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• remarks on SM extensions

• worked example:  “wino” - like DM  

• heavy particle expansions and DM interactions

• quarks in nucleons, nucleons in nuclei 

effective field theory = “QM + relativity + calculus”

based largely on work with M.P. Solon PLB 707 539 (2012), and to appear
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interesting work I will not cover

• contact interaction dark matter

• derivative interaction dark matter

• factoring out astrophysics
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• SUSY and model building

too many contributions to list here (apologies) 



in defense of simple models*

4

• sometimes simple models work 
very well  
(e.g. Standard Model higgs)
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* for present purposes, simple model 
~ UV completion whose form is RG invariant
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• guidance into the unknown

neutrino mass problem
SM gauge symmetries allow dimension five operator

! L ⇠ m⌫⌫⌫ , m⌫ ⇠ v2weak
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- seesaw UV completion a simple guide to possible size of neutrino 
mass

Richard  Hill                    University of Chicago                                       Cosmic Frontier: Developments in WIMP scattering

H ⌫0



6

• guidance into the unknown

dark matter problem

at very low energies, interactions with SM given 
by contact interactions H �

to understand strength of coupling and to relate different processes, 
need guidance from underlying interactions

L�,SM = �⇤�

⇢X
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e↵ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on �v or involving �5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L�0,SM =
1

m3
W

�⇤
v�v

⇢X

q


c(0)1q O

(0)
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+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⌫)

2 ,

O(2)µ⌫
1q = q̄

✓
�{µiD⌫} � 1

d
gµ⌫iD/

◆
q , O(2)µ⌫
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� +

1

d
gµ⌫(GA

↵�)
2 . (20)

Here A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2✏ the spacetime dimension. We use the background field method
for gluons in the e↵ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe�cients c(S)2 through O(↵s) and c(S)1q through O(↵0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇠ mt ⇠ mW ⇠ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C

� 1

x2
h

�
, c(0)1D(µt) = C


� 1

x2
h

� |VtD|2 xt

4(1 + xt)3

�
,

c(2)1U(µt) = C

2

3

�
, c(2)1D(µt) = C


2

3
� |VtD|2xt(3 + 6xt + 2x2

t )

3(1 + xt)3

�
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇡↵2
2(µt)][J(J +

1)/2], xh ⌘ mh/mW and xt ⌘ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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in defense of calculating
Naive dimensional estimates can be very wrong for some 
basic numbers

Large logarithms of QCD perturbation theory can cause 
large effects 

Given our present knowledge of SM, can now make robust 
predictions for how BSM particles interact with, e.g., nuclei 
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Figure 3: Cross section for low-velocity scattering on a nucleon for a heavy real scalar in the
isospin J = 1 representation of SU(2). The dark shaded region represents the 1� uncertainty
from perturbative QCD, estimated by varying factorization scales. The light shaded region
represents the 1� uncertainty from hadronic inputs.

including contributions to �/g through O(↵4
s) and �m through O(↵3

s). The residual µ0 scale
variation is insignificant compared to other uncertainties. We perform the RG running and
heavy quark matching from µt to µc at NLO. Hadronic input uncertainties from each source
in Table 1 and Table 2 are added in quadrature. We have ignored power corrections appearing
at relative order ↵s(mc)⇤2

QCD/m
2
c ; typical numerical prefactors appearing in the coe�cients of

the corresponding power-suppressed operators [18] suggest that these e↵ects are small.
Due to a partial cancellation between spin-0 and spin-2 matrix elements, the total cross

section and the fractional error depend sensitively on subleading perturbative corrections and
on the Higgs mass parameter mh. We find

�p(mh = 120GeV) = 0.7±0.1+0.9
�0.3⇥10�47cm2 , �p(mh = 140GeV) = 2.4±0.2+1.5

�0.6⇥10�47cm2 ,
(33)

where the first error is from hadronic inputs, assuming ⌃lat
s and ⌃lat

⇡N from Table 1, and the
second error represents the e↵ect of neglected higher order perturbative QCD corrections. For
the illustrative value mh = 120GeV, and as a function of the scalar strange-quark matrix
element ⌃s, we display the separate contributions of each of the quark and gluon operators in
Fig. 4.

7 Summary

We have presented the e↵ective theory for heavy, weakly interacting dark matter candidates
charged under electroweak SU(2). Having determined the general form of the e↵ective la-

12

� ⇠ ⇡↵4
2m

4
N

m2
W

✓
1

m2
W

+
1

m2
h

◆2

⇠ 10�44 cm2vs.
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Universal interactions with heavy particles 

- hydrogen spectroscopy 

- heavy meson transitions 

- DM interactions

heavy particles

(1): (2): (3):

(4): (5): (6):

Figure 1: NRQED virtual vertex corrections.
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For the loop diagrams, we work in Coulomb gauge.
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The integral can be evaluated by closing the L0 contour above, and only the photon propagator
contributes. For the leading term in 1/m, we can ignore the subleading terms in the remaining
denominators, and then the numerator also simplifies (note that we have not broken the
effective theory in “potential” (v, v2) and ”ultrasoft” (v2, v2) modes). For the various pieces,
we have:
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- in this regime, mW/M expansion becomes meaningful, universal behavior 
emerges 

- in SUSY language, pure bino/wino/higgsino scattering suppressed (no tree 
level higgs exchange).   This case becomes “generic” when M>>mW

(M1-M2 ~ mW not generic) 

- heavy particle methods efficient in particular models (e.g. relic 
abundance → mχ ≳ TeV for wino-like, higgsino-like DM)

- but applicable to general case where UV completion unspecified 

LHC: New physics may be heavy (compared to mW)
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Generic dark matter candidate described by extending SM by finite 
number of particles in representations of SM gauge groups 

+ + +

= c2 + c1
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⌅
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.

7
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

scalars will become relevant at order 1/m4
W in nuclear scattering computations; similarly, we

restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators
with derivatives acting on ⇧v or inolving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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where we have chosen to work in a basis of QCD operators of definite spin,
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Here A{µB⇧} ⇥ (AµB⇧+A⇧Bµ)/2 denotes symmetrization. We employ dimensional regulariza-
tion with d = 4�2⇤ the spacetime dimension. We use the background field method for gluons
in the e�ective theory thus ignoring gauge-variant operators, and assume that appropriate
field redefinitions are employed to eliminate operators that vanish by leading order equations
of motion. We note below that the matrix elements of gluonic operators, O(S)

2 are numerically
large (representing a substantial contribution of gluons to the energy and momentum of the

nucleon). We count the hadronic matrix elements �sO
(S)
2 and O1q as the same order, and thus

require the coe⌅cients c(S)
2 through O(�s) and c(S)

1q through O(�0
s).

4 Weak scale matching

The matching conditions onto quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mW ⇤ mh ⇤ mt are obtained from the diagrams in Fig. (1):
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• Scattering on nucleon is completely 
determined, up to controlled corrections

mW /M, �2
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2
c , mb/mW . . .

As prototype, consider Lorentz-scalar, SU(2) electroweak multiplet
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W in nuclear scattering computations; similarly, we

restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators
with derivatives acting on ⇧v or inolving ⇥5, since these lead to spin-dependent interactions
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 Standard Model anatomy of direct detection

• M >~ TeV from thermal relic abundance. M>>mW : model-independent 
analysis, predictive scattering cross section

• large gluon matrix element: 
2 loop required for leading analysis



Multiple scales: 

Consider effective theory at each scale: 

mW � mh � mt

mb , mc

�QCD

Renormalization analysis required to sum 
large logarithms

�s(µ) log
mt

µ
� �s(1GeV) log

170GeV

1GeV

M
�v , SM

�(Q=0)
v , u, d, s, c, b, g

�(Q=0)
v , u, d, s, g {Analysis in low 

energy theory applies 
to non-SU(2)-multiplet
scenarios

Universal to an 
SU(2)-multiplet 
scenario
{

? , SM
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(EW symmetric) heavy DM effective theory:

Operator basis

gauge groups. We start by investigating the e�ective theory at scales mW ⌅ µ ⌅ M , with
unbroken electroweak gauge symmetry.

2.1 Lagrangian

We work in terms of an e�ective heavy scalar field ⇤v(x), in the isospin J representation of
SU(2). The covariant derivative is Dµ = ⌥µ � ig2W a

µ t
a
J . and Wµ⌅ ⇤ i[Dµ, D⌅ ]/g2 ⇤ W a

µ⌅t
a
J is

the associated field strength. We let g1, g2, g3 ⇤ g denote the Standard Model U(1)Y , SU(2)W
and SU(3)c gauge coupling constants, respectively. A typical heavy particle momentum can
be decomposed as

pµ = Mvµ + kµ , (2)

where vµ is a velocity, v2 = 1, and kµ is a residual momentum. The basis of operators involves
the perpendicular derivative,

Dµ
⇤ ⇤ Dµ � vµv ·D . (3)

Through O(1/M3), the scalar heavy particle e�ective theory in the one-heavy-particle sector
takes the form,

L⌥ = ⇤�
v

�
iv ·D � c1

D2
⇤

2M
+ c2

D4
⇤

8M3
+ g2cD

v�[D⇥
⇤,W�⇥]

8M2
+ ig2cM

{D�
⇤, [D

⇥
⇤,W�⇥]}

16M3

+ g22cA1
W�⇥W�⇥

16M3
+ g22cA2

v�v⇥W µ�Wµ⇥

16M3
+ g22cA3

Tr(W �⇥W�⇥)

16M3
+ g22cA4

Tr(v�v⇥W µ�Wµ⇥)

16M3

+ g22c
⇥
A1

�µ⌅⇧⌃Wµ⌅W⇧⌃

16M3
+ g22c

⇥
A2

�µ⌅⇧⌃v�vµW⌅�W⇧⌃

16M3
+ g22c

⇥
A3

�µ⌅⇧⌃Tr(Wµ⌅W⇧⌃)

16M3

+ g22c
⇥
A4

�µ⌅⇧⌃v�vµTr(W⌅�W⇧⌃)

16M3
+ . . .

⇥
⇤v , (4)

where we have employed appropriate field redefinitions to remove possible redundant operators
involving factors of v ·D acting on ⇤v. Note that the operators with coe⇤cients c⇥A1 through c⇥A4

violate parity and time reversal symmetries.1 For the e�ective theory describing a fundamental
heavy scalar particle, we have c1 = c2 = cA1 = 1 and cD = cM = cA2 = cA3 = cA4 = c⇥A1 =
c⇥A2 = c⇥A3 = c⇥A4 = 0 at tree level [4]. We find that the low-energy manifestation of relativistic
invariance (“reparameterization invariance” [5, 6]) implies the exact relations,

c1 = c2 = 1 , cM = cD . (5)

Section 2.2 provides a nontrivial illustration of the latter relation.
The complete lagrangian including Standard Model particles and interactions can be writ-

ten
L = L⌥ + LSM + L⌥,SM . (6)

1Additional CPT violating operators at O(1/M2) and O(1/M3) are constrained by reparameterization
invariance to have vanishing coe�cient.

2

�v(x) , vµ , D�µ = Dµ � vµv ·DBuilding blocks: 

Everything not forbidden is allowed: 

Lorentz invariance:
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µ t
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J and Wµ⌅ ⇤ i[Dµ, D⌅ ]/g2 ⇤ W a
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where we have employed appropriate field redefinitions to remove possible redundant operators
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c⇥A2 = c⇥A3 = c⇥A4 = 0 at tree level [4]. We find that the low-energy manifestation of relativistic
invariance (“reparameterization invariance” [5, 6]) implies the exact relations,

c1 = c2 = 1 , cM = cD . (5)

Section 2.2 provides a nontrivial illustration of the latter relation.
The complete lagrangian including Standard Model particles and interactions can be writ-

ten
L = L⌥ + LSM + L⌥,SM . (6)

1Additional CPT violating operators at O(1/M2) and O(1/M3) are constrained by reparameterization
invariance to have vanishing coe�cient.

2

⇒Through O(1/M3), heavy gauged scalar determined by 2 

numbers (mass and “charge radius”), plus polarizabilities
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Standard model interactions 

All of these are suppressed by 1/M

Here LSM is the usual Standard Model lagrangian, and by convention we have included interac-
tions withWµ in L⌥. So far our discussion applies to a general irreducible SU(2) representation
for the heavy scalar field ⇧v. Specializing to the case of a real scalar field, necessarily with
integer isospin, the e�ective theory is invariant under2

vµ ⌅ �vµ , ⇧v ⌅ ⇧�
v . (7)

It is straightforward to verify that all interactions in L⌥ are invariant under this transformation.
In the one-heavy-particle sector, the remaining terms involving the Higgs field H, gauge

fields, and fermions are (H̃ ⇤ i⌅2H�)

L⌥,SM = ⇧�
v

�
cH

H†H

M
+ · · ·+ cQ

taJQ̄L⌅av/QL

M2
+ cX

iQ̄L⌅a�µQL{taJ , Dµ}
2M3

+ cDQ
Q̄Lv/ iv ·DQL

M3

+ cDu
ūRv/ iv ·DuR

M3
+ cDd

d̄Rv/ iv ·DdR
M3

+ cHd
Q̄LHdR + h.c.

M3
+ cHu

Q̄LH̃uR + h.c.

M3

+ g23c
(G)
A1

GA�⇥GA
�⇥

16M3
+ g23c

(G)
A2

v�v⇥GAµ�GA
µ⇥

16M3
+ g23c

(G) ⇥
A1

⇥µ⌅⇧⌃GA
µ⌅G

A
⇧⌃

16M3
+ g23c

(G) ⇥
A2

⇥µ⌅⇧⌃v�vµGA
⌅�G

A
⇧⌃

16M3

+ . . .

⇥
⇧v . (8)

Terms odd under (7) have been omitted. Subleading terms containing only H, ⇧v and their
covariant derivatives are represented by the first ellipsis in (8). Terms bilinear in lepton fields,
and terms bilinear in the hypercharge gauge field are also present in L⌥,SM but have not been
written explicitly. Repeated indices a = 1..3 and A = 1..8 imply a sum over gauge generators.
Reparameterization invariance implies

cQ = cX . (9)

2.2 Sample matching calculation

As an illustration of the construction and matching conditions for the heavy particle lagrangian
L⌥, consider the case of a fundamental scalar, ignoring scalar self interactions (i.e., ⇧4 terms).
For the matching of the terms containing a single gauge field, we consider the full theory result
for the W⇧⇧ amputated three point function,

q

p, i p⇥, j

µ, a

= ig2(p+ p⇥)µF (q2)(taJ)ji , (10)

where q = p⇥ � p, and F (q2) is a model-dependent form factor. Setting p2 = p⇥2 = M2,
vµ = (1, 0, 0, 0), the matching conditions for scalar scattering from a µ = 0 or µ = i gauge

2For a real scalar field, the e�ective theory is obtained by introducing vµ in the field redefinition �(x) =
e�imv·x�v(x)/

�
M = eimv·x�⇤

v(x)/
�
M = �⇤(x).

3

Lorentz invariance: 
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integer isospin, the e�ective theory is invariant under2
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Terms odd under (7) have been omitted. Subleading terms containing only H, ⇧v and their
covariant derivatives are represented by the first ellipsis in (8). Terms bilinear in lepton fields,
and terms bilinear in the hypercharge gauge field are also present in L⌥,SM but have not been
written explicitly. Repeated indices a = 1..3 and A = 1..8 imply a sum over gauge generators.
Reparameterization invariance implies

cQ = cX . (9)

2.2 Sample matching calculation

As an illustration of the construction and matching conditions for the heavy particle lagrangian
L⌥, consider the case of a fundamental scalar, ignoring scalar self interactions (i.e., ⇧4 terms).
For the matching of the terms containing a single gauge field, we consider the full theory result
for the W⇧⇧ amputated three point function,

q

p, i p⇥, j

µ, a

= ig2(p+ p⇥)µF (q2)(taJ)ji , (10)

where q = p⇥ � p, and F (q2) is a model-dependent form factor. Setting p2 = p⇥2 = M2,
vµ = (1, 0, 0, 0), the matching conditions for scalar scattering from a µ = 0 or µ = i gauge

2For a real scalar field, the e�ective theory is obtained by introducing vµ in the field redefinition �(x) =
e�imv·x�v(x)/

�
M = eimv·x�⇤

v(x)/
�
M = �⇤(x).

3
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Low energy theory

Operator basis 

3.1 Mass correction from electroweak symmetry breaking

We may evaluate the heavy scalar self energy to obtain mass corrections,

�i�(p) =
W

p
+

Z
+

⇥

+ . . . . (14)

The shift in mass due to electroweak symmetry breaking appears as a nonvanishing value of
�(p) at v ·p = 0. We find at leading order in the 1/M expansion, and first order in perturbation
theory,

⇤M = �2mW

�
�1

2
J2 + sin2 ⌅W

2
J2
3

⇥
. (15)

In particular, with Q = J3 + Y = J3 for Y = 0, the mass of each charged state is lifted
proportional to its squared charge relative to the neutral component,

M(Q) �M(Q=0) = �2Q
2mW sin2 ⌅W

2
+O(1/M) ⇤ (170MeV)Q2 . (16)

Subleading corrections can be similarly evaluated in the e⇥ective theory. Since no additional
operators appear at O(1/M0), the result (16) is model independent.4

3.2 Operator basis

The e⇥ective theory after electroweak symmetry breaking will include: the heavy scalar QED
theory for each of the electric charge eigenstates, with mass determined as in (15);5 the
Standard Model lagrangian with W,Z, h, t integrated out; and interactions,

L = L�0 + LSM + L�0,SM + . . . , (17)

where the ellipsis denotes terms containing electrically charged heavy scalars. For the electri-
cally neutral scalar,

L�0 = ⇧�
v,Q=0

⇤
iv ·  �  2

⇥
2M(Q=0)

+O(1/m3
W )

⌅
⇧v,Q=0 . (18)

Note that enforcing the reality condition (7) implies the vanishing of cD (= cM).
Interactions with Standard Model fields begin at order 1/m3

W . We restrict attention to
quark and gluon operators (neglecting lepton and photon operators) and again focus on the
neutral ⇧v,Q=0 component, dropping the Q = 0 subscript in the following. Mixing with charged
scalars will become relevant at order 1/m4

W in nuclear scattering computations; similarly, we
restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators

4The mass splitting (16) appears in limits of particular models, e.g. [1, 7, 8].
5We define the pole mass to include the contributions induced by electroweak symmetry breaking, as

opposed to introducing residual mass terms for di�erent charge eigenstates [9].
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.
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Heavy neutral scalar: 

SM interactions:

Convenient to choose basis of definite spin
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quark operators

gluon operators
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.
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larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
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propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)
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large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).
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c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
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larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
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⇤
� 1

x2
h
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⌅
,
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⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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. (22)

There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)2 (µt) = C�s(µt)
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There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.

7

15Richard  Hill                    University of Chicago                                       Cosmic Frontier: Developments in WIMP scattering



−m2
ux(1− x)(n · L)2

[

(−1)(1 + ε)(2 + ε)∆−3−ε
]

}

nµnνI
(2)µν
b = [cε]

1

3!

∫ 1

0

dx x364(1− ε)

{

(n · v)2

(3− ε)

[

(−1)
d(d+ 2)

4
∆−1−ε

]

+

[(

(1− x)−
(1− x)2

2− ε

)

(n · L)2

+
(n · v)2

2− ε
(1− x)2L2

] [

d

2
(1 + ε)∆−2−ε

]}

nµnνI
(2)µν
c = [cε]

∫ 1

0

dx x(1− x)32(1− 2ε)

[

−
1− ε

2− ε
(n · v)2

[

(−1)
d

2
∆−1−ε

]

+ x(1− x)

[

(n · v)2L2 −
ε

1− 2ε
(n · L)2

]

[

(1 + ε)∆−2−ε
]

]

(22)

Here

[cε] =
i

(4π)
d

2

Γ(1 + ε) . (23)

2 W loop

Using the heavy particle Feynman rules, and including uncrossed and crossed diagrams (charge
+ and charge − intermediate heavy particle), we have

iM = −g22
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1

−v · L+ i0
+
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v · L+ i0

]

1

(L2 −m2
W + i0)2

vµvνΠµν(L) . (24)

Note that gauge-dependent factors in the W propagator will lead to numerator factors involv-
ing v · L, giving vanishing contribution.

We will need the basic integral,
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+
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d
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π
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We also note that the integral
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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electroweak polarizability tensor 
in background gluon field

1 Quark loop

Let us define the two-point function

Πνµ(L) =

(

g2Vud

2
√
2

)2

i

∫

ddx eiL·x〈T{d̄(x)γν(1− γ5)u(x)ū(0)γ
µ(1− γ5)d(0)〉

=

(

g2Vud

2
√
2

)2

i(−1)

∫

ddx eiL·xTr
[

γν(1− γ5)iS
(u)(x, 0)γµ(1− γ5)S

(d)(0, x)
]

=

(

g2Vud

2
√
2

)2

i

∫

ddp

(2π)d
Tr

[

γν(1− γ5)S
(u)(p)γµ(1− γ5)S̃

(d)(p− L)
]

, (1)

where

S(p) ≡
∫

ddx eip·xS(x, 0) ,

S̃(p) ≡
∫

ddx e−ip·xS(0, x) , (2)

and the superscript denotes the (mass eigenstate) quark flavor. Let us use the weak coupling
expansion,

iS(p) =
i

p/ −m
+ g

∫

(dq)
i

p/ −m
iA/ (q)

i

p/ − q/ −m

+ g2
∫

(dq1)(dq2)
i

p/ −m
iA/ (q1)

i

p/ − q/ 1 −m
iA/ (q2)

i

p/ − q/ 1 − q/ 2 −m
+ . . . ,

iS̃(p) =
i

p/ −m
+ g

∫

(dq)
i

p/ + q/ −m
iA/ (q)

i

p/ −m

+ g2
∫

(dq1)(dq2)
i

p/ + q/ 1 + q/ 2 −m
iA/ (q1)

i

p/ + q/ 2 − q/ 1 −m
iA/ (q2)

i

p/ −m
+ . . . . (3)

In Fock Schwinger gauge we have

A/ (q) = taγα

∫

(dx)eiq·xAa
α(x)

= taγα

[

−i

2

∂

∂qρ
Ga

ρα(0)(2π)
dδd(q) + . . .

]

, (4)

where the ellipsis denotes terms with derivatives acting on Ga
µν .

The two-gluon amplitude for both insertions on the up-quark line is

Πνµ
a =

(

g2Vud

2
√
2

)2

ig2
(

i

2

)2

Tr(tatb)Ga
ρα(0)G

b
σβ(0)

∫

(dp)
∂

∂qρ

∂

∂q′σ

1

gluon Fock-Schwinger gauge (x.A=0) in dim.reg. : 

vµ
�
gµµ� � (1� �)

LµLµ�

L2 � �m2
W

⇥
= vµ� +O(v · L)

Electroweak gauge invariance is immediate:

crossed and uncrossed diagrams cancel
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Solution to RG equations

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

c(0)2 (µ) = c(0)2 (µt)
�
g [�s(µ)]
�
g [�s(µt)]

Spin 0:

Spin 2: 
c(0)1 (µ) = c(0)1 (µt)� 2[⇥m(µ)� ⇥m(µt)]

c(0)2 (µt)
�
g [�s(µt)]

5.1 Anomalous dimensions

The spin S = 0 and spin S = 2 operators mix amongst themselves, with

d

d log µ
O(S)

i = �
↵

j

⇤(S)
ij Oj , (23)

where ⇤(S)
ij are (nf + 1)⇤ (nf + 1) anomalous dimension matrices. The leading terms are

⇤̂(0) =

⇧

    ⌥

0 0
. . .

...
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9
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⌃

⌦⌦⌦⌦�
+ . . . , (24)

where ⇥ = dg/d log µ ⌃ �⇥0�s/4⇧, ⇤m = d logmq/d log µ ⌃ �8�s/4⇧, ⇤�
m ⌅ g ⇤m/ g,

(⇥/g)� ⌅ g (⇥/g)/ g, and ⇥0 = 11 � 2
3nf . It is straightforward to include subleading terms

for ⇤̂(0) [11, 12] and ⇤̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ⇧ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are

c(0)2 (µb) = c̃(0)2 (µb)

�
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4ã

3
log
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� ã

3
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⇤
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4ã

3
log
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µb
c̃(2)1b (µb) +O(ã2),

c(2)1q (µb) = c̃(2)1q (µb) +O(ã), (25)

where q = u, d, s, c and ã = �s(µb, nf = 5)/4⇧. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of �s in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coe⇥cients in the nf = 4 theory to
the scale µ = µc ⇧ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ⇧ 1GeV
independent of heavy quark masses.
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where ⇤(S)
ij are (nf + 1)⇤ (nf + 1) anomalous dimension matrices. The leading terms are
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where ⇥ = dg/d log µ ⌃ �⇥0�s/4⇧, ⇤m = d logmq/d log µ ⌃ �8�s/4⇧, ⇤�
m ⌅ g ⇤m/ g,

(⇥/g)� ⌅ g (⇥/g)/ g, and ⇥0 = 11 � 2
3nf . It is straightforward to include subleading terms

for ⇤̂(0) [11, 12] and ⇤̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ⇧ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are
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where q = u, d, s, c and ã = �s(µb, nf = 5)/4⇧. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of �s in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coe⇥cients in the nf = 4 theory to
the scale µ = µc ⇧ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ⇧ 1GeV
independent of heavy quark masses.
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Diagonalize anomalous dimension matrix 
(familiar from PDF analysis)

As check, can evaluated spin-2 matrix elements at high 
scale (spin-0 and spin-2 decoupled)
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where ⇥ = dg/d log µ ⌃ �⇥0�s/4⇧, ⇤m = d logmq/d log µ ⌃ �8�s/4⇧, ⇤�
m ⌅ g ⇤m/ g,

(⇥/g)� ⌅ g (⇥/g)/ g, and ⇥0 = 11 � 2
3nf . It is straightforward to include subleading terms

for ⇤̂(0) [11, 12] and ⇤̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ⇧ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
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where q = u, d, s, c and ã = �s(µb, nf = 5)/4⇧. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of �s in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coe⇥cients in the nf = 4 theory to
the scale µ = µc ⇧ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ⇧ 1GeV
independent of heavy quark masses.

8

17Richard  Hill                    University of Chicago                                       Cosmic Frontier: Developments in WIMP scattering



Integrate out heavy quarks (μ≈mb)

Contribution to gluon operators familiar from h→gg

Heavy quark mass scheme enters at higher order

5.1 Anomalous dimensions

The spin S = 0 and spin S = 2 operators mix amongst themselves, with

d

d log µ
O(S)

i = �
↵

j

⇤(S)
ij Oj , (23)

where ⇤(S)
ij are (nf + 1)⇤ (nf + 1) anomalous dimension matrices. The leading terms are

⇤̂(0) =

⇧

    ⌥

0 0
. . .

...

0 0

�2⇤�
m · · · �2⇤�

m (⇥/g)�

⌃

⌦⌦⌦⌦�
=

�s

4⇧

⇧

    ⌥

0 0
. . .

...

0 0

32 · · · 32 �2⇥0

⌃

⌦⌦⌦⌦�
+ . . . ,

⇤̂(2) =
�s

4⇧

⇧

    ⌥

64
9 �4

3
. . .

...
64
9 �4

3

�64
9 · · · �64

9
4nf

3

⌃

⌦⌦⌦⌦�
+ . . . , (24)

where ⇥ = dg/d log µ ⌃ �⇥0�s/4⇧, ⇤m = d logmq/d log µ ⌃ �8�s/4⇧, ⇤�
m ⌅ g ⇤m/ g,

(⇥/g)� ⌅ g (⇥/g)/ g, and ⇥0 = 11 � 2
3nf . It is straightforward to include subleading terms

for ⇤̂(0) [11, 12] and ⇤̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ⇧ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are

c(0)2 (µb) = c̃(0)2 (µb)

�
1 +

4ã
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Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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c̃2 c̃1 c1

nf=5 nf=4

{ {
Charm quark treated similarly (after running to mc)
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Spin - 0 

Spin-0 operators determine contributions to nucleon mass

6 Matrix elements and cross section

Having expressed the lagrangian in terms of operators renormalized at the scale µ0 ⇤ 1GeV,
we require hadronic matrix elements evaluated at this scale.

6.1 Hadronic inputs

Let us define the zero-momentum matrix elements of renormalized operators6

⌃N |O(0)
1q |N⌥ ⇥ mNf

(0)
q,N ,

�9�s(µ)

8⇧
⌃N |O(0)

2 (µ)|N⌥ ⇥ mNf
(0)
G,N(µ) ,

⌃N |O(2)µ⇥
1q (µ)|N⌥ ⇥ 1

mN

�
kµk⇥ � gµ⇥

4
m2

N

⇥
f (2)
q,N(µ) ,

⌃N |O(2)µ⇥
2 (µ)|N⌥ ⇥ 1

mN

�
kµk⇥ � gµ⇥

4
m2

N

⇥
f (2)
G,N(µ) , (26)

where mN is the nucleon mass. Matrix elements refer to a definite (but arbitrary) spin state
of the nucleon.

6.1.1 Spin zero

We recall that the spin-0 operator matrix elements are not independent, being linked by the
relation [18]

mN = (1� ⇤m)
⌅

q

⌃N |mq q̄q|N⌥+ ⇥

2g
⌃N |(Ga

µ⇥)
2|N⌥ , (27)

derived from the trace of the QCD energy-momentum tensor. Here N = p or n and mN is the
nucleon mass. Neglecting ⇤m, O(�2

s) contributions to ⇥(g), and power corrections in the above

formula, the definitions (26) ensure that f (0)
G,N(µ) ⌅ 1�

⇤
q=u,d,s f

(0)
q,N . Corrections arising from

(27) are included in the numerical analysis.
For quark operators, define the scale-independent quantities,

�⇤N =
mu +md

2
⌃p|(ūu+ d̄d)|p⌥ , �0 =

mu +md

2
⌃p|(ūu+ d̄d� 2s̄s)|p⌥ . (28)

In the numerical analysis, we will neglect the small contributions proportional to |Vtd|2 and

|Vts|2, so that c(0)1u = c(0)1d . Neglecting also the small contribution [19] (md�mu)⌃p|(ūu�d̄d)|p⌥ ⇤
2MeV, and using approximate isospin symmetry, we then require, for N = p or n,

mN(f
(0)
u,N + f (0)

d,N) ⌅ �⇤N , mNf
(0)
s,N =

ms

mu +md
(�⇤N � �0) = �s . (29)

6We use nonrelativistic normalization for nucleon states, ⌃N(p)|N(p�)⌥ = (2⇥)3�3(p� p�).
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significant uncertainty in this quantity

but NLO, NNLO corrections significant
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Spin - 2 
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Spin-2 operators determine momentum fraction carried by 
partons

6 Matrix elements and cross section

Having expressed the lagrangian in terms of operators renormalized at the scale µ0 ⇤ 1GeV,
we require hadronic matrix elements evaluated at this scale.
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�⇤N =
mu +md

2
⌃p|(ūu+ d̄d)|p⌥ , �0 =

mu +md

2
⌃p|(ūu+ d̄d� 2s̄s)|p⌥ . (28)

In the numerical analysis, we will neglect the small contributions proportional to |Vtd|2 and

|Vts|2, so that c(0)1u = c(0)1d . Neglecting also the small contribution [19] (md�mu)⌃p|(ūu�d̄d)|p⌥ ⇤
2MeV, and using approximate isospin symmetry, we then require, for N = p or n,

mN(f
(0)
u,N + f (0)

d,N) ⌅ �⇤N , mNf
(0)
s,N =

ms

mu +md
(�⇤N � �0) = �s . (29)

6We use nonrelativistic normalization for nucleon states, ⌃N(p)|N(p�)⌥ = (2⇥)3�3(p� p�).
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Parameter Value Reference

|Vtd| ⇤ 0 -

|Vts| ⇤ 0 -

|Vtb| ⇤ 1 -

mu/md 0.49(13) [20]

ms/md 19.5(2.5) [20]

�lat
�N 0.047(9)GeV [21]

�lat
s 0.050(8)GeV [22]

��N 0.064(7)GeV [23]

�0 0.036(7)GeV [24]

mW 80.4GeV [20]

mt 172 GeV [15]

mb 4.75 GeV [15]

mc 1.4 GeV [15]

mN 0.94 GeV -

�s(mZ) 0.118 [20]

�2(mZ) 0.0338 [20]

Table 1: Inputs to the numerical analysis.

We consider “traditional” values ��N = 64 ± 7MeV [23] and �0 = 36 ± 7MeV [24], but
investigate also the lattice determinations, �lat

�N = 47±9MeV [21] and �lat
s = 50±8MeV [22].7

We adopt PDG values [20] for light-quark mass ratios. A summary of numerical inputs is
presented in Table 1.

6.1.2 Spin two

The matrix elements of spin-two operators can be identified as

f (2)
q,p (µ) =

⇥ 1

0

dx x[q(x, µ) + q̄(x, µ)] , (30)

where q(x, µ) and q̄(x, µ) are parton distribution functions evaluated at scale µ. Neglecting
power corrections, the sum of spin two operators in (20) is the traceless part of the QCD

energy momentum tensor, hence independent of scale we have f (2)
G,p(µ) ⌅ 1�

�
q=u,d,s f

(2)
q,p (µ).

Using approximate isospin symmetry we set

f (2)
u,n = f (2)

d,p , f (2)
d,n = f (2)

u,p , f (2)
s,n = f (2)

s,p . (31)

7The latter quantity arises from a naive averaging of �s = 31 ± 15MeV [21] and �s = 59 ± 10MeV [25].
See also [26, 27, 28].
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µ(GeV) f (2)
u,p(µ) f (2)

d,p (µ) f (2)
s,p (µ) f (2)

G,p(µ)

1.0 0.404(6) 0.217(4) 0.024(3) 0.36(1)

1.2 0.383(6) 0.208(4) 0.027(2) 0.38(1)

1.4 0.370(5) 0.202(4) 0.030(2) 0.40(1)

Table 2: Operator coe⌅cients derived from MSTW PDF analysis [15] at di⇥erent values of µ.

Table 2 lists coe⌅cient values for renormalization scales µ = 1GeV, µ = 1.2GeV and µ =
1.4GeV determined from the parameterization and analysis of [15].

6.2 Cross section

The low-velocity, spin-independent, cross section for WIMP scattering on a nucleus of mass
number A and charge Z may be written

⌃A,Z =
m2

r

⇧
|ZMp + (A� Z)Mn|2 ⇤

m2
rA

2

⇧
|Mp|2 , (32)

whereMp andMn are the matrix elements for scattering on a proton or neutron respectively8,
and mr = MmN/(M +mN ) denotes the reduced mass of the dark-matter nucleus system. As
described in Section 6.1, Mn ⇤ Mp up to corrections from numerically small CKM factors
and isospin violation in nucleon matrix elements. In the M ⌅ mN limit, the cross section
scales as A4. At finite velocity, a nuclear form factor modifies this behavior [29].

As a numerical benchmark, let us compute the cross section for low-momentum scattering
on a nucleon for a heavy real scalar in the isospin representation J = 1. Figure 3 displays
the result, as a function of the unknown Higgs boson mass. Using Table 1, we consider
separately the “traditional” inputs ��N and �0, as well as recent lattice determinations of
�lat

�N and �lat
s . For each case, separate bands represent the uncertainty due to neglected

perturbative QCD corrections, and due to the hadronic inputs. We estimate the impact of
higher order perturbative QCD corrections by varying matching scales m2

W/2 ⇥ µ2
t ⇥ 2m2

t ,
m2

b/2 ⇥ µ2
b ⇥ 2m2

b , m2
c/2 ⇥ µ2

c ⇥ 2m2
c , 1.0GeV ⇥ µ0 ⇥ 1.4GeV, adding the errors in

quadrature.
The renormalization group running and heavy quark matching for spin-2 operators are

evaluated at LO.9 For spin-0 operators, we find a large residual uncertainty at LO from
µ0, µc and µb scale variation. The RG running from µc to µ0 from (24) is thus evaluated
with NNNLO corrections, including contributions to ⇥/g through O(�4

s) and ⇤m through
O(�4

s). Accordingly, the spin-0 gluonic matrix element from (27) is also evaluated at NNNLO,
including contributions to ⇥/g through O(�4

s) and ⇤m through O(�3
s). The residual µ0 scale

8Explicitly, MN = m�3
W ⌥N |

�⇤
q=u,d,s

⌅
c(0)1q O

(0)
1q + c(2)1q vµv⇥O

(2)µ⇥
1q

⇧
+ c(0)2 O(0)

2 + c(2)2 vµv⇥O
(2)µ⇥
2

⇥
|N� .

9Up to power corrections and subleading O(�s) corrections, our evaluation is equivalent to an evaluation
in either the nf = 4 or nf = 5 flavors theories, taking the c- and b-quark momentum fractions of the proton
as input. We have verified that these results, with the matrix elements taken from [15], are within our error
budget.
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s = 50±8MeV [22].7

We adopt PDG values [20] for light-quark mass ratios. A summary of numerical inputs is
presented in Table 1.

6.1.2 Spin two

The matrix elements of spin-two operators can be identified as

f (2)
q,p (µ) =

⇥ 1

0

dx x[q(x, µ) + q̄(x, µ)] , (30)

where q(x, µ) and q̄(x, µ) are parton distribution functions evaluated at scale µ. Neglecting
power corrections, the sum of spin two operators in (20) is the traceless part of the QCD

energy momentum tensor, hence independent of scale we have f (2)
G,p(µ) ⌅ 1�

�
q=u,d,s f

(2)
q,p (µ).

Using approximate isospin symmetry we set

f (2)
u,n = f (2)

d,p , f (2)
d,n = f (2)

u,p , f (2)
s,n = f (2)

s,p . (31)

7The latter quantity arises from a naive averaging of �s = 31 ± 15MeV [21] and �s = 59 ± 10MeV [25].
See also [26, 27, 28].
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Figure 3: Cross section for low-velocity scattering on a nucleon for a heavy real scalar in the
isospin J = 1 representation of SU(2). The dark shaded region represents the 1⇤ uncertainty
from perturbative QCD, estimated by varying factorization scales. The light shaded region
represents the 1⇤ uncertainty from hadronic inputs.

variation is insignificant compared to other uncertainties. We perform the RG running and
heavy quark matching from µt to µc at NLO. Hadronic input uncertainties from each source
in Table 1 and Table 2 are added in quadrature. We have ignored power corrections appearing
at relative order �s(mc)�2

QCD/m
2
c ; typical numerical prefactors appearing in the coe⇧cients of

the corresponding power-suppressed operators [18] suggest that these e⇤ects are small.
Due to a partial cancellation between spin-0 and spin-2 matrix elements, the total cross

section and the fractional error depend sensitively on subleading perturbative corrections and
on the Higgs mass parameter mh. We find

⇤p(mh = 120GeV) = 0.7±0.1+0.9
�0.3�10�47cm2 , ⇤p(mh = 140GeV) = 2.4±0.2+1.5

�0.6�10�47cm2 ,
(33)

where the first error is from hadronic inputs, assuming ⇥lat
s and ⇥lat

�N from Table 1, and the
second error represents the e⇤ect of neglected higher order perturbative QCD corrections. For
the illustrative value mh = 120GeV, and as a function of the scalar strange-quark matrix
element ⇥s, we display the separate contributions of each of the quark and gluon operators in
Fig. 4.

7 Summary

We have presented the e⇤ective theory for heavy, weakly interacting dark matter candidates
charged under electroweak SU(2). Having determined the general form of the e⇤ective la-
grangian (4) through 1/M3, we demonstrated matching conditions for subleading operators in

12
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independent cross section on nucleon
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Strange quark scalar matrix element dependence

u�2⇥
d�2⇥
g�2⇥
s�2⇥
s�0⇥u�0⇥+ d�0⇥

g�0⇥

0 100 200 300 400 500
�250

�200

�150

�100

�50

0

50

100

⇥s�MeV⇥
m
W
3

⌅⇤
2
2

� p
�MeV

⇥

Figure 4: Breakdown of contributions to the matrix element Mp using the representative
values mh = 120GeV and ⇥lat

�N = 47(9)MeV. The labels u(S), d(S), s(S) and g(S) refer to spin-
S up, down, strange and gluon operator contributions, respectively. The thickness represents
the 1⇤ uncertainty from perturbative QCD. The left-hand vertical band corresponds to the
lattice value ⇥lat

s = 50(8)MeV and the right-hand vertical band corresponds to the range
⇥s = 366(142)MeV deduced from ⇥�N and ⇥0 in Table 1.

a simple model. Using the e⇤ective theory, we demonstrated universality of the mass splitting
induced by electroweak symmetry breaking, and of the cross section for scattering on nuclear
matter. Subleading terms in the 1/M expansion can be studied systematically using (4).

Our focus has been on the case of an isotriplet real scalar [1]. For this case, relic abun-
dance estimates [8] indicate that M � fewTeV in order to not overclose the universe. This
mass range, combined with the universal cross section, provides a target for future search
experiments.

We have presented a complete matching at first nonvanishing order in �s, and at leading
order in small ratios mW/M , mb/mW and �QCD/mc. We performed renormalization group
improvement to sum leading logarithms to all orders. The residual dependence on the high
matching scale µt ⇥ mt ⇥ mW represents uncertainty due to uncalculated higher-order per-
turbative corrections. Assuming the hadronic input ⇥lat

s from Table 1, this scale variation is
the largest remaining uncertainty on the cross section; its reduction would require higher loop
order calculations.

Our high-scale matching results for quark operators (21) and spin-zero gluon operators
agree with mW/M ⇤ 0 results presented by Hisano et al. [30], under the identification
µt = µb = µc, i.e., a one-step matching onto the nf = 3 theory.10 This approach neglects
large logarithms appearing in coe⇧cient functions. The e⇤ective theory analysis provides a

10To make the comparison to the scattering amplitude for a heavy Majorana fermion with � = �c, we use
� =

⇧
2e�imv·x(hv+Hv) =

⇧
2eimv·x(hc

v+Hc
v), where hv and Hv are spinor fields with (1�v/ )hv = (1+v/ )Hv =

0.
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Nucleon matrix elements

- beneficial to also have lattice constraints on charm scalar matrix element

- lattice results still noisy but converging on small value compared 
traditional SU(3) Ch.P.T.  
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FIG. 8: Comparison and average of lattice QCD calculations of fs as described in the text. The
quoted uncertainties are taken as the statistical and systematic uncertainties added in quadrature
from a given reference. nf = 2 + 1 indicates a dynamical strange quarks as well as up and down.
SU(3) is used to indicate results which rely heavily on SU(3) baryon �PT. Some results are
excluded for various reasons but displayed to demonstrate their consistency: [21] was updated in
[22], the nf = 2 results were not averaged with the nf = 2 + 1 [14, 16], the results in [17] were
preliminary and not extrapolated to the physical pion mass, the results in [18] are preliminary and
only exists in a conference proceedings.

interesting to first compare our results with these;

mshN |s̄s|Ni[MeV] =

8
>>><

>>>:

59 ± 6 ± 8 Ref. [21]
54 ± 5 ± 6 Ref. [22]
43 ± 8 ± 6 Ref. [20]
49 ± 10 ± 15 present work

. (25)

In the literature, there is currently no determination of fs which considers all the available
results from lattice QCD, and so we take the opportunity to provide one here.4 We use an
approach similar to the FLAG working group of FLAVIANET which has provided lattice
determinations of various quantities important to low-energy hadronic physics [107]. In
particular, the FLAG working group has developed a scheme to judge the confidence to
place in various determinations, based upon standards such as the lightest pion mass used,
whether or not a continuum limit has been performed, and whether the infinite volume limit
has been performed. For each criterion, a green star (?) is awarded to results which meet
the strictest constraints, and orange circle (•) is given to results with room for improvement
and a red square (⌅) to those with room for significant improvement. This provides a useful

4 There is a recent review on the topic in Ref. [28], but a lattice average is not provided.
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FIG. 2: The spin-independent neutralino-nucleon scattering cross section as a function of ΣπN
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Experimental constraints from CDMS and XENON10 are also shown.

estimates of the central value for ΣπN is far greater than the typically quoted uncertainty.
In view of this, we also include below some results for lower values of ΣπN .

In Figure 2, we show the ΣπN dependence of σχN,SI for the benchmark models, and
Table IV gives the σχN,SI values for those models for selected values of ΣπN . All the other
parameters are set at their fiducial values (Table I). From the minimal value for ΣπN (σ0 =

SpN, S0

SpNlat, Sslat
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Figure 3: Cross section for low-velocity scattering on a nucleon for a heavy real scalar in the
isospin J = 1 representation of SU(2). The dark shaded region represents the 1� uncertainty
from perturbative QCD, estimated by varying factorization scales. The light shaded region
represents the 1� uncertainty from hadronic inputs.

including contributions to �/g through O(↵4
s) and �m through O(↵3

s). The residual µ0 scale
variation is insignificant compared to other uncertainties. We perform the RG running and
heavy quark matching from µt to µc at NLO. Hadronic input uncertainties from each source
in Table 1 and Table 2 are added in quadrature. We have ignored power corrections appearing
at relative order ↵s(mc)⇤2

QCD/m
2
c ; typical numerical prefactors appearing in the coe�cients of

the corresponding power-suppressed operators [18] suggest that these e↵ects are small.
Due to a partial cancellation between spin-0 and spin-2 matrix elements, the total cross

section and the fractional error depend sensitively on subleading perturbative corrections and
on the Higgs mass parameter mh. We find

�p(mh = 120GeV) = 0.7±0.1+0.9
�0.3⇥10�47cm2 , �p(mh = 140GeV) = 2.4±0.2+1.5

�0.6⇥10�47cm2 ,
(33)

where the first error is from hadronic inputs, assuming ⌃lat
s and ⌃lat

⇡N from Table 1, and the
second error represents the e↵ect of neglected higher order perturbative QCD corrections. For
the illustrative value mh = 120GeV, and as a function of the scalar strange-quark matrix
element ⌃s, we display the separate contributions of each of the quark and gluon operators in
Fig. 4.

7 Summary

We have presented the e↵ective theory for heavy, weakly interacting dark matter candidates
charged under electroweak SU(2). Having determined the general form of the e↵ective la-
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6 Matrix elements and cross section

Having expressed the lagrangian in terms of operators renormalized at the scale µ0 ⇠ 1GeV,
we require hadronic matrix elements evaluated at this scale.

6.1 Hadronic inputs

Let us define the zero-momentum matrix elements of renormalized operators6

hN |O(0)
1q |Ni ⌘ mNf

(0)
q,N ,

�9↵s(µ)

8⇡
hN |O(0)

2 (µ)|Ni ⌘ mNf
(0)
G,N(µ) ,

hN |O(2)µ⌫
1q (µ)|Ni ⌘ 1

mN

✓
kµk⌫ � gµ⌫

4
m2

N

◆
f (2)
q,N(µ) ,

hN |O(2)µ⌫
2 (µ)|Ni ⌘ 1

mN

✓
kµk⌫ � gµ⌫

4
m2

N

◆
f (2)
G,N(µ) , (26)

where mN is the nucleon mass. Matrix elements refer to a definite (but arbitrary) spin state
of the nucleon.

6.1.1 Spin zero

We recall that the spin-0 operator matrix elements are not independent, being linked by the
relation [18]

mN = (1� �m)
X

q

hN |mq q̄q|Ni+ �

2g
hN |(Ga

µ⌫)
2|Ni , (27)

derived from the trace of the QCD energy-momentum tensor. Here N = p or n. Neglecting
�m, O(↵2
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hp|(ūu+ d̄d� 2s̄s)|pi . (28)

In the numerical analysis, we will neglect the small contributions proportional to |Vtd|2 and

|Vts|2, so that c(0)1u = c(0)1d . Neglecting also the small contribution [19] (md�mu)hp|(ūu�d̄d)|pi ⇠
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Hill, Solon, PLB 707 539 (2012)

(cf.  Alarcon et al., 1209.2870)

summary plot: Junnarkar and Walker-Loud, 1301.1114

Ellis, Olive, Savage, PRD 77 065026 (2008)

- strange quark scalar matrix element the subject of controversy 
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- simplest spin-independent, isospin-symmetric cross section uncontroversial

- two-body and higher operators 
break nucleon x nuclear factorization: 
can be significant when 
cancellations occur, e.g., large isospin 
violation

Nuclear matrix elements

Figure 4: Contour plots of the NLO to LO integrated rates RXe
NLO/R

Xe
LO on the (r, f̄

p

) plane,
at fixed �

s

/�⇥ = 1, with m
W

= 10 GeV (left panel) and m
W

= 100 GeV (right panel). The
solid red line corresponds to RXe

NLO/R
Xe
LO = 2 and for all points inside the solid red line the

NLO correction is more than 100%.

f
n

or equivalently the WIMP-proton cross-section �
p

/ m2
p

f 2
p

and the ratio r = f
n

/f
p

.
Starting from the short-distance interaction of Eq. (1), the cross-section depends on four
parameters (in one-to-one correspondence with �

u,d,s,⇥). This calls for a more general
analysis of data, that takes into account these additional degrees of freedom.

A convenient choice of independent parameters, that matches onto the standard choice
when neglecting NLO chiral corrections, is achieved as follows. First, we observe that f

n,p

(E
R

)
and T2(ER

, A, Z) are linear functions of �
u,d,s,⇥/⇤2

np so that the rate is a homogeneous quadratic
form in the �’s. Next, we can trade �

u,d

for f
p

and r = f
n

/f
p

, and finally we can extract �⇥ as
an overall factor. In conclusion, the four parameters controlling the rate are: (1) �⇥/(v⇤2

np),
which sets the overall normalization; (2) f

p

, or equivalently6 f̄
p

= v⇤2
np fp/�⇥; (3) r = f

n

/f
p

,;
and (4) �

s

/�⇥. The rate has the form R ⇠ (�⇥/(v⇤2
np))

2 ⇥Q(f
p

, rf
p

,�
s

/�⇥), where Q(x, y, z)
is a quadratic form in x, y, z. Neglecting NLO corrections, only two independent parameters
survive, namely f

p

(or equivalently �
p

/ m2
p

f 2
p

) and r = f
n

/f
p

, and the rate takes the simplified
form R ⇠ f 2

p

[Z + (A � Z)r]2. Note that any ratios of integrated rates only depend on three
parameters: f̄

p

, r, and �
s

/�
✓

, as the overall normalization cancels.
We illustrate the phenomenological implications of our new WIMP-nucleus amplitude pa-

rameterization in Figs. 4, 5, and 6:

• In Fig. 4 we present contour plots of the ratio of NLO to LO integrated rates RNLO/RLO

on the plane (r, f̄
p

), fixing �
s

/�⇥ = 1. We have chosen one representative target, Xenon,

6The convenience of this choice is apparent from equations Eq. (39) and Eq. (40). It is also clear that f̄p
has dimensions of energy.
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Cirigliano, Graesser, Ovanesyan, JHEP 1210 025 (2012) 
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Figure 3: Tree-level diagram contributing to M2,W . Black solid (dashed) lines denote nucleons
(mesons).

f1 (x1, x2) = 2 +

(x1 + x2 + x1x2)

 
ArcCot

h
2
p
x1x2

x1+x1x2�x2

i
+ArcCot

h
2
p
x2x1

x2+x1x2�x1

i!

x1
p
x2 +

p
x1x2

, (17)

and have the following useful properties: f(x ! 0) = 3 + 5x
12

+O(x2), f1(x, x) ⌘ f(x).

4.2 Two-nucleon amplitude

As was derived in Section 3, at NLO there appears also a contribution with A � 1 tree-level
disconnected nucleon sectors, one of which involves two nucleons and the external source. The
relevant diagram is shown in Figure 3, and the possible mesons that are exchanged are limited
to ⇡ and ⌘. The corresponding “direct” connected amplitude reads (q

i

= p
i

� p0
i

denotes the
four-momentum transfer for each nucleon):

M2,W = M
⇡⇡

+M
⌘⌘

, (18)

M
⇡⇡

= � 1

v⇤2
np

g2
A

F 2
⇡

m2
⇡

�+

(q21 �m2
⇡

)(q22 �m2
⇡

)
N̄q1 · S ⌧

k

1 N N̄q2 · S ⌧

k

2 N �̄� , (19)

M
⌘⌘

= � 1

v⇤2
np

g2
A

3F 2
⇡

✓
4↵� 1p

3

◆2 m2
⇡

�+ + 4
�
M2

K

� 1
2
m2

⇡

�
�
s

(q21 �m2
⌘

)(q22 �m2
⌘

)
N̄q1 · SN N̄q2 · SN �̄� . (20)

There is also an “exchange” amplitude, which is obtained from the direct one by changing the
overall sign and interchanging all variables of the final-state nucleons (p01 $ p02, N

0
1 $ N 0

2).
Compared to Ref. [26], where the ⇡⇡ two-body interaction has been calculated, we also

include the ⌘⌘ which is Yukawa enhanced as can be seen from Eq. (20). Later on we will study
the competition between this enhancement and the suppression expected from the fact that
the ⌘-induced potential has shorter range compared to the ⇡-mediated one.

8

�A,Z ⇡ m2
r

⇡
|ZMp + (A� Z)Mn|2 ⇠ m2

rA
2

⇡
|Mp|2
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• WIMP paradigm a plausible extension of the SM 

• careful analysis necessary to robustly connect models and cross 
sections, and to isolate universal behavior

• circa Feb 2013, we know things now we didn’t know then: (strong 
indication of SM-like higgs, nothing else yet definitive from LHC)

• heavy particle methods essential tool for controlled computations 
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• illustrated with “wino”-like DM, extends to e.g., bino/wino/higgsino 
and other SM extensions 



thanks for your 
attention
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Universal mass shift induced by EWSB
3.1 Mass correction from electroweak symmetry breaking

We may evaluate the heavy scalar self energy to obtain mass corrections,

�i�(p) =
W

p
+

Z
+

⇥

+ . . . . (14)

The shift in mass due to electroweak symmetry breaking appears as a nonvanishing value of
�(p) at v ·p = 0. We find at leading order in the 1/M expansion, and first order in perturbation
theory,

⇤M = �2mW

�
�1

2
J2 + sin2 ⌅W

2
J2
3

⇥
. (15)

In particular, with Q = J3 + Y = J3 for Y = 0, the mass of each charged state is lifted
proportional to its squared charge relative to the neutral component,

M(Q) �M(Q=0) = �2Q
2mW sin2 ⌅W

2
+O(1/M) ⇤ (170MeV)Q2 . (16)

Subleading corrections can be similarly evaluated in the e⇥ective theory. Since no additional
operators appear at O(1/M0), the result (16) is model independent.4

3.2 Operator basis

The e⇥ective theory after electroweak symmetry breaking will include: the heavy scalar QED
theory for each of the electric charge eigenstates, with mass determined as in (15);5 the
Standard Model lagrangian with W,Z, h, t integrated out; and interactions,

L = L�0 + LSM + L�0,SM + . . . , (17)

where the ellipsis denotes terms containing electrically charged heavy scalars. For the electri-
cally neutral scalar,

L�0 = ⇧�
v,Q=0

⇤
iv ·  �  2

⇥
2M(Q=0)

+O(1/m3
W )

⌅
⇧v,Q=0 . (18)

Note that enforcing the reality condition (7) implies the vanishing of cD (= cM).
Interactions with Standard Model fields begin at order 1/m3

W . We restrict attention to
quark and gluon operators (neglecting lepton and photon operators) and again focus on the
neutral ⇧v,Q=0 component, dropping the Q = 0 subscript in the following. Mixing with charged
scalars will become relevant at order 1/m4

W in nuclear scattering computations; similarly, we
restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators

4The mass splitting (16) appears in limits of particular models, e.g. [1, 7, 8].
5We define the pole mass to include the contributions induced by electroweak symmetry breaking, as

opposed to introducing residual mass terms for di�erent charge eigenstates [9].
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Different pole masses for each charge eigenstate in low-energy 
theory (or residual mass terms)

⇥M = �(v · p = 0) = �2mW

�
�1

2
J2 + sin2

⇤W
2

J2
3

⇥
heavy particle Feynman rules

�i�2(v · p) = �g22

⇧
ddL

(2�)L
1

v · (L+ p)

⇤
J2 1

L2 �m2
W

+ J2
3

�
c2W

L2 �m2
Z

� 1

L2 �m2
W

+
s2W
L2

⇥⌅
+O(1/M)
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