Ensemble Fluctuations in the UHECR Flux: Auger and JEM-EUSO Sensitivities

Luis A. Anchordoqui

University of Wisconsin Milwaukee

Cosmic Frontier Workshop, SLAC National Accelerator Laboratory 6-8 March, 2013

- What are ensemble fluctuations?
- Some examples
- Sensitivity of Auger and JEM-EUSO
- Conclusions

Markus Ahlers, LAA, and Andrew Taylor, PRD87 (2013) [arXiv:1209.5427] Markus Ahlers, LAA, T. Paul, and Andrew Taylor, in preparation

L. A. Anchordoqui (UW-Milwaukee)

Ensemble Fluctuations

• All predictions of UHECR spectra (proton or nuclei) are derived from a CR emission rate density (in units of $eV^{-1} cm^{-3} s^{-1}$)

- All predictions of UHECR spectra (proton or nuclei) are derived from a CR emission rate density (in units of $eV^{-1} cm^{-3} s^{-1}$)
- In reality

region with (individual) emission rates (in units of $eV^{-1} s^{-1}$)

- All predictions of UHECR spectra (proton or nuclei) are derived from a CR emission rate density (in units of $eV^{-1} cm^{-3} s^{-1}$)
- In reality

reference emission has to come from an ensemble of N (local) sources with (individual) emission rates (in units of $eV^{-1} s^{-1}$)

 Unfortunately region we don't know the exact location of the sources and so the standard flux prediction (or first-order guess) is only the mean ensemble contribution

- All predictions of UHECR spectra (proton or nuclei) are derived from a CR emission rate density (in units of eV⁻¹ cm⁻³ s⁻¹)
- In reality

reference emission has to come from an ensemble of N (local) sources with (individual) emission rates (in units of $eV^{-1} s^{-1}$)

- Unfortunately rank we don't know the exact location of the sources and so the standard flux prediction (or first-order guess) is only the mean ensemble contribution
- Next best guess search for deviations from this mean prediction *i.e.* study the next statistical moment of the distribution
 which is just the ensemble variation

Cutoff Regularization

• The calculation reflecting spatial variations that depend on the local source density (cm⁻³) is formally divergent $rest regulator \Rightarrow r_{min}$

Cutoff Regularization

- The calculation reflecting spatial variations that depend on the local source density (cm⁻³) is formally divergent is unless we introduce a regulator $\Rightarrow r_{min}$
- This mathematical regularization has a physical interpretation as the distance to the closest source and it is the contribution of these closeby sources that brings the largest contribution to spectral variations from the source distribution

Cutoff Regularization

- The calculation reflecting spatial variations that depend on the local source density (cm⁻³) is formally divergent is unless we introduce a regulator $\Rightarrow r_{min}$
- This mathematical regularization has a physical interpretation as the distance to the closest source and it is the contribution of these closeby sources that brings the largest contribution to spectral variations from the source distribution
- Variations of spectral indicies or emission rates are not in the form of oscillations (or wiggles) around the mean sources may conspire lifting the spectrum over a wide energy

range

BUT whatever the effect 🖙 the mean deviation from the mean is given by the ensemble variation

• Ensemble fluctuations are variations in the energy spectrum in *excess* of Poisson statistics

- Ensemble fluctuations are variations in the energy spectrum in *excess* of Poisson statistics
- They are influenced by various UHECR source

and propagation characteristics

- Distribution of discrete local sources
- Nuclear Composition
- Propagation effects

- Ensemble fluctuations are variations in the energy spectrum in *excess* of Poisson statistics
- They are influenced by various UHECR source

and propagation characteristics

- Distribution of *discrete* local sources
- Nuclear Composition
- Propagation effects
- Effect in the GZK region could be "large" :

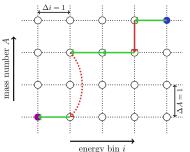
relatively few local sources can cause large fluctuations

- Ensemble fluctuations are variations in the energy spectrum in *excess* of Poisson statistics
- They are influenced by various UHECR source

and propagation characteristics

- Distribution of discrete local sources
- Nuclear Composition
- Propagation effects
- Effect in the GZK region could be "large" : relatively few local sources can cause large fluctuations
- Will Auger gather sufficient statistics to detect EF in GZK region? (*e.g.* if we run beyond 2015)
- What about JEM-EUSO?

Point-Source Flux


Imagine sitting at center of sphere with radius r_* with emission rate spectrum $Q_A(E)/(4\pi r_*^2)$ Point-source flux $rac{1}{\sim}$ described by Boltzmann's equation

$$\frac{1}{r^2} \partial_r (r^2 F_{A,i}) \simeq \delta(r - r_\star) \frac{Q_{A,i}}{4\pi r^2} + \Gamma_{A,i+1}^{\text{CEL}} F_{A,i+1} - \Gamma_{A,i}^{\text{CEL}} F_{A,i} \\ - \sum_{B < A} \Gamma_{(A,i) \to (B,i)} F_{A,i} + \sum_{B > A} \Gamma_{(B,i) \to (A,i)} F_{B,i}$$

binned flux $\mathbb{F}_{A,i} \equiv \Delta \epsilon_i \ A \ dF_A(A \epsilon_i) / dE$ emission rates $\mathbb{F}_{A,i} \equiv A \ \Delta \epsilon_i \ Q_A(A \epsilon_i)$

interaction rates 🖙

$$\Gamma_{A,i}^{\text{CEL}} \equiv \frac{b_A(A\epsilon_i)}{A\Delta\epsilon_i}$$
$$\Gamma_{(A,i)\to(B,i)} \equiv \Gamma_{A\to B}(A\epsilon_i)$$

 We want to study the statistical mean and variation of the aggregated flux of n_s local sources w N_{A,i} ≡ ∑_{s=1}^{n_s} F_{A,i}(r_s)

- We want to study the statistical mean and variation of the aggregated flux of n_s local sources I N_{A,i} ≡ ∑_{s=1}^{n_s} F_{A,i}(r_s)
- Consider n_s sources distributed between redshift r_{\min} and r_{\max} ***** # of sources can be expressed via (local) source density \mathcal{H}_0 $n_s = \mathcal{H}_0(4\pi/3)(r_{\max}^3 - r_{\min}^3)$

- We want to study the statistical mean and variation of the aggregated flux of n_s local sources I N_{A,i} ≡ ∑_{s=1}^{n_s} F_{A,i}(r_s)
- Consider n_s sources distributed between redshift r_{\min} and r_{\max} $rac{max}{max} \#$ of sources can be expressed via (local) source density \mathcal{H}_0 $n_s = \mathcal{H}_0(4\pi/3)(r_{\max}^3 - r_{\min}^3)$
- The probability distribution function of a single source is $\Pr(r) = \frac{\mathcal{H}_0}{n_s} 4\pi r^2 \Theta(r - r_{\min}) \Theta(r_{\max} - r)$

- We want to study the statistical mean and variation of the aggregated flux of n_s local sources I N_{A,i} ≡ ∑_{s=1}^{n_s} F_{A,i}(r_s)
- Consider n_s sources distributed between redshift r_{\min} and r_{\max} $rac{max}{max} \#$ of sources can be expressed via (local) source density \mathcal{H}_0 $n_s = \mathcal{H}_0(4\pi/3)(r_{\max}^3 - r_{\min}^3)$
- The probability distribution function of a single source is $\Pr(r) = \frac{\mathcal{H}_0}{n_s} 4\pi r^2 \Theta(r - r_{\min}) \Theta(r_{\max} - r)$
- Ensemble-average of a quantity $X(r_1, ..., r_{n_s})$ (depending on the distance of the n_s sources) can be expressed as $\operatorname{Im} \langle X \rangle = \int dr_1 \cdot ... \cdot dr_{n_s} p(r_1) \cdot ... \cdot p(r_{n_s}) X$

- Consider n_s sources distributed between redshift r_{\min} and r_{\max} $rac{max}{max} \#$ of sources can be expressed via (local) source density \mathcal{H}_0 $n_s = \mathcal{H}_0(4\pi/3)(r_{\max}^3 - r_{\min}^3)$
- The probability distribution function of a single source is $\Pr(r) = \frac{\mathcal{H}_0}{n_s} 4\pi r^2 \Theta(r - r_{\min}) \Theta(r_{\max} - r)$
- Ensemble-average of a quantity $X(r_1, ..., r_{n_s})$ (depending on the distance of the n_s sources) can be expressed as $\mathbb{R} \langle X \rangle = \int dr_1 \cdot ... \cdot dr_{n_s} p(r_1) \cdot ... \cdot p(r_{n_s}) X$
- Ensemble-average of local flux is $\langle N_{A,i} \rangle \equiv \mathcal{H}_0 \int_{r_{min}}^{r_{max}} \mathrm{d}r' 4\pi r'^2 \mathcal{F}_{A,i}(r')$

- Consider n_s sources distributed between redshift r_{\min} and r_{\max} $rac{max}{max} \#$ of sources can be expressed via (local) source density \mathcal{H}_0 $n_s = \mathcal{H}_0(4\pi/3)(r_{\max}^3 - r_{\min}^3)$
- The probability distribution function of a single source is $\Pr(r) = \frac{\mathcal{H}_0}{n_s} 4\pi r^2 \Theta(r - r_{\min}) \Theta(r_{\max} - r)$
- Ensemble-average of a quantity $X(r_1, ..., r_{n_s})$ (depending on the distance of the n_s sources) can be expressed as $\operatorname{ses} \langle X \rangle = \int dr_1 \cdot ... \cdot dr_{n_s} p(r_1) \cdot ... \cdot p(r_{n_s}) X$
- Ensemble-average of local flux is $\langle N_{A,i} \rangle \equiv \mathcal{H}_0 \int_{r_{min}}^{r_{max}} \mathrm{d}r' 4\pi r'^2 F_{A,i}(r')$
- Mean total flux is $\langle N_{\rm tot}(E)
 angle \equiv \sum_A \langle N_A(E/A)
 angle$

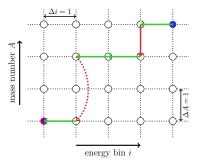
Relative Flux Variation

• Defining the residual $\delta X \equiv X - \langle X \rangle \bowtie \langle \delta X \delta Y \rangle = \langle XY \rangle - \langle X \rangle \langle Y \rangle$

• Covariance between relative flux of $\begin{cases} \text{two particle species } A, B \\ \text{populating energy bins } i, j \end{cases}$ is

$$\langle \delta N_{A,i} \delta N_{B,j} \rangle \equiv \langle N_{A,i} N_{B,j} \rangle - \langle N_{A,i} \rangle \langle N_{B,j} \rangle$$

Relative variation of total flux


described by two-point density perturbations

$$\sigma_{\rm loc}^2 = \sum_{A,B} \frac{\langle \delta N_A(E/A) \delta N_B(E/B) \rangle}{\langle N_{\rm tot}(E) \rangle^2}$$

Cosmic Variance Parameters

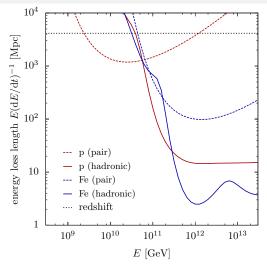
Estimate of ensemble fluctuations includes :

- source density
- source emission parameters
 γ and *E*_{max} IS same ∀ sources
- propagation effects
 M. Ahlers and A. Taylor, PRD 82 (2010)
- photopion (migration in energy bin)
- e⁺e⁻ pairs (migration in energy bin)
- photodisintegration (migration in mass)

Cosmic Variance Parameters

Estimate of ensemble fluctuations includes :

- source density
- source emission parameters
 γ and *E*_{max} IS same ∀ sources
- propagation effects
 M. Ahlers and A. Taylor, PRD 82 (2010)
- photopion (migration in energy bin)
- e^+e^- pairs (migration in energy bin)
- photodisintegration (migration in mass)

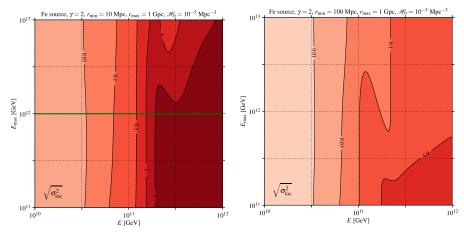

 $\mathbb{R}^{di=1}$

$$\begin{split} \mathcal{H}_0 &\sim 10^{-6} - 10^{-5} \ \text{Mpc}^{-3} \ \textbf{\tiny ss} \ \text{consistent with absence of repeaters} \\ \text{E. Waxman, K. B. Fisher, T. Piran ApJ 483 (1997)} \\ \text{T. Kashti and E. Waxman, JCAP 05 (2008)} \\ \text{H. Takami, S. Inoue, and T. Yamamoto, Astropart. Phys 35 (2012)} \\ \text{Pierre Auger Collaboration JCAP (submitted)} \end{split}$$

L. A. Anchordoqui (UW-Milwaukee)

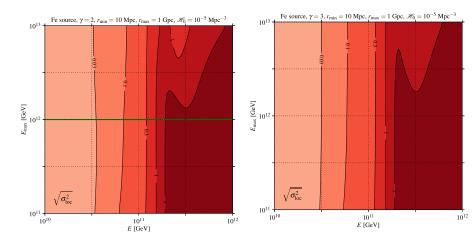
Ensemble Fluctuations

Energy Loss Lengths

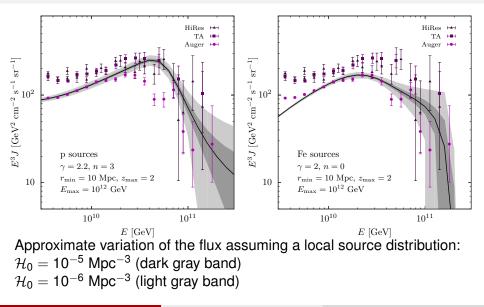


Energy losses carve the average energy spectrum and modulate its ensemble fluctuations

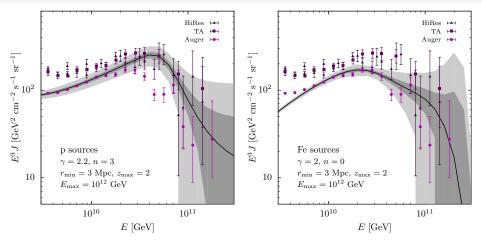
L. A. Anchordoqui (UW-Milwaukee)


Ensemble Fluctuations

Relative Ensemble Fluctuation


For $r_{\rm min} = 10 \,\,{\rm Mpc}$ relative ensemble fluctuation around mean flux increases with *E* and rises above the level of 10% at about 10^{10.8} GeV For $r_{\rm min} = 100 \,\,{\rm Mpc}$ resemble fluctuations are smaller by factor ~ 3

Relative Ensemble Fluctuation



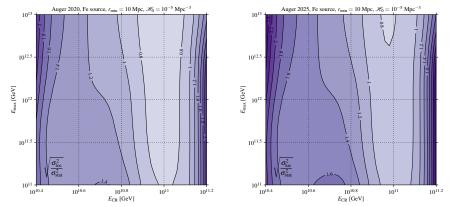
These results do not strongly depend on the spectral index

Spectral Wiggles $r r_{min} = 10 \text{ Mpc}$

Spectral Wiggles $r r_{min} = 3 \text{ Mpc}$

Approximate variation of the flux assuming a local source distribution: $H_0 = 10^{-5} \text{ Mpc}^{-3}$ (dark gray band) $H_0 = 10^{-6} \text{ Mpc}^{-3}$ (light gray band)

Exposures

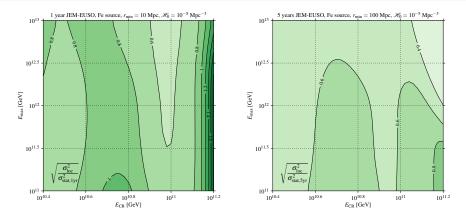


L. A. Anchordoqui (UW-Milwaukee)

Ensemble Fluctuations

Ensemble Fluctuations vs. Statistics

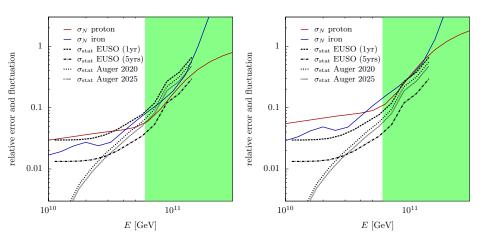
Exposure assumption: 21000 $\rm km^2$ sr yr through 2010 ICRC + 6000 $\rm km^2$ sr annual thereafter



Contour = 1 means the statistical error equals the ensemble fluctuation (*i.e.* "spectral wiggles" become discernable in the data)

L. A. Anchordoqui (UW-Milwaukee)

Ensemble Fluctuations


Ensemble Fluctuations vs. Statistics (cont'd)

Though marginal \square with sufficient exposure uncovering hints for $r_{min} = 10$ Mpc not out of the question....

 $r_{\min} = 100 \text{ Mpc}$ regret of range

Summary

 $r_{\min} = 10 \text{ Mpc}$ is 3σ evidence

 $r_{\min} = 3 \text{ Mpc} \approx 5\sigma \text{ discovery}$

Take-Home Message

• "Ensemble fluctuations" are fluctuations

in excess of Piosson statistics

- They persist in limit of large statistics
- They are an expected feature of UHECR spectrum

Take-Home Message

• "Ensemble fluctuations" are fluctuations

in excess of Piosson statistics

- They persist in limit of large statistics
- They are an expected feature of UHECR spectrum
- Magnitude and structure of fluctuations provide information on
 - local sources distribution
 - nuclear composition
 - injection parameters
 - lower bound on extragalactic magnetic field (when taken in combination with clustering measurements)
- As such reasonable fluctuations provide information

- complementary to other measurements -

of the complex features in the GZK region

Take-Home Message

• "Ensemble fluctuations" are fluctuations

in excess of Piosson statistics

- They persist in limit of large statistics
- They are an expected feature of UHECR spectrum
- Magnitude and structure of fluctuations provide information on
 - local sources distribution
 - nuclear composition
 - injection parameters
 - lower bound on extragalactic magnetic field (when taken in combination with clustering measurements)
- As such reasonable fluctuations provide information

- complementary to other measurements -

of the complex features in the GZK region

• UHECR exposures collected by 2025 will provide the required statistics for identification of ensemble fluctuations from the GZK suppression features on a statistical basis