The XENON Dark Matter Program at LNGS XENON100, 1T and beyond

Katsushi Arisaka for the XENON Collaboration

University of California, Los Angeles Department of Physics and Astronomy

arisaka@physics.ucla.edu

The XENON Collaboration

16 Institutions & ~100 members

XENON100 at LNGS (G1)

3/7/2013

Gamma Backgrounds in XENON100

External Backgrounds: PRD 83, 082001 (2011)

XENON1T at LNGS (G2)

XENON1T at LNGS

LNGS underground Lab.

XENON1T Cryostat

XENON1T Detector

Expected Background in XENON1T

XENON1T: Summary

> Detector

- Im drift TPC with 2.5 ton LXe target (1 ton fiducial)
- Shield: 10 m x 10 m Water Cherenkov Muon Veto
- Gamma Background: 1 x 10⁻⁵/keVee/kg/day

Sensitivity

- 2 x 10⁻⁴⁷ cm² at 50 GeV with 2 ton-years
- Gamma + Neutron Backgrounds < 1 event</p>

Capital Cost

- 13 M\$ (50% US and 50% non-US)
- All secured and funded

Schedule

- Construction started in Fall 2012
- Science run projected to start in 2015

A Possible XENON 10T (G3)

> Detector

- 2 m drift TPC
- ~20 ton Xe target
- ~10 ton fiducial

> Schedule

- Construction 2018 20
- Data taking in 2021 25

Parallel studies with Ar DARWIN, MAX

1- σ Error of WIMP Mass vs SI Cross Section

1- σ Error of WIMP Mass vs SI Cross Section

Summary of XENON100, 1T and 10T

		(Unit)	XENON100	XENON1T	XENON10T
0)	Schedule				
	Construction	Year	2007 - 2009	2012 - 2014	2018 - 2020
	Data Taking	Year	2010 - 2013	2015 - 2018	2021 - 2025
1)	Xenon Mass				
	Total	kg	162	3,500	25,000
	Active Target	kg	62	2,500	20,000
2)	Fiducial	kg	34	1,000	10,000
3)	Gamma Background (before S2/S1)	keVee/kg/day	5.E-03	1.E-05	1.E-05
4)	S2/S1 Rejection		99.75%	99.75%	99.75%
	Expected Background (aftr S2/S1)				
	Gamma	events	0.79	0.4	4
	Neutrons	events	0.17	0.1	0.1
5)	Energy Threshold	keVnr	6.6	4.0	4.0
	Exposure	ton-year	0.02	2	20

3/7/2013

Summary of XENON100, 1T and 10T

	(Unit)	XENON100	XENON1T	XENON10T
6) Sensitivity (SI)				
M = 5 GeV	cm ²	6.E-44	5.E-46	5.E-47
<i>M</i> = 10 GeV	cm ²	7.E-45	7.E-47	7.E-48
<i>M</i> = 100 GeV	cm ²	3.E-45	3.E-47	3.E-48
<i>M</i> = 1,000 GeV	cm ²	2.E-44	2.E-46	2.E-47
<i>M</i> = 10,000 GeV	cm ²	2.E-43	2.E-45	2.E-46
Sensitivity (SD- Neutron)				
<i>M</i> = 10 GeV	cm ²	4.E-38	4.E-40	4.E-41
<i>M</i> = 100 GeV	cm ²	5.E-40	5.E-42	5.E-43
<i>M</i> = 1,000 GeV	cm ²	4.E-39	4.E-41	4.E-42
<i>M</i> = 10,000 GeV	cm ²	4.E-38	4.E-40	4.E-41
Sensitivity (SD - Proton)				
<i>M</i> = 10 GeV	cm ²	1.E-36	1.E-38	1.E-39
<i>M</i> = 100 GeV	cm ²	1.E-38	1.E-40	1.E-41
<i>M</i> = 1,000 GeV	cm ²	8.E-38	8.E-40	8.E-41
<i>M</i> = 10,000 GeV	cm ²	8.E-37	8.E-39	8.E-40

Technological Challenges for 10 Ton

External Backgrounds

- Deep underground
- > 4 m water shielding

Detectors

- Low-Radioactivity Photon Detectors
- Liquid Scintillator Neutron Veto
- HV Feed-through

Purity of Liquid Xe

- Krypton (< 0.5 ppt in Xe)</p>
- Radon (< 0.3 mBq / toń)</p>
- Physics Backgrounds in Xe
 - pp-chain solar neutrinos
 - 2v Double beta decays from ¹³⁶Xe

International Consortium (with Ar)

- LNGS (or equivalent)
- Water Tank (~10 m)
- R11410-21, QUPID, GPM
- Gd or B doped
- 200 kV
- 1 event / 10 ton-year
- 1 event / 10 ton-year
- 1 event / 10 ton-year
- DARWIN, MAX