CF2: Indirect Detection Summary

Jim Buckley Washington University in St. Louis

for CF2: Doug Cowen, Stefano Profumo, JB conveners

Detection Techniques

Super-K

Annihilation Channels

Annihilation Channel	Secondary Processes	Signals	Notes
$\chi \chi \to q \bar{q}, g g$	$p, \bar{p}, \pi^{\pm}, \pi^0$	p, e, ν, γ	
$\chi \chi \to W^+ W^-$	$W^{\pm} \to l^{\pm} \nu_l, \ W^{\pm} \to u \bar{d} \to$	p, e, ν, γ	
	π^{\pm}, π^{0}		
$\chi \chi \to Z^0 Z^0$	$Z^0 \to l\bar{l}, \nu\bar{\nu}, q\bar{q} \to \text{pions}$	p, e, γ, ν	
$\chi \chi \to \tau^{\pm}$	$\tau^{\pm} \to \nu_{\tau} e^{\pm} \nu_e, \ \tau \to$		e,γ, u
	$\nu_{\tau}W^{\pm} \to p, \bar{p}, \text{pions}$		
$\chi \chi \to \mu^+ \mu^-$		e, γ	Rapid energy loss of
			μs in sun before
			decay results in
			sub-threshold νs
$\chi \chi \to \gamma \gamma$		γ	Loop suppressed
$\chi \chi \to Z^0 \gamma$	Z^0 decay	γ	Loop suppressed
$\chi \chi \to e^+ e^-$		e,γ	Helicity suppressed
$\chi \chi \to \nu \bar{\nu}$		ν	Helicity suppressed
			(important for
			non-Majorana
			WIMPs?)
$\chi \chi \to \phi \bar{\phi}$	$\phi \to e^+ e^-$	e^{\pm}	New scalar field with
			$m_{\chi} < m_q$ to explain
			large electron signal
			and avoid
			overproduction of
			$\mid p,\gamma$

Dark Matter Intro

Gravitational effect of DM is visible in many astrophysical settings.

Bullet cluster image shows gravitational mass inferred from lensing (blue) and X-ray emission from baryonic matter (red).

Not modified gravity, not gas - dark matter behaves like stars, weakly interacting particles

From WMAP : $\Omega_{\rm DM} h^2 = 0.1123 \pm 0.0035$

For a thermal relic of the big bang, the larger the annihilation cross section the longer the DM stays in equilibrium and the larger the Boltzmann suppression $\sim e^{-m_{\chi}/kT}$ before freeze-out.

$$\Omega_{\chi} \approx \frac{0.1}{h^2} \left(\frac{3 \times 10^{-26} \text{cm}^3 \text{sec}^{-1}}{\langle \sigma v \rangle} \right)$$

* Gamma-ray production by annihilation in the present universe is closely correlated to decoupling cross section in the early universe

SLAC CF 2013

CF2: Indirect Detection

Key Findings

Disclaimer: Not an exhaustive list of key Indirect DM science initiatives! (10 minutes can't do justice to amazing breadth of work)

- CTA, with the U.S. enhancement would provide a powerful new tool for searching for WIMP dark matter, and would complement other methods
- Future Neutrino experiments like the PINGU enhancement to IceCube/DeepCore offer the possibility of a smoking-gun signal (high energy neutrinos from the sun), and may provide some of the best constraints on spin dependent cross sections.
- Other astrophysical constraints such as low-frequency radio (synchrotron from electrons) or X-rays (inverse Compton scattering by electrons) can provide very powerful tests for Dark matter annihilation for certain annihilation channels, competitive with existing bounds.
- Detailed theoretical studies with PMSSM, contact operators, realistic halo models are resulting in quantitative estimates of sensitivity
- Key technology developments overlap with Direct Detection and Collider experiments.

Theory

$$E_{\gamma}\Phi_{\gamma}(\theta) \approx 10^{-10} \underbrace{\left(E_{\gamma,\mathrm{TeV}}\frac{dN}{dE_{\gamma,\mathrm{TeV}}}\right) \left(\frac{\langle\sigma v\rangle}{10^{-26}\mathrm{cm}^{-3}\mathrm{s}^{-1}}\right) \left(\frac{100\,\mathrm{GeV}}{M_{\chi}}\right)^{2}}_{J(\theta)} \mathrm{erg\,cm}^{-2}\mathrm{s}^{-1}\mathrm{sr}^{-1}$$

Particle Physics Input

Particle Physics Input

CTA Gal. Cen. Projection: Basic Results

(Cotta for Cahill-Rowley, Drlica-Wagner, Funk, Hewett, Ismail, Rizzo,

Baryonic Feedback

- Adding Baryons to N-body simulations starting to give amazing results similar morphology, Tully-Fisher relation.
- But jury is out on effects on Milky Way-like (or Dwarf) halos.

Adiabatic contraction steepens the DM profile and <u>increases</u> <u>central DM densities</u>. Impulsive supernova (or AGN) feedback <u>removes DM from the</u> <u>center</u> and flattens the DM cusp.

z=2, t=3.5 GyrPontzen & Governato (2012) 10⁸ ⁷
⁹
⁹
⁹
⁹
⁹
^{10⁷} ^{10⁶}
^{10⁶}
^{10⁶}
^{10⁶}
^{10¹}
^{10⁰}
^{10⁰}
^{10¹}
^{10⁰}
^{10¹}
^{10⁰}
^{10¹}
^{10⁰}
^{10¹}
^{10¹}
^{10⁰}
^{10¹}

SLAC CF 2013

Gamma-Ray Experiments

asolution the mothe Fermi-LAT the assumption of a core or the cusp is much

James Buckley

HESS GC Constraints

VERITAS

Tuesday, March 5, 13 • Current results on Segue extrapolated assuming 5 more years of data

SLAC CF 2013

CF2: Indirect Detection

VERITAS Projections

lacksquare

CTA

(M.Wood and A. Drlica-Wagner)

(**J**B)

U.S. Contribution to CTA

SLAC CF 2013

CF2: Indirect Detection

HAWC

Fermi Line(s)

simulations (M. Kuhlen)

5

10

-10

-5

0

Gal b [deg]

Neutrino Experiments

- Neutrino Capture by Sun

• The sun is a big proton target that can accumulate WIMPs as they scatter off of the nuclei, are captured, and annihilate giving high energy neutrinos that can be detected at the earth

Neutrino SD Limits

• Super-K and IceCube updated using contained events - lower threshold.

Future Neutrino Detectors

Cosmic-Ray Antimatter Experiments

Electron Spectrum

Positron Results

Positron to Electron Fraction

• Refinements in Pamela results, confirmation by Fermi using geomagnetic field, AMS results coming soon!

Agamma Constraints on e⁺/e⁻

• Fermi, VERITAS, and IceCube constraints all cut into a dark matter interpretation for the Pamela/Fermi e+/e- measurements.

GAPS

• GAPs looks for anti-deuterons (hard to produce as CR secondaries), uses TOF, X-rays from short-lived exotic atom, pion star from annihilation

CALET

CALET Overview

- **Observations**
- **Electrons** : 1 GeV -10,000 GeV
- Gamma-rays : 10 GeV -10,000 GeV (GRB > 1 GeV)
 - + Gamma-ray Bursts : 7 keV-20 MeV
- Protons, Heavy Nuclei: several 10 GeV- 1000TeV (per particle)
- Solar Particles and Modulated Particles in Solar System: 1 GeV-10 GeV (Electrons)

Instrument

- Imaging Calorimeter (Particle ID, Direction)
- Total Thickness of Tungsten (W) : 3 X₀ Layer Number of Scifi Belts : 8 Layers ×2(X,Y)
- Total Absorption Calorimeter
 (Energy Measurement, Particle ID)
 PWO 20mmx20mmx320mm
 Total Depth of PWO: 27 X₀ (24cm)
- Silicon Pixel Array (by Italy) (or a substitute) (Charge Measurement in Z=1-35) Silicon Pixel
- 11.25mmx11.25mmx0.5mm 2 Layers with a coverage of 54 x54 cm²

SLAC CF 2013

CF2: Indirect Detection

7

ybrid Photodetectorelopments

Large-Arga HPMT (Masahi Yokoyama)

SiPMs, (N. Otte)

LAPPD psec timing, 8" square photodetector, (K. Byrum)

Astrophysical Constraints

- In cases where the magnetic field and diffusion is understood, radio constraints on DM can be used.
- Electrons will IC scatter CMB photons, producing a measurable X-ray signal and DM

CF2: Indirect Detection

Moving Forward

Moving Forward

Moving Forward

• Charge formulated at FNAL community meeting.

- Charge formulated at FNAL community meeting.
- Received about 6 solicited/contributed whitepapers (drafts on the CF2 wiki page)

- Charge formulated at FNAL community meeting.
- Received about 6 solicited/contributed whitepapers (drafts on the CF2 wiki page)
- This meeting:

- Charge formulated at FNAL community meeting.
- Received about 6 solicited/contributed whitepapers (drafts on the CF2 wiki page)
- This meeting:
 - Identified main (consensus) findings for report

- Charge formulated at FNAL community meeting.
- Received about 6 solicited/contributed whitepapers (drafts on the CF2 wiki page)
- This meeting:
 - Identified main (consensus) findings for report
 - Working on benchmarks for astrophysics and particle physics.

- Charge formulated at FNAL community meeting.
- Received about 6 solicited/contributed whitepapers (drafts on the CF2 wiki page)
- This meeting:
 - Identified main (consensus) findings for report
 - Working on benchmarks for astrophysics and particle physics.
 - Worked on outline of CF2 report, key figures, missing input

- Charge formulated at FNAL community meeting.
- Received about 6 solicited/contributed whitepapers (drafts on the CF2 wiki page)
- This meeting:
 - Identified main (consensus) findings for report
 - Working on benchmarks for astrophysics and particle physics.
 - Worked on outline of CF2 report, key figures, missing input
- *Imagine:* What if we turn the techniques of HEP toward the sky and measure spectrum of annihilation (the same in two regions), and make an image of DM halos!

CF2: Indirect Detection

Top 10 Myths

• Astrophysical backgrounds make indirect detection impossible

How bad are astrophysical backgrounds? Total γ -ray flux (1-3 GeV) within $1^{\circ} \sim 1 \times 10^{-7} \text{cm}^{-2} \text{ s}^{-1} \Rightarrow \langle \sigma v \rangle = 1.6 \times 10^{-25} \text{ cm}^{-3} \text{ s}^{-1}$ (*Tim Linden's talk*)

• At very high energies, fewer backgrounds

- Uncertainties in Halo profiles mean that gamma-ray limits are wildly uncertain!
 - For GC this is worse than for Dwarfs, but may only amount to an order of magnitude uncertainty (see talk by Alex Drlica Wagner, Ferrer)
 - Gamma-ray, Neutrino and Cosmic-Ray antimatter do other Astrophysics besides Dark Matter
 - So do big, wide-field optical telescopes.
 - We can live with that! Supermassive black holes, pulsars, supernova remnants, EBL and LIV probes, numerous papers and theses

Backup Slides

GAMMA-400

GAMMA-400 Concept

Gamma-400 may provide important capability for high angular resolution, or energy resolution measurements

5

Velocity Distribution

FF, D. Hunter 13

- Local velocity distribution important for Direct Detection, but velocity distribution in halo center can be important for ID with velocity dependent $<\sigma_V>$
- Talks on N-body and theoretical progress in determining distribution important for >2 TeV observations to GC or Leptophillic DM.

• Since signal is $\sim \rho^2$, substructure of halos could give large boosts in signal. While this is likely to be a factor for Galaxy clusters, probably not a big factor in inner galaxy (but extrapolating mass function and roll of Baryons are tricky)

Galactic Center Regionigh-ene

The multiwavelength inner galaxy

Radio (90 cm)

HESS Gamma-Ray (~1 TeV)

Fermi Gamma-Ray (~1 GeV)

Abazajian & Kaplinghat 2012

• Talks by J. Siegal-Gaiskins and T. Linden on GC region

Direct Detection bounds

Electron Experiments

Experiment	Detectors	<i>E</i> Range	Exposure	Calorimeter		Magnet Spectrometer			
		(GeV)	$(m^2 sr s)$	Material	Depth	Layers	$B_{\rm ave}$	σ_x	length
PPB-BETs	EC	10-800	$\sim 4 \times 10^4$	Pb/SF?	9 X_0	36	N/A		
ATIC	EC	10-100,000	$\sim 3 \times 10^5$	BGO	$18 X_0$		N/A		
HESS	EC	6-8000	$\sim 8 \times 10^7$	Air	$27 X_0$	∞	N/A		
		300-800	$\sim 2 \times 10^7$						
Fermi LAT	EC	20-1000	$\sim 3 \times 10^7 \ (181)$	CsI(Tl)	8.6 X_0		Earth's Field		
			days)						
PAMELA	EC, MS	$50-300 \ (e^+)$	$\sim 1.5 \times 10^5$	W/Si	16 X_0	22	0.4 T	$\sim 7 \; \mu { m m}$	40.5
			(850 days)						cm/6
									layers
		$10-700 \ (e^{-})$	$\sim 2.1 \times 10^{5}$						
		~ ~ ~ ~	(1200 days)			1.0			
HEAT	EC, MS,	5-50	$\sim 1.3 \times 10^{3}$	Pb/PS	9 X_0	10	1 T	$ $ 70 μ m	61
	TRD								cm/18
									layers
Future Experiments									
AMS	EC, MS,		$\sim 4.5 \times 10^7 \ (5)$	Pb/SF		18	0.125 T	$10 \ \mu m$	/8 lay-
	TRD,		yr)						ers
	RICH								
CALET	$E\overline{C}$	10-10,000	$\sim \overline{2 \times 10^7}$ (5	$PbWO_4$	$27 X_0$		N/A		
			yr)						
VERITAS	EC,MS	100-10,000	$\sim 10^7$	Air	$27 X_0$	∞	Moon Shadow		

Hyper-Kamiokande

Hyper-Kamiokande

Mass of neutralino(GeV/ c^2)

CF2: Indirect Detection

Boosting Electrons

Annihilation into light leptons is helicity suppressed with respect to annihilation

into heavier fermions

New scalar fields with appropriate mass can allow electron-production, but make hadronic production kinematically forbidden. Sommerfeld enhancement by exchange of ϕ can result in a further boost in cross section

Internal bremmstrahlung can circumvent helicity suppression, but electromagnetic IB gives gamma-rays near kinematic maximum and W^{\pm} , Z bremmstrahlung can overproduce antiprotons

Boosting Electrons

Annihilation into light leptons is helicity suppressed with respect to annihilation

into heavier fermions

New scalar fields with appropriate mass can allow electron-production, but make hadronic production kinematically forbidden. Sommerfeld enhancement by exchange of ϕ can result in a further boost in cross section

Internal bremmstrahlung can circumvent helicity suppression, but electromagnetic IB gives gamma-rays near kinematic maximum and W^{\pm}, Z bremmstrahlung can overproduce antiprotons

Fermi Positron Fraction

- Muller and Tang proc. 19th ICRC, 2, 378 (1985) used Earth's magnetic field as a natural magnet spectrometer for first balloon measurements of positron fraction from 10-20 GeV (showing an excess that was not apparent in the more sensitive HEAT measurements)
- Recent preliminary result from Fermi agree with PAMELA positron spectrum

Mitthumsiri, W. et al., Fermi Symposium, May 2011

Novel approach for antideuteron identification

CF2: Indirect Detection

GAPS

• Earth limb photons.

CF2: Indirect Detection

Beyond DM-only: including baryonic physics

Often not even the sign of the effect is known...

Baryonic condensation in the centers of satellite halos makes them more resilient to tidal disruption and <u>increases</u> <u>abundance of inner subhalos</u>.

The deeper host halo potential, satellite cusp removal, and disk passages enhance tidal stripping and <u>reduce the number of</u> <u>surviving subhalos</u>.

Romano-Diaz et al. (2010)

Snowmass Process

- Contributed Papers from collaborations, groups and individuals
- 30 page CF summaries (due Summer 2013)
- 30 page CF summary (due by Minnesota meeting)
- 30 page Snowmass-wide Summary (written by Frontier conveners)

Fermi Lines

DOUBLE GAMMA-RAY LINES FROM UNASSOCIATED FERMI-LAT SOURCES

SLAC CF 2013

CF2: Indirect Detection

James Buckley

Problems with Positrons

- Schubnell (2009; arXiv:0905.0444) points out that old measurements (pre 1990) showed rise in positron fraction found to be a problem with instruments using small permanent magnets and limited particle ID.
- Intensity of CR protons exceeds that of positrons by a factor of 5x10⁴ above 10 GeV.
- PAMELA, originally designed to include a TRD, suffers from lack of strong particle discrimination.
- EC power is limited by the irreduceable background from single pi^0 that mimic electromagnetic showers

Dark Matter Annihilation Limits

Storm, Jeltema, Profumo, & Rudnick 2012

Neutrinos from GC Region

Abbasi et al. (for the ICECUBE collaboration) (Jan 17, 2011 arXiv: 1101.3359)

CF2: Indirect Detection

CTA Constraints.

SLAC CF 2013

ullet

CF2: Indirect Detection

James Buckley

GC DM Prospects

VERITAS sensitivity to GC region excluding point source for 3 TeV neutralinos with ~x10 boost (Sommerfeld or Astrophysical boost)
GC DM Prospects

VERITAS sensitivity to GC region excluding point source for 3 TeV neutralinos with ~x10 boost (Sommerfeld or Astrophysical boost)

CTA can detect ~>100-200 GeV neutralinos with no boost

Halo Uncertainties

