New Directions for Direct Detection of Dark Matter

Peter Graham Stanford

Direct Detection Now

Many experiments will push down these limits for masses ≥ 10 GeV

Are there other directions to take? light WIMPs electron scattering new types of detectors

Light WIMP Scattering

for $m_{\chi} \ll m_N$

momentum transfer: $q \sim m_{\chi} v$

energy deposited: $E \sim \frac{m_{\chi}^2 v^2}{m_N}$

for very light WIMPs motivates searching for electron scattering

form factor in e⁻ scattering makes heavy WIMPs difficult to detect

loop induced couplings to nucleons means electron scattering is already well covered at higher masses

Outline

1. Electron Scattering and Xenon10

R. Essig, J. Mardon, T. Volansky

2. Electron Scattering with Semiconductors

PWG, D.E. Kaplan, S. Rajendran, M. Walters

3. Polarized Detectors

C. Chiang, M. Kamionkowski, G. Krnjaic

Light Dark Matter, Electron Scattering, and Xenon10

R. Essig, J. Mardon, T. Volansky

"Direct Detection of Sub-GeV Dark Matter" Essig, Mardon & Volansky arXiv: 1108.5383

Calculated scattering rates of DM with bound electrons

"Direct Detection of Sub-GeV Dark Matter" Essig, Mardon & Volansky arXiv: 1 108.5383

Calculated scattering rates of DM with bound electrons Dual-phase Noble Gas detectors have well established sensitivity to *individual electrons*

"Direct Detection of Sub-GeV Dark Matter" Essig, Mardon & Volansky arXiv: 1 108.5383

Calculated scattering rates of DM with bound electrons Dual-phase Noble Gas detectors have well established sensitivity to *individual electrons*

XENON10 had the best sensitivity, but only recorded such small events during a short run in 2006:

Essig et. al. used this data to constrain the rate of 1-, 2-, and 3-electron ionization events:

R(1-electron) < 39 [events per kg-day]R(2-electron) < 4.7R(3-electron) < 1.1

Essig et. al. used this data to constrain the rate of 1-, 2-, and 3-electron ionization events:

R(1-electron) < 39 [events per kg-day]R(2-electron) < 4.7R(3-electron) < 1.1

DM coupled via a light **A' gauge boson** (A' mass~10 MeV)

Essig et. al. 1206.2644

DM with a magnetic dipole moment $(\mu < TeV^{-1})$

DM with an **electric dipole moment** $(d < TeV^{-1})$

Essig et. al. 1206.2644

DM coupled via **very light A' gauge boson** (mass<< keV)

Essig et. al. 1206.2644

Interesting models already being probed

Semiconductor Probes of Light Dark Matter

PWG, D.E. Kaplan, S. Rajendran, M. Walters, Phys. Dark Universe 1 (2012) 32, (arXiv:1203.2531)

Collider Limits

Fox, Harnik, Kopp, Tsai (1103.0240)

also see Goodman et. al. (2010)

Colliders already probe light WIMPs

• Dimension 6

 $\bar{\chi}\chi\bar{f}f$

Already ruled out by colliders over the testable range

• Dimension 6

 $\bar{\chi}\chi\bar{f}f$

Already ruled out by colliders over the testable range

• Dimension 5

 $\bar{\chi}\sigma^{\mu\nu}(\mu+d\gamma^5)\chi F_{\mu\nu}$

• Dimension 6

 $\bar{\chi}\chi\bar{f}f$

Already ruled out by colliders over the testable range

• Dimension 5 $\bar{\chi}\sigma^{\mu\nu}(\mu + d\gamma^5)\chi F_{\mu\nu}$

• Dimension 4

$$gA'_{\mu}\bar{\chi}\gamma^{\mu}\chi$$

Already ruled out by colliders over the testable range

• Dimension 5 X $\bar{\chi}\sigma^{\mu\nu}(\mu+d\gamma^5)\chi F_{\mu\nu}$ Light mediator increases σv at low WIMP velocity • Dimension 4 and avoids collider limits $gA'_{\mu}\bar{\chi}\gamma^{\mu}\chi$

EDM Coupling Limits

Semiconductors could be good probes of light DM

A' Coupling Limits

 $\lambda = \epsilon \gamma$

Polarized Detectors

C. Chiang, M. Kamionkowski, G. Krnjaic Phys. Dark Universe **1** (2012) 109 (1202.1807)

Polarized Scattering

If WIMP is a scalar, recoil is independent of nuclear spin direction

But if WIMP is a fermion with P-violating interactions: $\bar{\chi}\gamma^{\mu} (a + b\gamma_5) \chi \bar{N}\gamma_{\mu} (c + d\gamma_5) N$

then total rate and energy/direction distributions can depend on nuclear polarization

Need polarized nuclei and signal $\propto v_e \sim 10^{-3}$

Differential Event Rate

 ΔR = difference in rate between opposite polarizations

Polarization angle gives information on dark matter model, may help reject backgrounds some information without directional detection, but more with it