# State of the art developments in computations of direct scattering 

RICHARD HILL

Cosmic Frontier meeting

6 March 2013

## outline

- remarks on SM extensions
- heavy particle expansions and DM interactions
- worked example: "wino" - like DM
- quarks in nucleons, nucleons in nuclei
effective field theory = "QM + relativity + calculus"
based largely on work with M.P. Solon PLB 707539 (20I2), and to appear


## interesting work I will not cover

- contact interaction dark matter
- derivative interaction dark matter
- factoring out astrophysics
- SUSY and model building
too many contributions to list here (apologies)


## in defense of simple models*

- sometimes simple models work very well
(e.g. Standard Model higgs)

- guidance into the unknown
neutrino mass problem
SM gauge symmetries allow dimension five operator


$$
\begin{aligned}
& \mathcal{L} \sim \frac{1}{\Lambda} H H L L
\end{aligned}
$$

$$
\begin{align*}
& \rightarrow \mathcal{L} \sim m_{\nu} \nu \nu, \quad m_{\nu} \sim \frac{v_{\text {weak }}^{2}}{\Lambda}  \tag{1}\\
& \begin{array}{ccc}
H & 1 & 2 \\
\nu^{\prime} & 1 & 1
\end{array}
\end{align*}
$$

- seesaw UV completion a simple guide to possible size of neutrino mass
- guidance into the unknown


## dark matter problem

at very low energies, interactions with SM given by contact interactions

$$
\begin{aligned}
& \mathcal{L}_{\chi, S M}=\chi^{*} \chi\left\{\sum_{q} c_{1 q}^{(0)} O_{1 q}^{(0)}+c_{1 q}^{(2)} v_{\mu} v_{\nu} O_{1 q}^{(2) \mu \nu}+c_{2}^{(0)} O_{2}^{(0)}+c_{2}^{(2)} v_{\mu} v_{\nu} O_{2}^{(2) \mu \nu}+\ldots\right\} \\
& o_{1 q}^{(0)}=m_{q} \bar{q}, \quad \quad O_{2}^{(0)}=\left(G_{\mu}^{A}\right)^{2},
\end{aligned}
$$

to understand strength of coupling and to relate different processes, need guidance from underlying interactions

## in defense of calculating

Naive dimensional estimates can be very wrong for some basic numbers


VS.

$$
\sigma \sim \frac{\pi \alpha_{2}^{4} m_{N}^{4}}{m_{W}^{2}}\left(\frac{1}{m_{W}^{2}}+\frac{1}{m_{h}^{2}}\right)^{2} \sim 10^{-44} \mathrm{~cm}^{2}
$$

Large logarithms of QCD perturbation theory can cause large effects

Given our present knowledge of SM, can now make robust predictions for how BSM particles interact with, e.g., nuclei

## heavy particles

## Universal interactions with heavy particles



$$
\mathcal{L}=\psi^{\dagger}\left(i \partial_{t}+g A^{0}+\ldots\right) \psi
$$

- hydrogen spectroscopy $\quad E_{n}(H)=-\frac{1}{2} m_{e} \alpha^{2}+\ldots$
- heavy meson transitions
$F^{B \rightarrow D}\left(v^{\prime}=v\right)=1+\ldots$
- DM interactions
$\sigma(\chi N \rightarrow \chi N)=?$


## LHC: New physics may be heavy (compared to mw)

- in this regime, $\mathrm{mw} / \mathrm{M}$ expansion becomes meaningful, universal behavior emerges
- in SUSY language, pure bino/wino/higgsino scattering suppressed (no tree level higgs exchange). This case becomes "generic" when M>>mw ( $\left.M_{1}-M_{2} \sim m w n o t ~ g e n e r i c\right) ~$
- heavy particle methods efficient in particular models (e.g. relic abundance $\rightarrow \mathrm{mX} \gtrsim \mathrm{TeV}$ for wino-like, higgsino-like DM)
- but applicable to general case where UV completion unspecified


## Standard Model anatomy of direct detection

Generic dark matter candidate described by extending SM by finite number of particles in representations of SM gauge groups

As prototype, consider Lorentz-scalar, SU(2) electroweak multiplet

- $\mathrm{M}>\sim \mathrm{TeV}$ from thermal relic abundance. $\mathrm{M} \gg \mathrm{mW}$ : model-independent analysis, predictive scattering cross section
- large gluon matrix element:

2 loop required for leading analysis
$\mathcal{L}=a$
 $+$ $c_{2}$


$m_{W} / M, \quad \Lambda_{\mathrm{QCD}}^{2} / m_{c}^{2}, \quad m_{b} / m_{W} \ldots$




## Multiple scales:

Renormalization analysis required to sum large logarithms

$$
\alpha_{s}(\mu) \log \frac{m_{t}}{\mu} \sim \alpha_{s}(1 \mathrm{GeV}) \log \frac{170 \mathrm{GeV}}{1 \mathrm{GeV}}
$$

Consider effective theory at each scale:

## ?, SM

M

$$
\phi_{v}, \mathrm{SM}
$$

$m_{W} \sim m_{h} \sim m_{t}$

$$
\phi_{v}^{(Q=0)}, u, d, s, c, b, g
$$

$m_{b}, \quad m_{c}$

$$
\phi_{v}^{(Q=0)}, u, d, s, g
$$

$\Lambda_{\mathrm{QCD}}$

Universal to an $\mathrm{SU}(2)$-multiplet scenario

Analysis in low energy theory applies to non-SU(2)-multiplet scenarios

## (EW symmetric) heavy DM effective theory:

## Operator basis

Building blocks: $\quad \phi_{v}(x), \quad v^{\mu}, \quad D_{\perp \mu}=D_{\mu}-v^{\mu} v \cdot D$
Everything not forbidden is allowed:

$$
\begin{aligned}
\mathcal{L}_{\phi}= & \phi_{v}^{*}\left\{i v \cdot D-c_{1} \frac{D_{\perp}^{2}}{2 M}+c_{2} \frac{D_{\perp}^{4}}{8 M^{3}}+g_{2} c_{D} \frac{v^{\alpha}\left[D_{\perp}^{\beta}, W_{\alpha \beta}\right]}{8 M^{2}}+i g_{2} c_{M} \frac{\left\{D_{\perp}^{\alpha},\left[D_{\perp}^{\beta}, W_{\alpha \beta}\right]\right\}}{16 M^{3}}\right. \\
& +g_{2}^{2} c_{A 1} \frac{W^{\alpha \beta} W_{\alpha \beta}}{16 M^{3}}+g_{2}^{2} c_{A 2} \frac{v_{\alpha} v^{\beta} W^{\mu \alpha} W_{\mu \beta}}{16 M^{3}}+g_{2}^{2} c_{A 3} \frac{\operatorname{Tr}\left(W^{\alpha \beta} W_{\alpha \beta}\right)}{16 M^{3}}+g_{2}^{2} c_{A 4} \frac{\operatorname{Tr}\left(v_{\alpha} v^{\beta} W^{\mu \alpha} W_{\mu \beta}\right)}{16 M^{3}} \\
& +g_{2}^{2} c_{A 1}^{\prime} \frac{\epsilon^{\mu \nu \rho \sigma} W_{\mu \nu} W_{\rho \sigma}}{16 M^{3}}+g_{2}^{2} c_{A 2}^{\prime} \frac{\epsilon^{\mu \nu \rho \sigma} v^{\alpha} v_{\mu} W_{\nu \alpha} W_{\rho \sigma}}{16 M^{3}}+g_{2}^{2} c_{A 3}^{\prime} \frac{\epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(W_{\mu \nu} W_{\rho \sigma}\right)}{16 M^{3}} \\
& \left.+g_{2}^{2} c_{A 4}^{\prime} \frac{\epsilon^{\mu \nu \rho \sigma} v^{\alpha} v_{\mu} \operatorname{Tr}\left(W_{\nu \alpha} W_{\rho \sigma}\right)}{16 M^{3}}+\ldots\right\} \phi_{v},
\end{aligned}
$$

Lorentz invariance: $\quad c_{1}=c_{2}=1, \quad c_{M}=c_{D}$ $\Rightarrow$ Through $\mathrm{O}\left(\mathrm{I} / \mathrm{M}^{3}\right)$, heavy gauged scalar determined by 2 numbers (mass and "charge radius"), plus polarizabilities

## Standard model interactions

$$
\begin{aligned}
& \mathcal{L}_{\phi, \mathrm{SM}}=\phi_{v}^{*}\left\{c_{H} \frac{H^{\dagger} H}{M}+\cdots+c_{Q} \frac{t_{J}^{a} \bar{Q}_{L} \tau^{a} \psi Q_{L}}{M^{2}}+c_{X} \frac{i \bar{Q}_{L} \tau^{a} \gamma^{\mu} Q_{L}\left\{t_{J}^{a}, D_{\mu}\right\}}{2 M^{3}}+c_{D Q} \frac{\bar{Q}_{L} \psi i v \cdot D Q_{L}}{M^{3}}\right. \\
& \quad+c_{D u} \frac{\bar{u}_{R} \psi i v \cdot D u_{R}}{M^{3}}+c_{D d} \frac{\bar{d}_{R} \psi i v \cdot D d_{R}}{M^{3}}+c_{H d} \frac{\bar{Q}_{L} H d_{R}+h . c .}{M^{3}}+c_{H u} \frac{\bar{Q}_{L} \tilde{H} u_{R}+h . c .}{M^{3}} \\
& \quad+g_{3}^{2} c_{A 1}^{(G)} \frac{G^{A \alpha \beta} G_{\alpha \beta}^{A}}{16 M^{3}}+g_{3}^{2} c_{A 2}^{(G)} \frac{v_{\alpha} v^{\beta} G^{A \mu \alpha} G_{\mu \beta}^{A}}{16 M^{3}}+g_{3}^{2} c_{A 1}^{(G)} \frac{\epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{A} G_{\rho \sigma}^{A}}{16 M^{3}}+g_{3}^{2} c_{A 2}^{(G),} \frac{\epsilon^{\mu \nu \rho \sigma} v^{\alpha} v_{\mu} G_{\nu \alpha}^{A} G_{\rho \sigma}^{A}}{16 M^{3}} \\
& \quad+\ldots\} \phi_{v} .
\end{aligned}
$$

## Lorentz invariance:

$$
c_{Q}=c_{X}
$$

## All of these are suppressed by $\mathrm{I} / \mathrm{M}$

## Low energy theory

Operator basis

$$
\mathcal{L}=\mathcal{L}_{\phi_{0}}+\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\phi_{0}, \mathrm{SM}}+\ldots,
$$

Heavy neutral scalar:

$$
\mathcal{C}_{\phi_{0}}=\phi_{v, Q=0}^{*}\left\{i v \cdot \partial-\frac{\partial_{\perp}^{2}}{2 M_{(Q=0)}}+\mathcal{O}\left(1 / m_{W}^{3}\right)\right\} \phi_{p_{v}, Q=0}
$$

SM interactions:

$$
\mathcal{L}_{\phi_{0}, S M}=\frac{1}{m_{W}^{3}} \phi_{v}^{*} \phi_{v}\left\{\sum_{q}\left[c_{1 q}^{(0)} O_{1 q}^{(0)}+c_{1 q}^{(2)} v_{\mu} v_{\nu} v_{1 q}^{(2) \mu \nu}\right]+c_{2}^{(0)} O_{2}^{(0)}+c_{2}^{(2)} v_{\mu} v_{\nu} O_{2}^{(2) \mu \nu}\right\}+\ldots
$$

Convenient to choose basis of definite spin

$$
\begin{array}{rlrl}
O_{1 q}^{(0)} & =m_{q} \bar{q} q, & O_{2}^{(0)}=\left(G_{\mu \nu}^{A}\right)^{2} \\
O_{1 q}^{(2) \mu \nu} & =\bar{q}\left(\gamma^{\{\mu} i D^{\nu\}}-\frac{1}{d} g^{\mu \nu} i \not \supset\right) q, & O_{2}^{(2) \mu \nu} & =-G^{A \mu \lambda} G_{\lambda}^{A \nu}+\frac{1}{d} g^{\mu \nu}\left(G_{\alpha \beta}^{A}\right)^{2}
\end{array}
$$

## Matching ( $\mu \approx \mathbf{m w}$ )

## quark operators

$$
\begin{array}{ll}
c_{1 U}^{(0)}\left(\mu_{t}\right)=\mathcal{C}\left[-\frac{1}{x_{h}^{2}}\right], & c_{1 D}^{(0)}\left(\mu_{t}\right)=\mathcal{C}\left[-\frac{1}{x_{h}^{2}}-\left|V_{t D}\right|^{2} \frac{x_{t}}{4\left(1+x_{t}\right)^{3}}\right], \\
c_{1 U}^{(2)}\left(\mu_{t}\right)=\mathcal{C}\left[\frac{2}{3}\right], & c_{1 D}^{(2)}\left(\mu_{t}\right)=\mathcal{C}\left[\frac{2}{3}-\left|V_{t D}\right|^{2} \frac{x_{t}\left(3+6 x_{t}+2 x_{t}^{2}\right)}{3\left(1+x_{t}\right)^{3}}\right],
\end{array}
$$



## gluon operators

$$
\begin{aligned}
c_{2}^{(0)}\left(\mu_{t}\right)= & \mathcal{C} \frac{\alpha_{s}\left(\mu_{t}\right)}{4 \pi}\left[\frac{1}{3 x_{h}^{2}}+\frac{3+4 x_{t}+2 x_{t}^{2}}{6\left(1+x_{t}\right)^{2}}\right], \\
c_{2}^{(2)}\left(\mu_{t}\right)= & \mathcal{C} \frac{\alpha_{s}\left(\mu_{t}\right)}{4 \pi}\left[-\frac{32}{9} \log \frac{\mu_{t}}{m_{W}}-4-\frac{4\left(2+3 x_{t}\right)}{9\left(1+x_{t}\right)^{3}} \log \frac{\mu_{t}}{m_{W}\left(1+x_{t}\right)}\right. \\
& -\frac{4\left(12 x_{t}^{5}-36 x_{t}^{4}+36 x_{t}^{3}-12 x_{t}^{2}+3 x_{t}-2\right)}{9\left(x_{t}-1\right)^{3}} \log \frac{x_{t}}{1+x_{t}}-\frac{8 x_{t}\left(-3+7 x_{t}^{2}\right)}{9\left(x_{t}^{2}-1\right)^{3}} \log 2 \\
& \left.-\frac{48 x_{t}^{6}+24 x_{t}^{5}-104 x_{t}^{4}-35 x_{t}^{3}+20 x_{t}^{2}+13 x_{t}+18}{9\left(x_{t}^{2}-1\right)^{2}\left(1+x_{t}\right)}\right] .
\end{aligned}
$$



## Heavy particle Feynman rules simplify matching calculations




$$
i \mathcal{M}=-g_{2}^{2} \int(d L)\left[\frac{1}{-v \cdot L+i 0}+\frac{1}{v \cdot L+i 0}\right] \frac{1}{\left(L^{2}-m_{W}^{2}+i 0\right)^{2}} v_{\mu} v_{\nu} \Pi^{\mu \nu}(L)
$$

electroweak polarizabilityhensor in background gluon field

Electroweak gauge invariance is immediate:

$$
v^{\mu}\left[g_{\mu \mu^{\prime}}-(1-\xi) \frac{L_{\mu} L_{\mu^{\prime}}}{L^{2}-\xi m_{W}^{2}}\right]=v_{\mu^{\prime}}+\mathcal{O}(v \cdot L)
$$

crossed and uncrossed diagrams cancel
gluon Fock-Schwinger gauge (x.A=0) in dim.reg. :

$$
\begin{aligned}
i S(p)= & \frac{i}{p p-m}+g \int(d q) \frac{i}{p-m} i \mathcal{A}(q) \frac{i}{p-\not q-m} \\
& +g^{2} \int\left(d q_{1}\right)\left(d q_{2}\right) \frac{i}{p-m} i \mathcal{A}\left(q_{1}\right) \frac{i}{p-\phi_{1}-m} i \mathcal{A}\left(q_{2}\right) \frac{i}{p-\not q_{1}-\phi_{2}-m}+\ldots
\end{aligned}
$$

## Solution to RG equations

$$
\begin{array}{rlrl}
O_{1 q}^{(0)} & =m_{q} \bar{q} q, & O_{2}^{(0)}=\left(G_{\mu \nu}^{A}\right)^{2} \\
O_{1 q}^{(2) \mu \nu} & =\bar{q}\left(\gamma^{\{\mu} i D^{\nu\}}-\frac{1}{d} g^{\mu \nu} i \not D\right) q, & O_{2}^{(2) \mu \nu}=-G^{A \mu \lambda} G_{\lambda}^{A \nu}+\frac{1}{d} g^{\mu \nu}\left(G_{\alpha \beta}^{A}\right)^{2} \\
\frac{d}{d \log \mu} O_{i}^{(S)}=-\sum_{j} \gamma_{i j}^{(S)} O_{j} & \frac{d}{d \log \mu} c_{i}^{(S)}=\sum_{j} \gamma_{j i}^{(S)} c_{j}^{(S)}
\end{array}
$$

Spin 0 :

$$
\begin{aligned}
& c_{2}^{(0)}(\mu)=c_{2}^{(0)}\left(\mu_{t}\right) \frac{\frac{\beta}{g}\left[\alpha_{s}(\mu)\right]}{\frac{\beta}{g}\left[\alpha_{s}\left(\mu_{t}\right)\right]} \\
& c_{1}^{(0)}(\mu)=c_{1}^{(0)}\left(\mu_{t}\right)-2\left[\gamma_{m}(\mu)-\gamma_{m}\left(\mu_{t}\right)\right] \frac{c_{2}^{(0)}\left(\mu_{t}\right)}{\frac{\beta}{g}\left[\alpha_{s}\left(\mu_{t}\right)\right]}
\end{aligned}
$$

## Spin 2:

Diagonalize anomalous dimension matrix (familiar from PDF analysis)

As check, can evaluated spin-2 matrix elements at high scale (spin-0 and spin-2 decoupled)

$$
\hat{\gamma}^{(2)}=\frac{\alpha_{s}}{4 \pi}\left(\begin{array}{ccc|c}
\frac{64}{9} & & & -\frac{4}{3} \\
& \ddots & & \vdots \\
& & \frac{64}{9} & -\frac{4}{3} \\
\hline-\frac{64}{9} & \cdots & -\frac{64}{9} & \frac{4 n_{f}}{3}
\end{array}\right)+. .
$$

## Integrate out heavy quarks ( $\mu \approx \mathbf{m}_{\mathrm{b}}$ )



$$
\begin{aligned}
& c_{2}^{(0)}\left(\mu_{b}\right)=\tilde{c}_{2}^{(0)}\left(\mu_{b}\right)\left(1+\frac{4 \tilde{a}}{3} \log \frac{m_{b}}{\mu_{b}}\right)-\frac{\tilde{a}^{3}}{3} \tilde{c}_{1 b}^{(0)}\left(\mu_{b}\right)\left[1+\tilde{a}\left(11+\frac{4}{3} \log \frac{m_{b}}{\mu_{b}}\right)\right]+\mathcal{O}\left(\tilde{a}^{3}\right) \\
& c_{1 q}^{(0)}\left(\mu_{b}\right)=\tilde{c}_{1 q}^{(0)}\left(\mu_{b}\right)+\mathcal{O}\left(\tilde{a}^{2}\right), \\
& c_{2}^{(2)}\left(\mu_{b}\right)=\tilde{c}_{2}^{(2)}\left(\mu_{b}\right)-\frac{4 \tilde{a}}{3} \log \frac{m_{b}}{\mu_{b}} \tilde{c}_{1 b}^{(2)}\left(\mu_{b}\right)+\mathcal{O}\left(\tilde{a}^{2}\right), \\
& c_{1 q}^{(2)}\left(\mu_{b}\right)=\tilde{c}_{1 q}^{(2)}\left(\mu_{b}\right)+\mathcal{O}(\tilde{a}),
\end{aligned}
$$

Contribution to gluon operators familiar from $\mathrm{h} \rightarrow \mathrm{gg}$ Heavy quark mass scheme enters at higher order

Charm quark treated similarly (after running to $\mathrm{m}_{\mathrm{c}}$ )

## Spin - 0

$$
\langle N(k)| T^{\mu \nu}|N(k)\rangle=\frac{k^{\mu} k^{\nu}}{m_{N}}=\frac{1}{m_{N}}\left(k^{\mu} k^{\nu}-\frac{1}{4} g^{\mu \nu} m_{N}^{2}\right)+m_{N} \frac{1}{4} g^{\mu \nu}
$$

## Spin-0 operators determine contributions to nucleon mass

$$
\begin{gathered}
m_{N}=\left(1-\gamma_{m}\right) \sum_{q}\langle N| m_{q} \bar{q} q|N\rangle+\frac{\beta}{2 g}\langle N|\left(G_{\mu \nu}^{a}\right)^{2}|N\rangle \\
\langle N| O_{1 q}^{(0)}|N\rangle \equiv m_{N} f_{q, N}^{(0)}, \quad \frac{-9 \alpha_{s}(\mu)}{8 \pi}\langle N| O_{2}^{(0)}(\mu)|N\rangle \equiv m_{N} f_{G, N}^{(0)}(\mu) \\
\\
\text { significant uncertainty in this quantity } \\
m_{N}\left(f_{u, N}^{(0)}+f_{d, N}^{(0)}\right) \approx \Sigma_{\pi N}, \quad m_{N} f_{s, N}^{(0)}=\frac{m_{s}}{m_{u}+m_{d}}\left(\Sigma_{\pi N}-\Sigma_{0}\right)=\Sigma_{s} \\
f_{G, N}^{(0)}(\mu) \approx 1-\sum_{q=u, d, s} f_{q, N}^{(0)}
\end{gathered}
$$

## Spin - 2

$$
\langle N(k)| T^{\mu \nu}|N(k)\rangle=\frac{k^{\mu} k^{\nu}}{m_{N}}=\frac{1}{m_{N}}\left(k^{\mu} k^{\nu}-\frac{1}{4} g^{\mu \nu} m_{N}^{2}\right)+m_{N} \frac{1}{4} g^{\mu \nu}
$$

Spin-2 operators determine momentum fraction carried by partons

$$
\begin{aligned}
\langle N| O_{1 q}^{(2) \mu \nu}(\mu)|N\rangle & \equiv \frac{1}{m_{N}}\left(k^{\mu} k^{\nu}-\frac{g^{\mu \nu}}{4} m_{N}^{2}\right) f_{q, N}^{(2)}(\mu) . \\
\langle N| O_{2}^{(2) \mu \nu}(\mu)|N\rangle & \equiv \frac{1}{m_{N}}\left(k^{\mu} k^{\nu}-\frac{g^{\mu \nu}}{4} m_{N}^{2}\right) f_{G, N}^{(2)}(\mu)
\end{aligned}
$$

| $\mu(\mathrm{GeV})$ | $f_{u, p}^{(2)}(\mu)$ | $f_{d, p}^{(2)}(\mu)$ | $f_{s, p}^{(2)}(\mu)$ | $f_{G, p}^{(2)}(\mu)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1.0 | $0.404(6)$ | $0.217(4)$ | $0.024(3)$ | $0.36(1)$ |
| 1.2 | $0.383(6)$ | $0.208(4)$ | $0.027(2)$ | $0.38(1)$ |
| 1.4 | $0.370(5)$ | $0.202(4)$ | $0.030(2)$ | $0.40(1)$ |

[MSTW 090I.0002]

$$
f_{q, p}^{(2)}(\mu)=\int_{0}^{1} d x x[q(x, \mu)+\bar{q}(x, \mu)]
$$

Approximate isospin symmetry:

$$
f_{u, n}^{(2)}=f_{d, p}^{(2)}, \quad f_{d, n}^{(2)}=f_{u, p}^{(2)}, \quad f_{s, n}^{(2)}=f_{s, p}^{(2)}
$$

## Numerical benchmark: low velocity, spin independent cross section on nucleon

| Parameter | Value |  |
| :---: | :---: | :---: |
| $\left\|V_{t d}\right\|$ | $\sim 0$ |  |
| $\left\|V_{t s}\right\|$ | $\sim 0$ |  |
| $\left\|V_{t b}\right\|$ | $\sim 1$ | Cross section is completely |
| $m_{u} / m_{d}$ | $0.49(13)$ | determined, given standard |
| $m_{s} / m_{d}$ | $19.5(2.5)$ | model inputs |
| $\Sigma_{\pi N}^{\text {lat }}$ | $0.047(9) \mathrm{GeV}$ |  |
| $\Sigma_{s}^{\text {lat }}$ | $0.050(8) \mathrm{GeV}$ |  |
| $\Sigma_{\pi N}$ | $0.064(7) \mathrm{GeV}$ |  |
| $\Sigma_{0}$ | $0.036(7) \mathrm{GeV}$ |  |
| $m_{W}$ | 80.4 GeV |  |
| $m_{t}$ | 172 GeV |  |
| $m_{b}$ | 4.75 GeV |  |
| $m_{c}$ | 1.4 GeV |  |
| $m_{N}$ | 0.94 GeV |  |
| $\alpha_{s}\left(m_{Z}\right)$ | 0.118 |  |
| $\alpha_{2}\left(m_{Z}\right)$ | 0.0338 | Consider result as a function of higgs boson mass |
| $m_{h}$ | $?<$ |  |

## Numerical benchmark: low velocity, spin independent cross section on nucleon



$$
\sigma \sim \frac{\pi \alpha_{2}^{4} m_{N}^{4}}{m_{W}^{2}}\left(\frac{1}{m_{W}^{2}}+\frac{1}{m_{h}^{2}}\right)^{2} \sim 10^{-44} \mathrm{~cm}^{2}
$$

Previous estimates range over several orders of magnitude, errors not specified

## Numerical benchmark: low velocity, spin independent cross section on nucleon



## Strange quark scalar matrix element dependence

strange matrix element (and correlated gluon matrix element) a prominent uncertainty

baryon spectroscopy inputs

## Nucleon matrix elements

- strange quark scalar matrix element the subject of controversy

summary plot: Junnarkar and Walker-Loud, I30|.III4

$$
\begin{array}{ll}
\Sigma_{\pi N}=\frac{m_{u}+m_{d}}{2}\langle p|(\bar{u} u+\bar{d} d)|p\rangle & \Sigma_{0}=\frac{m_{u}+m_{d}}{2}\langle p|(\bar{u} u+\bar{d} d-2 \bar{s} s)|p\rangle \\
m_{N}\left(f_{u, N}^{(0)}+f_{d, N}^{(0)}\right) \approx \Sigma_{\pi N} & m_{N} f_{s, N}^{(0)}=\frac{m_{s}}{m_{u}+m_{d}}\left(\Sigma_{\pi N}-\Sigma_{0}\right)=\Sigma_{s}
\end{array}
$$



Ellis, Olive, Savage, PRD 77065026 (2008)


- lattice results still noisy but converging on small value compared traditional SU(3) Ch.P.T.
(cf. Alarcon et al., I 209.2870)
- beneficial to also have lattice constraints on charm scalar matrix element


## Nuclear matrix elements

- simplest spin-independent, isospin-symmetric cross section uncontroversial

$$
\sigma_{A, Z} \approx \frac{m_{r}^{2}}{\pi}\left|Z \mathcal{M}_{p}+(A-Z) \mathcal{M}_{n}\right|^{2} \sim \frac{m_{r}^{2} A^{2}}{\pi}\left|\mathcal{M}_{p}\right|^{2}
$$

- two-body and higher operators break nucleon $x$ nuclear factorization: can be significant when cancellations occur, e.g., large isospin violation


Cirigliano, Graesser, Ovanesyan, JHEP 1210025 (2012)

## summary

-WIMP paradigm a plausible extension of the SM

- circa Feb 2013, we know things now we didn't know then: (strong indication of SM-like higgs, nothing else yet definitive from LHC)
- heavy particle methods essential tool for controlled computations
- illustrated with "wino"-like DM, extends to e.g., bino/wino/higgsino and other SM extensions
- careful analysis necessary to robustly connect models and cross sections, and to isolate universal behavior


## thanks for your attention

## Universal mass shift induced by EWSB

$$
\begin{aligned}
& -i \Sigma_{2}(v \cdot p)=-g_{2}^{2} \int \frac{d^{d} L}{(2 \pi)^{L}} \frac{1}{v \cdot(L+p)}\left[J^{2} \frac{1}{L^{2}-m_{W}^{2}}+J_{3}^{2}\left(\frac{c_{W}^{2}}{L^{2}-m_{Z}^{2}}-\frac{1}{L^{2}-m_{W}^{2}}+\frac{s_{W}^{2}}{L^{2}}\right)\right]+\mathcal{O}(1 / M)
\end{aligned}
$$

heavy particle Feynman rules

$$
\begin{gathered}
\delta M=\Sigma(v \cdot p=0)=\alpha_{2} m_{W}\left[-\frac{1}{2} J^{2}+\sin ^{2} \frac{\theta_{W}}{2} J_{3}^{2}\right] \\
M_{(Q)}-M_{(Q=0)}=\alpha_{2} Q^{2} m_{W} \sin ^{2} \frac{\theta_{W}}{2}+\mathcal{O}(1 / M) \approx(170 \mathrm{MeV}) Q^{2}
\end{gathered}
$$

Different pole masses for each charge eigenstate in low-energy theory (or residual mass terms)

