
CF4 Summary

Konstantin Matchev **UNIVERSITY** of **FLORIDA** The Foundation for The Gator Nation

Cosmic Frontier Workshop March 8, 2013

CF4 activities

- Pre-workshop
 - identify members/contributors
 - identify liaisons with CF1,CF2,HE4, collect limits
 - identify a set of theory models and experts
 - prepare draft of the short Complementarity Document
- At the workshop
 - discussion of the Complementarity Document
 - add: pMSSM example, Conclusions, Venn diagram/science goals
 - subtract: list of individual experiments, references
 - three CF4 sessions with (mostly) theory talks
 - joint sessions with CF1 (two), CF2 (two) and CF3 (one)
- Post-workshop
 - deliver the Complementarity Document (by March 29)
 - begin work on the CF4 Summary Report
 - in final form by July 12

Complementarity Document: TOC

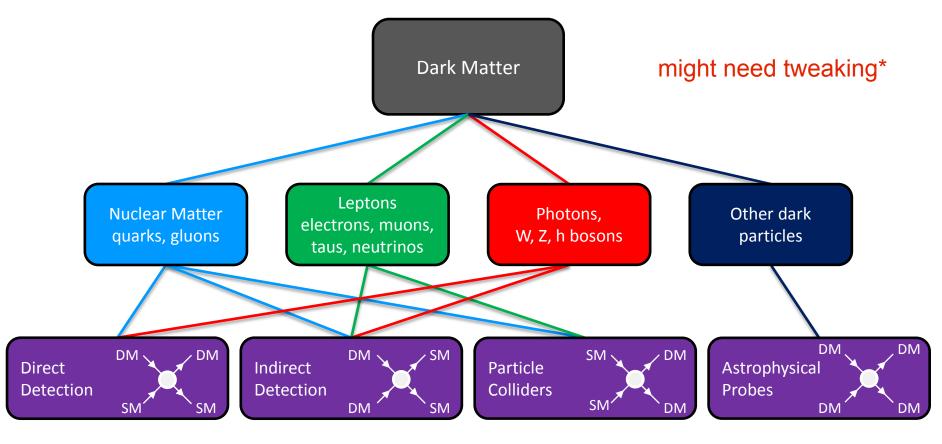
- Introduction
- Evidence and candidates
- The four pillars of dark matter detection
 - Direct detection
 - Indirect detection
 - Particle colliders
 - Astrophysical probes
- Complementarity
 - Basic features
 - Model-independent examples
 - Post-discovery complementarity
- Conclusions
- Appendix: Dark matter projects

Appendices: lists of experiments

DIRECT DETECTION

INDIRECT DETECTION

COLLIDERS

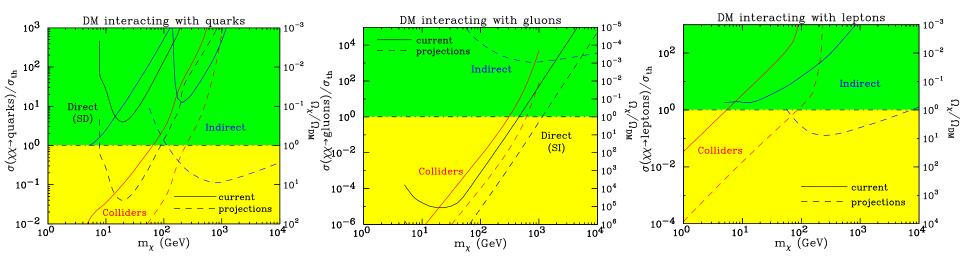

		TA	BLE I: Current and	planned direct d	etection e	cperiments.				
1	Status	Experiment	Target	Technique	Location	Major Support	Comments			
1	Current	LUX	350 kg liquid Xe	Ion., Scint.	SURF	DOE, NSF, European				
1	Planned	LZ	7 ton liquid Xe	Ion., Scint.	SURF	DOE, NSF, European				
1	Current	Xenon100	62 kg liquid Xe	Ion., Scint.	LNGS	DOE, NSF, European				
1	Planned	Xenon1T	3 ton liquid Xe	Ion., Scint.	LNGS	DOE, NSF, European				
1	Planned	PandaX-1	1.2 ton liquid Xe	Ion., Scint.	Jinping	Chinese				
1	Planned	PandaX-2	3 ton liquid Xe	Ion., Scint.	Jinping	Chinese				
1	Current	XMASS-I	800 kg liquid Xe	Scint.	Kamioka	Japanese				
1	Planned	XMASS-1.5	5 ton liquid Xe	Scint.	Kamioka	Japanese				
1	Current	DarkSide-50	50 kg liquid Ar	Ion., Scint.	LNGS	DOE, NSF, European				
1	Planned	DarkSide-G2	5 ton liquid Ar	Ion., Scint.	LNGS	DOE, NSF, European				
1	Current	ArDM	1 ton liquid Ar	Ion., Scint.	Canfranc	European				
1	Current	MiniCLEAN	500 kg liquid Ar/Ne	Scint.	SNOLab	DOE				
1	Current	DEAP-3600	3.6 ton liquid Ar	Scint.	SNOLab	Canadian				
1	Planned	CLEAN	40 ton liquid Ar/Ne	Scint.	SNOLab	DOE				
1	Current	COUPP-60	CF ₃ I	Bubbles	SNOLab	DOE, NSF				
1	Planned	COUPP-1T	CF ₃ I	Bubbles	SNOLab	DOE, NSF				
Ì	Current	PICASSO		Bubbles	SNOLab	Canadian				
Ì	Current	SIMPLE		Bubbles	Canfranc	European				
l	Current	SuperCDMS	10 kg Ge	Ion., Phonons	Soudan	DOE, NSF				
1	Planned	SuperCDMS	100 kg Ge	Ion., Phonons	Soudan	DOE, NSF				
1	Current	Edelweiss	4 kg Ge	Ion., Phonons	Modane	European				
1	Current	CRESST	10 kg CaWO_4	Scint., Phonons	LNGS	European				
1	Planned	EURECA	Ge, CaWO ₄							
1	Current	CoGeNT	Ge	Ion.	Soudan	DOE				
Î	Current	TEXONO	Ge	Ion.		Chinese				
Ì	Current	DAMA/LIBRA	NaI			European				
1	Current	ELEGANT	NaI			Japanese				
1	Planned	DM-Ice	NaI							
J	Planned	CINDMS	NaI			Chinese				
1	Current	KIMS	CsI							
1	Current	DRIFT		Ion.						
1	Current	DMTPC	CF ₄ gas	Ion.	WIPP					
Ì	Planned	NEXT	Xe gas	Ion., Scint.	Canfranc					
Ì	Planned	MIMAC		Ion.	Modane					
Ì	Planned	Superfluid He-4								
ĺ	Planned	DNA	DNA							
l		TO BE CONTINUED								
`										

Status	Experiment	Target	Location	Major Support	Comments
Current	AMS	e ⁺ /e [−] , anti-nuclei	ISS	NASA	Magnet Spectrome ter, Running
	Fermi	e^+/e^-	Satellite	NASA, DOE	Pair Telescope and Calorimeter, Run ning
	HESS	Photons, e ⁻	Namibia	German BMBF, Max Planck Society, French Ministry for Research, CNRS- IN2P3, UK PPARC, South Africa	
	IceCube/ DeepCore	Neutrinos	Antarctica	NSF, DOE, International *Belgium, Germany, Japan, Sweden)	Ice Cherenkov Running
	MAGIC	Photons, e^+/e^-	La Palma	German BMBF and MPG, INFN, WSwiss SNF, Spanish MICINN, CPAN, Bulgarian NSF, Academy of Finland, DFG, Polish MNiSzW	
	PAMELA	e^{+}/e^{-}	Satellite		
	VERITAS	Photons, e^+/e^-	Arizona, USA	DOE, NSF, SAO	ACT, Running
	ANTARES	Neutrinos	Mediter- ranean	France, Italy, Germany, Netherlands, Spain, Russia, and Morocco	Running
Planned	CALET	e^{+}/e^{-}	ISS	Japan JAXA, Italy ASI, NASA	Calorimeter
	СТА	Photons	ground- based (TBD)	International (MinCyT, CNEA, CON- ICET, CNRS-INSU, CNRS-IN2P3, Irfn-CEA, ANR, MPI, BMBF, DESY, Heimholtz Association, MIUR, NOVA, NWO, Poland, MICINN, CDTI, CPAN, Swedish Research Council, Royal Swedish Academy of Sciences, SNSF, Durham UK, NSF, DOE	
	GAMMA- 400	Photons	Satellite	Russian Space Agency, Russian Academy of Sciences, INFN	Pair Telescope
	GAPS	Anti- deuterons	Balloon (LDB)	NASA, JAXA	TOF, X-ray and Pion detection
	HAWC	Photons, e^+/e^-	Sierra Ne- gra	NSF/DOE	Water Cherenkov Air Shower Surfac Array
	IceCube/ PINGU	Neutrinos	Antarctica	NSF, Germany, Sweden, Belgium	Ice Cherenkov
	KM3NeT	Neutrinos	Mediter- ranean	ESFRI, including France, Italy, Greece, Netherlands, Germany, Ireland, Roma- nia, Spain, UK, Cyprus	
	ORCA	Neutrinos	Mediter- ranean	ESFRI, including France, Italy, Greece, Netherlands, Germany, Ireland, Roma- nia, Spain, UK, Cyprus	Water Cherenkov

TABLE III: Current and proposed particle colliders.							
Status	Major Support	Comments					
Current	LHC	pp	8 TeV, 20 fb ⁻¹	DOE, NSF			
Upcoming	LHC	pp	$14 \text{ TeV}, 300 \text{ fb}^{-1}$	DOE, NSF			
Proposed	HL LHC	pp	$14~{\rm TeV},3000~{\rm fb^{-1}}$				
Proposed	VLHC	pp	33-100 TeV				
Proposed	Higgs Factory	e^+e^-	250 GeV				
Proposed	ILC, CLIC	e^+e^-	0.5-3 TeV				
Proposed	Muon Collider	$\mu^+\mu^-$	6 TeV				
TO BE CONTINUED							

DM interactions vs. DM probes

• For the purposes of this report, DM candidates are categorized according to their basic interactions


Model-independent examples

- In the short Complementarity Document:
 - Be agnostic about the underlying theory model
- Parameterize our ignorance about
 - the origin of SUSY breaking
 - pMSSM talks (Ismail, Cotta, Cahill-Rowley, Drlica-Wagner)
 - the type of DM-SM interactions and their mediators
 - effective operators (Shepherd)
- The longer CF4 summary document will also consider specific theory models:
 - CMSSM (Sanford)
 - NUSUGRA (Baer)
 - UED (Kong)
 - NMSSM (McCaskey, Shaughnessy)

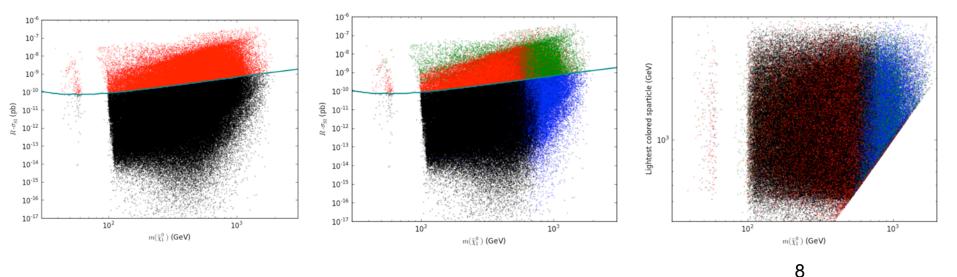
I. Effective operator approach

• Effective theory of SM+DM.

D8

$$\frac{1}{M_q^2} \ \bar{\chi}\gamma^{\mu}\gamma_5\chi \sum_q \bar{q}\gamma_{\mu}\gamma_5q + \frac{\alpha_S}{M_g^3} \ \bar{\chi}\chi G^{a\mu\nu}G^a_{\mu\nu} + \frac{1}{M_\ell^2} \ \bar{\chi}\gamma^{\mu}\chi \sum_\ell \bar{\ell}\gamma_{\mu}\ell$$

D11


D5

7

II. The pMSSM approach (SUSY without prejudice)

talks by: M. Cahill-Rowley, R. Cotta, A. Drlica-Wagner, A. Ismail, T. Rizzo, M. Wood

- Sequentially apply projected constraints from
 - direct detection (red versus black)
 - indirect detection (red->green; black->blue)
 - LHC

Where are the benchmark points?

- Still under discussion in the High Energy Frontier
- Not all HEF models are suitable for DM studies
- We have begun collecting good DM benchmark models at the workshop
 - will be linked to the CF4 twiki
 - synchronization exercises?

h+Beyond+the+Standard+Model#Full_SUSY_n

Contract of the

	n the Mississippi a.s. a cos zero Log in'
Duilds Links	The Path Depond the Standard Model
TWIAI	New Particles, Forces, and Dimensions
Pre-	Convenent: Yurl Gerstoon (Rutgers), Hartus Luty (UC
meetings	Davis), Hoonakshi Narain (Brown), Llanteo Wang (Chicago), Daniel Whiteson (UC Swine)
Community	francade? count transmitter stands
Planning	Club here is send email to the conveners
Meeting All pre-	
Showmens.	Table of contexts
Meetings	Charge to the Subgroup:
	Neetings
Courses	Background Samples
Energy Frontier	Models under Study SUSY Simplified Hodels
Intensity	Full SUSY models
Frontier	RPV SUSY
Coamic	R-hadrons
Frontier Frontier	Universal Extra Dimensions RS Extra Dimensions
Capabilities	
Instrument.	
Frontier	Heavy Fermions
Computing	BSM Hopps
Frontier Education	wiki page for projects
and	
Outreach	Charge to the Bullightup:
Theory	Charge Details
Panel	
Gaugia	Madings
Search	January Srvine Heeting+
	Badground Darpies
۲	APBeckgroundSemplesTwiki
incement/00	
www	Models under Study
	SUTE SHARLINES MODELS
	 Contact people: Tim Cohen, Jay Wacker
	 Details of benchmark models: here r
	 Status: generating signal events for LHC14
	FAL BUSY MODELS
	· Contact people : Tom Rizzo, Joanne Hewett, Jonathan
	Feno, Howie Beer
	 Details of benchmark models: here r
	 Status: generating signal events for LHC14
	BY BUT
	Contact: Janed Evans
	 Details of benchmark processes: here r
	 Status generating signal events for LHC14
	8.HADRONS
	Contact: Andy Hates
	 Introductory text: here*
	Details:
	 Status: specifying benchmark points
	UNIVERSAL EXTRA DIMENSIONS

Contact: KC Kong

- Contact: Kc Kong
 Defails of benchmark processes here r
- Status generating signal events for LHCI4

EXTRA DIMENSIONS

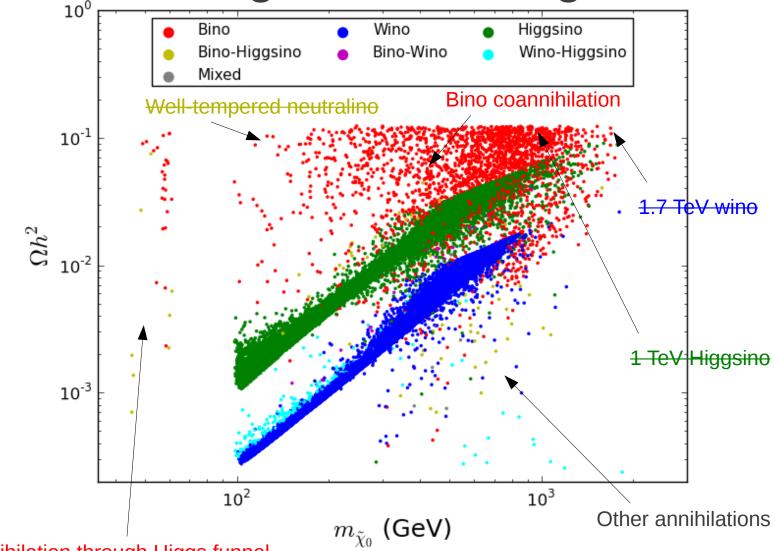
- Contact: Devin Walker, Kaustuch Ageste
 - Details of benchmark processes here r & here r

🟠 🗋 www.slac.stanford.edu/~aismail/snowmass/index.html

pMSSM Benchmarks for Snowmass 2013

This page contains benchmark pMSSM points and slopes for the Snowmass 2013 study. Comments and questions should be directed to aismail AT stanford DOT edu.

A brief introduction to these benchmarks


We present several benchmark points in the phenomenological Minimal Supersymmetric Standard Model (pMSSM). We select these models as experimentally well-motivated examples of the MSSM which predict the observed Higgs mass and dark matter relic density while evading the current LHC searches. In some cases, we use a benchmark to generate a slope in parameter space by scaling the mass parameters in a manner which keeps the Higgs mass and relic density approximately constant.

After the January meeting of the BSM working group, we have introduced modified versions of many of our benchmarks, now with degenerate 1st/2nd generation squark and/or slepton masses. The original benchmarks are still available.

Bino-stop coannihilation

<u>SLHA file</u> <u>Spectrum</u> <u>Dark matter info</u> Slopes to come! Modified <u>SLHA file</u> and <u>spectrum</u> after January BSM group meeting talk by A. Ismail "Complementarity in the pMSSM"

Most surviving LSPs are eigenstates

Bino annihilation through Higgs funnel

talk by D. Sanford "Status of the CMSSM and the Focus Point"

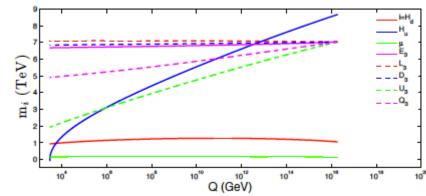
Focus Point Benchmark Points ($\mu < 0$)

- Set $m_0 = 9$ TeV to produce correct Higgs mass
- Choose *A* to produce $\Omega_{\chi} = \Omega_{DM}$
- All points have m_h in range 125-126 GeV

<i>M</i> _{1/2}	A	m_{χ}	$m_{\tilde{g}}$	$\sigma_p^{ m SI}$ (zb)	$\sigma_{ m ho}^{ m SD}$ (ab)	Solar μ Flux	$\mathcal{B}(\gamma\gamma)$
(TeV)	(TeV)	(GeV)	(TeV)	$f_{s} = 0.05$,	$({\rm km^{-2} \ yr^{-1}})$	(×10 ⁻⁴)
0.7	-4.81	302.5	1.79	5.34	89.8	30.4	0.338
0.8	-4.57	345.6	2.01	6.45	80.9	35.0	0.569
0.9	-4.34	388.9	2.23	7.43	71.8	34.5	0.858
1.2	-3.65	519.6	2.87	9.39	49.5	26.4	2.058
1.4	-3.18	606.7	3.29	10.2	39.0	19.2	3.176
1.6	-2.69	692.9	3.71	10.6	30.8	13.6	4.604
1.8	-2.16	777.4	4.11	10.3	23.6	9.37	6.387
2.0	-1.57	858.4	4.52	8.99	16.9	5.97	8.624
2.5	4.38	1010	5.50	2.93	39.1	1.47	16.82
3.0	1.24	1047	6.50	7.33	90.8	0.42	24.67

with J. Feng, K. Matchev, J. Gainer

Constrained by COUPP60 1 yr expected sensitivity


talk by H. Baer "Perspectives on SUSY in the post-LHC era"

Next: how can
$$-m_{H_u}^2(m_{weak}) \sim m_Z^2/2$$
?

Large top Yukawa radiatively drives $m_{H_u}^2$ to small negative values

$$\frac{dm_{H_u}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5}g_1^2 M_1^2 - 3g_2^2 M_2^2 + \frac{3}{10}g_1^2 S + 3f_t^2 X_t \right)$$

$$X_t = m_{Q_3}^2 + m_{\tilde{t}_R}^2 + m_{H_u}^2 + A_t^2$$

Large logs are a feature, not a hindrance; they are large because m(t)=173.2 GeV.

Why is m(t) so large? I don't know, but I am glad it is.

In mSUGRA, this only happens in HB/FP region where stops also are heavy; in NUHM models, this can occur even if lighter stops

$$m_{H_u}^2(m_{GUT}) \sim (1-2)m_0^2$$

talk by H. Baer "Perspectives on SUSY in the post-LHC era"

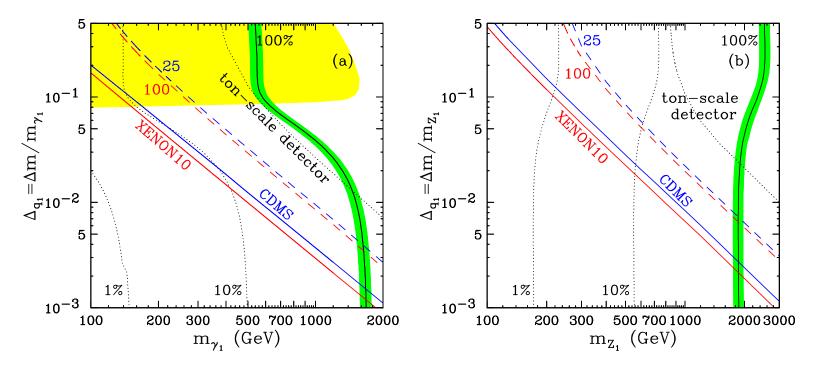
SUSY spectra from radiatively-driven natural SUSY (RNS)

scan NUHM2 space:

- light higgsino-like \widetilde{W}_1 and $\widetilde{Z}_{1,2}$ with mass $\sim 100 300$ GeV,
- gluinos with mass $m_{\tilde{g}} \sim 1 4$ TeV,
- heavier top squarks than generic NS models: $m_{\tilde{t}_1} \sim 1-2$ TeV and $m_{\tilde{t}_2} \sim 2-5$ TeV,
- first/second generation squarks and sleptons with mass $m_{\tilde{q},\tilde{\ell}} \sim 1-8$ TeV. The $m_{\tilde{\ell}}$ range can be pushed up to 20-30 TeV if non-universality of generations with $m_0(1,2) > m_0(3)$ is allowed.

ι.		/	
parameter	RNS1	RNS2	NS2
$m_0(1,2)$	10000	7025.0	19542.2
$m_0(3)$	5000	7025.0	2430.6
$m_{1/2}$	700	568.3	1549.3
A_0	-7300	-11426.6	873.2
an eta	10	8.55	22.1
μ	150	150	150
m_A	1000	1000	1652.7
$m_{ ilde{g}}$	1859.0	1562.8	3696.8
$m_{ar{u}_L}$	10050.9	7020.9	19736.2
$m_{\tilde{u}_R}$	10141.6	7256.2	19762.6
$m_{\tilde{e}_R}$	9909.9	6755.4	19537.2
$m_{ ilde{t}_1}$	1415.9	1843.4	572.0
$m_{\tilde{t}_2}$	3424.8	4921.4	715.4
$m_{ar{b}_1}$	3450.1	4962.6	497.3
$m_{\overline{b}_2}$	4823.6	6914.9	1723.8
$m_{ au_1}$	4737.5	6679.4	2084.7
$m_{ au_2}$	5020.7	7116.9	2189.1
$m_{ar{ u}_{ au}}$	5000.1	7128.3	2061.8
$m_{\widetilde{W}_2}$	621.3	513.9	1341.2
$m_{\widetilde{W}_1}$	154.2	152.7	156.1
$m_{\widetilde{Z}_4}$	631.2	525.2	1340.4
$m_{\widetilde{Z}_3}$	323.3	268.8	698.8
$m_{\widetilde{Z}_2}$	158.5	159.2	156.2
$m_{\widetilde{Z}_1}$	140.0	135.4	149.2
mh	123.7	125.0	121.1
$\Omega_{\widetilde{Z}_1}^{std}h^2$	0.009	0.01	0.006
$BF(b \rightarrow s\gamma) \times 10^4$	3.3	3.3	3.6
$BF(B_s \rightarrow \mu^+ \mu^-) \times 10^9$	3.8	3.8	4.0
$\sigma^{SI}(\widetilde{Z}_1 p)$ (pb)	$1.1 imes 10^{-8}$	1.7×10^{-8}	1.8×10^{-9}
Δ	9.7	11.5	23.7

talk by K. Kong "Dark Matter Complementarity: UED review"

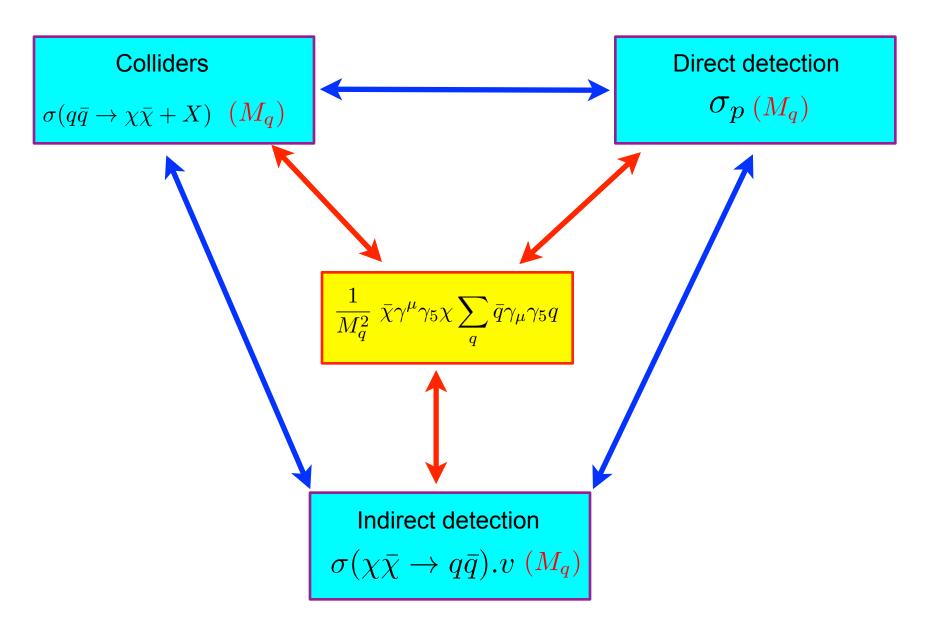

HF4: UED Benchmarks

- We propose the following:
 - Consider 5D UED only
 - 6D model needs to address an issue with DM (too low KK scale)
 - Minimal UED
 - two parameters: R and Lambda (cutoff)
 - cutoff dependence is only logarithmic
 - mass spectrum from radiative correction (no boundary terms)
 - compressed mass spectrum
 - Non-minimal UED with brane terms for strong sector
 - two additional parameters: rG and rQ (for universal brane terms)
 - Signatures (standard SUSY search + resonances)
 - level 1: jets + n-leptons + met, n=0,1,2,3,4
 - level 2: dijet, dilepton and lepton-neutrino final states

talk by K. Kong "Dark Matter Complementarity: UED review"

KK Dark Matter: complementarity

- Treat the LKP mass and mass splitting as free parameters.
- Gives a better chance for the LHC, and direct detection.


- Yellow: 4 leptons plus MET at 14 TeV LHC with 100 fb-1
- Green: relic abundance

Arrenberg, Baudis, Kong, Matchev, Yoo 2008

Looking ahead

- Finish the complementarity document by March 29
 - only a few loose ends left
- Begin work on the CF4 summary report
 - use the short Complementarity Document as a starting point
 - identify additional topics
 - theory model examples discussed here at the workshop
 - contributors are identified
 - solicit (white paper style) contributions
 - discuss astrophysical probes
 - (talks by A. Peter, M. Boylan-Colchin, W. Dawson)
- Attend upcoming Snowmass related workshops
 - All-hands EF meetings at BNL, U. Washington
 - SnowDark workshop in Snowbird
 - Theory workshop at KITP
 - All-frontier Snowmass meeting in Minnesota

BACKUPS

