanev [80] Fe, CMB+IRB 2.40 ARIANNA (Single)
Kotera Fig. 7 upper [33] Mixed comp. 21.7 0.1 ./
Kotera Fig. 7 lower [33] Pure Fe 7.50 ‘
Fermi-LAT [22 Eross = 10172 eV 15.5 0.01 ‘
Fermi-LAT [22 Eeross = 1077 ¢V 21.1 e Y leg(Elev]) *°
Fermi-LAT [22 Eross = 10'3° eV 32.9
Fermi-LAT [22 Eooss = 10190 eV 42.8
WB (1999) [17 No source evo. 22.4 J. Hanson UCI
WB (1999) [17 QSO0 evo. 67.1
Olinto review (2011) 23] | Fe, Epmas = 100 EeV 0.14 PhD Dissertation, 2013
Olinto review (2011) Mixed, Emqr = 10 EeV 0.068
Olinto review (2011) Proton, E, .. = 3 ZeV 101.3
Olinto review (2011) Various protonic, SFR 37.1
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A ARIANNA Advantages

e Straightforward logistics
— not far (~120 km) from main US science station
— surface deployment (no drilling)

e Excellent site properties
— Protected from man-made noise
— Good attenuation length and reflectivity from bottom

e Lightweight, robust technologies (so low $$)
e Internet access 24/7

* Array 1s reconfigurable to follow science
e Green Technologies: solar and wind only



Capabilities
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A ARIANNA Characteristics
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Pulse Amplitude (mV)

ARIANNA Site Studies

T. Barrella, et al., J. Glaciology, 2010
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Attenuation Length (m)
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Data collected over 3
years (2009-2012)

No impulsive
backgrounds which

IS mimic neutrino signals
60 80 100
P (ns)
Cut Value Events Remain. | Cut efficiency
Event Cleaning, 1 At analysis 1717295 96.5%
Event Cleaning, 2 Self-triggered 1645466 96.0%
Causality \Tij| < nzij/fc 174043 > 99%
Top > 60 ns all chan. 8077 > 99%
A > 5 (excl. West) 15 64.2%
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59.5%



Electronics and base of
comms tower (AFAR+Irid)
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thermal trigger rate (Hz)
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Rates are random and stable
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Bounce Tests

Pulser->Seavey TRX->Station
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Bounce Tests

Pulser->Seavey TRX->Station
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Data Analysis: HRA Station

(Jan 1-Jan 30, 2013)
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Summary: So far, so good

New DAQ electronics function as expected and
latest design operates on 10 Watts/station

Station communicates via high speed wireless and
Iridium satellites

Station automatically restarted during austral spring

No evidence of impulsive background that
resembles neutrinos -> straightforward analysis

Significant power from wind gen in 2013
Angular resolution of 0.16 deg of EM plane wave



ARIANNA Projected Costs

Very hard to give precise number until HRA completed in
December, 2013 and full proposal developed by
collaboration, but here goes

Hardware: $10k/station ~9.6M target
Personnel: ~10 M
Logistics (3 year install): ~5 M guess
Total: ~24.6M



EHE v detectors: Comments

EHE neutrino detectors:

e Contribute to ongoing quest to understand CRs

* Neutrino measurements provide independent confirmation of GZK
mechanism

* Combined with CR and photon measurements, can help to constrain
source class, evolution, Emax, and composition of CR
* Search for new physics

* Beam of EeV neutrinos can uncover new physics at ~5-10 x E_, of LHC
through cross-section and spectral modifications

e Search for new sources:

* EeV neutrinos must point back to sources and direction can be measured
with good precision and can be improved.

Huge upside at modest cost, development time, deployment and risk



Backup Slides



Askaryan Radio Array: ARA

P. Allison et al., Astropart. Phys 35(2012)457

Askaryan Radio Array ARA-37
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thermal trigger rate (Hz)
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Noise characteristics

Channel 0 of station 3: all other channels similar
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1. Installed 3 ARIANNA stations with new technologies and reconfigured one
previously deployed station to monitor the environment for a total of 4 operational
stations. Features of the new stations:
-low power consumption of 10W on average
-more robust design of amplifier reduces oscillation. Gain and frequency
response matched to data acquisition requirements.
-reduced cost by eliminating cpu, commerical power convertors, and pulse
generator. The last two features were implemented in special purpose board
-Housekeeping and data calibration implemented in electronic design
-Lithium battery storage (tested to —30C)
-improved power tower mechanism — simpler to install, taller, less vibration
-New wind generator designed for 100mph winds, more efficient in low winds,
rated to 200W for 25mph winds
-increased solar power to 160W to test if station can be powered by sunlight for
more than 0.5 year
-smaller footprint
-8GB local storage

2. Refurbished technology from last season to monitor power from wind, solar to power
consumption. Replaced failed Iridium modem.

3. Retrieved wind data for full year at site. Useful input for wind generators

4. Used reflected RF pulses to calibrate timing constants and evaluate angular resolution
5. Learned to reduce time to install power tower, communication tower and station

6. Wireless communication done solely through line of sight communication with
transceiver on Mt. Discovery. We no longer require ASC supplied communication
equipment at the ARIANNA site.

7, Heavy tower components and camp tents, floors, etc left at site for next season to
reduce helo time for science cargo and camp put in.



Preliminary Goals for Dec 2013

Focus on cost reduction, deployment speed and overwinter operation

Replace 3 current stations with improved MotherBoard power system

I. Use components rated to 23V

2. Encapsulate to mitigate radiation leaks through AFAR port

Install 4 new stations (including site of monitoring station)

1. We have 3 complete stations at UCI (or stored in the field) and plan to
fabricate 1-2 more

2. Improve Amp design to reduce costs and match physics

Investigate less costly wireless comm for local communication to more

central AFAR link. Comm should be coaxial throughout

Improve calibration

1. Bounce tests for all stations

2. Thorough study of pattern trigger to reduce threshold
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2012: More streamlined design
(smaller, lighter, less costly, more robust)
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Trigger rates

http://arianna.ps.uci.edu/~arianna/status/cstatus3.html
http://arianna.ps.uci.edu/~arianna/status/cstatus4.html
http://arianna.ps.uci.edu/~arianna/status/cstatus6.html
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Bounce Tests (0 deg)

PockelCell->Seavey->Station

Notes: RF Signals are strong, arrive within 2ns of each other
so ice related and electronic/cable related delays are small.

Chl feature at 30ns due to saturation of ATWD. Took data at
station and 180m from station to measure angular resolution.









Trigger Rates: What have we learned

I. InJanuary 2013, there are short episodes of extra power at
~150MHz on 6 different occasions, which turn on and turn off
quickly (perhaps related to helo activity). These events impact
live time at very small levels and do not mimic neutrino
signatures.

2. In Feb 2013, there are no episodes of extra power (compatible
with reduced helo activity).

3. In Feb, there are diurnal rate changes correlated with ambient
temp. There are rate changes associated with cold fronts and
longer term trends of decreasing temp.

4. Amp noise is not getting worse during the cold periods, so rate
changes are due to temp dependence of trigger thresholds.
Slight adjustments required.



