Leptogenesis

Mu-Chun Chen, University of California at Irvine

Cosmic Frontier Workshop, CF6B, SLAC, March 7, 2013

Baryon Number Asymmetry in SM

- Within the SM:
 - CP violation in quark sector not sufficient to explain the observed matterantimatter asymmetry of the Universe
- CP phase in quark sector:

Shaposhnikov, 1986; Farrar, Shaposhnikov, 1993

$$B \simeq \frac{\alpha_w^4 T^3}{s} \delta_{CP} \simeq 10^{-8} \delta_{CP} \qquad \delta_{CP} \simeq \frac{A_{CP}}{T_C^{12}} \simeq 10^{-20}$$

effects of CP violation suppressed by small quark mixing

$$A_{CP} = (m_t^2 - m_c^2)(m_c^2 - m_u^2)(m_u^2 - m_t^2) \ (m_b^2 - m_s^2)(m_s^2 - m_d^2)(m_d^2 - m_b^2) \cdot J$$

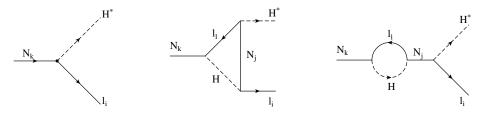
 $\longrightarrow B \sim 10^{-28}$

too small to account for the observed

neutrino masses open up a new possibility

Fukugita, Yanagida, 1986

• new CP phases in lepton sector


Leptogenesis

· Predictions closely tied to properties of neutrinos

Leptogenesis

Fukugita, Yanagida, 1986

- Implemented in the context of seesaw mechanism
- out-of-equilibrium decays of RH neutrinos produce primordial lepton number asymmetry Luty, 1992; Covi, Roulet, Vissani, 1996; Flanz et al, 1996; Plumacher, 1997; Pilaftsis, 1997

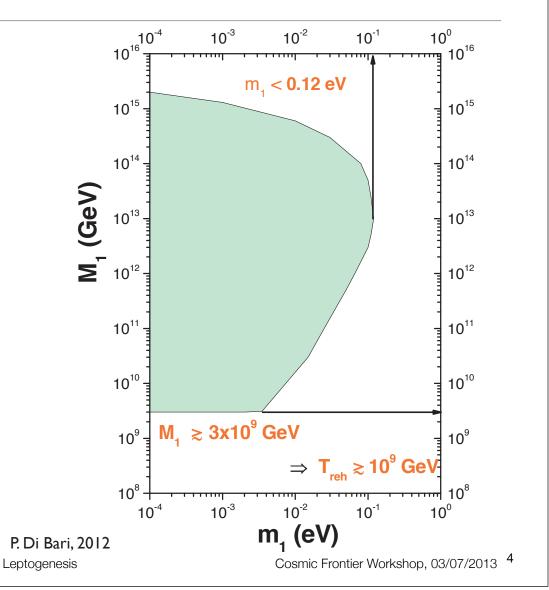
$$\epsilon_1 = \frac{\sum_{\alpha} \left[\Gamma(N_1 \to \ell_{\alpha} H) - \Gamma(N_1 \to \overline{\ell}_{\alpha} \overline{H}) \right]}{\sum_{\alpha} \left[\Gamma(N_1 \to \ell_{\alpha} H) + \Gamma(N_1 \to \overline{\ell}_{\alpha} \overline{H}) \right]}$$

- sphaleron process convert $\Delta L \rightarrow \Delta B$
- the asymmetry Buchmuller, Plumacher, 1998; Buchmuller, Di Bari, Plumacher, 2004

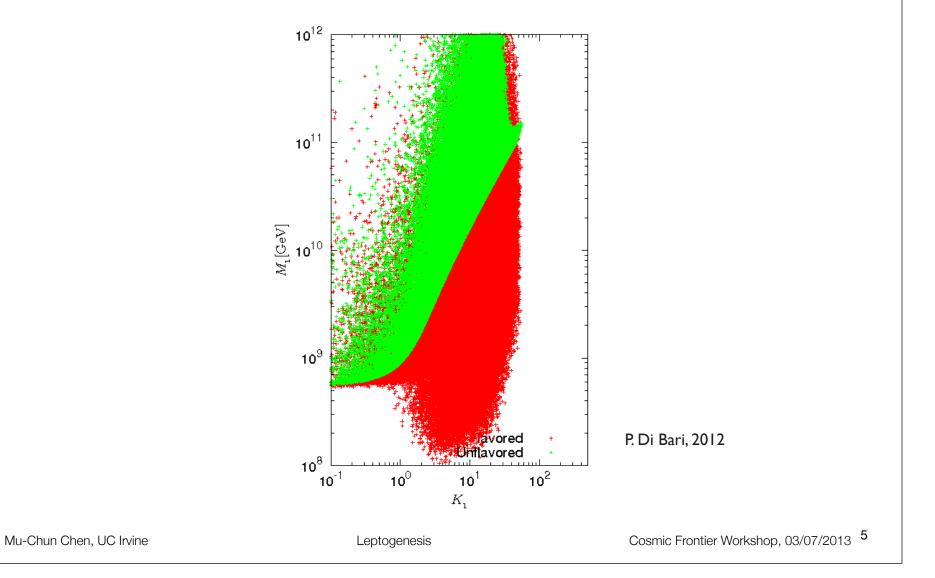
$$Y_B \simeq 10^{-2} \epsilon \kappa$$
 κ : efficiency factor ~ $(10^{-1} - 10^{-3})$ $Y_B = \frac{n_B - n_{\overline{B}}}{s} \sim 8.6 \times 10^{-11}$
(k: inverse decay $\Delta L=1$, scattering processes $\Delta L=1$, 2)

Mu-Chun Chen, UC Irvine

Leptogenesis

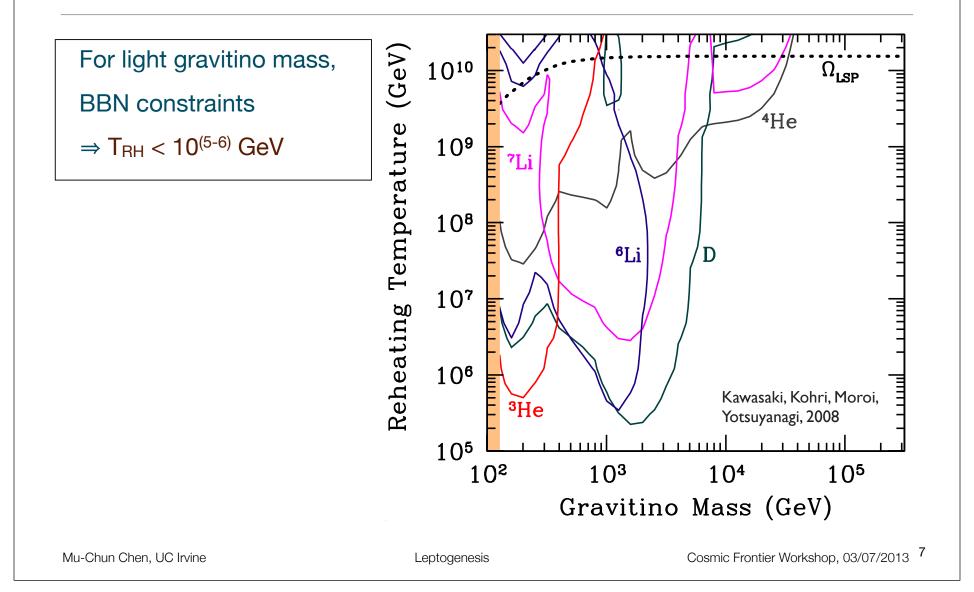

Bound on Light Neutrino Mass

 sufficient leptogenesis requires

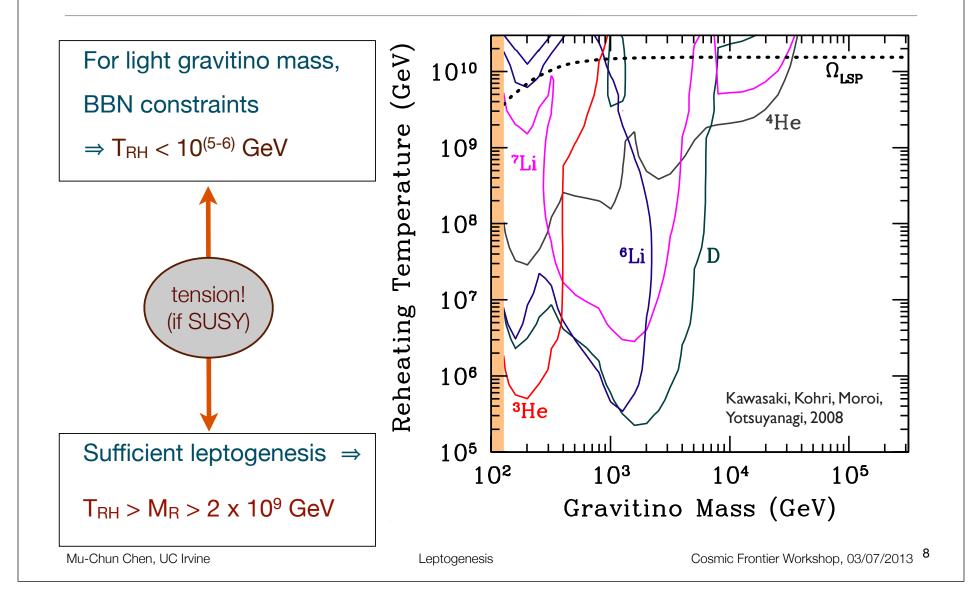

 $M_{1} \gtrsim 3x10^{9} \text{ GeV}$

- upper bound on light neutrino mass
 m₁ < 0.12 eV
 - incompatible with quasidegenerate spectrum
- constraints slightly alleviated with flavored case

Mu-Chun Chen, UC Irvine

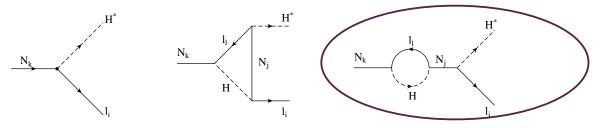

Gravitino Problem

- Thermally produced RH neutrino N:
 - high reheating temperature needed:


 $\Rightarrow T_{RH} > M_R > O(10^9) GeV$

- over-production of light state: gravitinos
- For gravitinos LSP:
 - DM constraint from WMAP
 - stringent bound on gluino mass for any given gravitino mass & T_{RH}
- For unstable gravitinos:
 - long life time
 - decay during and after BBN \Rightarrow affect abundance of light elements

Gravitino Problem


Gravitino Problem

Alternatives: "Non-standard" Scenarios

- Possible ways to avoid the tension:
 - resonant enhancement in self-energy diagram \Rightarrow lowering M_R, thus T_{RH}
 - → resonant leptogenesis (near degenerate RH neutrinos) Pilaftsis, 1997

Recall: in standard leptogenesis:

self-energy diagram dominate for near degenerate RH neutrino masses, $M_{1,2}$

enhanced O(1) asymmetry possible if

$$M_1 - M_2 \sim \frac{1}{2} \Gamma_{N_{1,2}}$$
, assuming $\frac{Im(h_{\nu}h_{\nu}^{\dagger})_{12}^2}{(h_{\nu}h_{\nu}^{\dagger})_{11}(h_{\nu}h_{\nu}^{\dagger})_{22}} \sim 1$ leptogeness even for

possible collider test

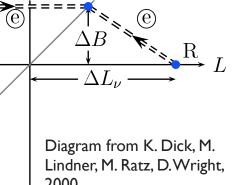
leptogenesis possible even for low M_{1,2}

Pilaftsis, Underwood, 2003

Mu-Chun Chen, UC Irvine

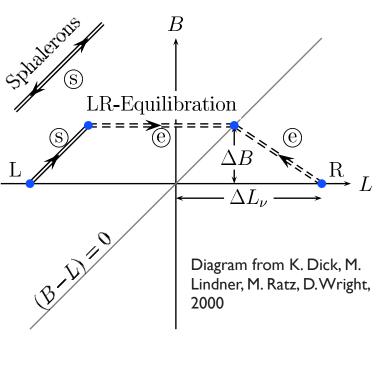
Leptogenesis

Dirac Leptogenesis


- Leptogenesis possible even when neutrinos are Dirac particles
- small Dirac mass through suppressed Yukawa coupling
- Characteristics of Sphaleron effects:
 - only left-handed fields couple to sphalerons
 - sphalerons change (B+L) but not (B-L)
 - sphaleron effects in equilibrium for T > Tew
- If L stored in RH fermions can survive below EW phase transition, net lepton number can be generated even with L=0 initially

late time LR equilibration of neutrinos making Dirac leptogenesis possible

Mu-Chun Chen, UC Irvine


Leptogenesis

Cosmic Frontier Workshop, 03/07/2013¹⁰

K. Dick, M. Lindner, M. Ratz, D. Wright, 2000;

H. Murayama, A. Pierce, 2002

Dirac Leptogenesis

- for neutrinos: LH equilibration can occur at late time ($T_{eq} \ll T_{EW}$) because of their much suppressed masses ($m_D < 10 \text{ keV}$)
- Naturally small Dirac neutrino mass?
- Two examples:
 - non-anomalous U(1) family symmetry M.-C.C., J. Huang, W. Shepherd (2011)
 - gives realistic quark and lepton masses and mixing patterns
 - naturally small Dirac neutrino masses due to higher dimensional operators
 - primordial asymmetry by U(1) flavor higgs decay
 - discrete R-symmetries M.-C.C., M. Ratz, C. Staudt, P.Vaudrevange (2012)
 - satisfy all anomaly cancellation conditions a la Green-Schwarz mechanism
 - automatically suppressed the mu term, thus solving the mu problem in MSSM
 - automatically suppressed the Dirac neutrino masses

Testing Leptogenesis?

- Sakharov Conditions:
 - out-of-equilibrium
 - expanding Universe
 - smallness of neutrino masses
 - Baryon Number Violation
 - abound in many extensions of the SM
 - neutrinoless double beta decay
 - Leptogenesis with Majorana (if observed) or Dirac (if not observed) neutrinos
 - CP violation
 - Long baseline neutrino oscillation experiments

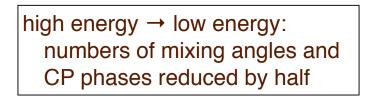
Mu-Chun Chen, UC Irvine

Leptogenesis

Dirac Leptogenesis: late equilibration temperature

Connection to Low Energy Observables

Leptogenesis ↔ Low Energy Observables
 Seesaw Lagrangian at high energy (in the presence of RH neutrinos)


6 mixing angles + 6 physical phases

• Low energy effective Lagrangian (after integrating out RH neutrinos)

3 mixing angles + 3 physical phases

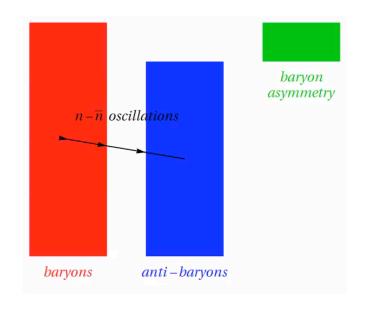
presence of low energy leptonic CPV (neutrino oscillation, neutrinoless double beta decay)

No model independent connection

- Statement is weakened when the so-called flavor effects are taken into account (relevant if leptogenesis at T < 10^{12} GeV)
- BUT, in certain models, connection can be established even without the flavor effects

Leptogenesis

Connection in Specific Models


- models for neutrino masses:
 - additional symmetries
 - reduce the number of parameters \Rightarrow connection can be established
- rank-2 mass matrix (may be realized by symmetry)
 - models with 2 RH neutrinos (2 x 3 seesaw) Kuchimanchi & Mohapatra, 2002
 - sign of baryon asymmetry \leftrightarrow sign of CPV in v oscillation Frampton, Glashow, Yanagida, 2002
- all CP come from a single source
 - models with spontaneous CP violation:
 - SM + vectorial quarks + singlet scalar Branco, Parada, Rebelo, 2003
 - minimal LR model: only 1 physical leptonic CP phase M.-.C.C, Mahanthappa, 2005
 - SCPV in SO(10): <126>B-L complex Achiman, 2004, 2008
 - SUSY SU(5) x T' Model: M.-.C.C, Mahanthappa, 2009
 - group theoretical origin of CP violation \Rightarrow only low energy lepton phases $\neq 0$

Connection to Other B/L Violating Processes

- e.g. n-nbar oscillation searches → complementarity test of leptogenesis (baryogenesis) mechanisms
 - constrain the scale of leptogenesis
- · observation of neutron antineutron oscillation
 - new physics with $\Delta B = 2$ at $10^{(5-6)}$ GeV
 - erasure of matter-antimatter generated at high scale, e.g. standard leptogenesis

Babu, Mohapatra, 2012

- Low scale leptogenesis scenarios preferred:
 - Dirac Leptogenesis
 - Resonance Leptogenesis
 - Soft leptogenesis; ...

[Animation Credit: Michael Ratz]

Mu-Chun Chen, UC Irvine

Quantum Boltzmann Equations

- Classical vs Quantum Boltzmann equations:
 - collision terms: involving quantum interference
 - time evolution: require full quantum mechanical treatment
 - Classical Boltzmann equations not sufficient
- Classical Boltzmann equations:
 - scattering independent from previous ones
- Quantum Boltzmann equations:
 - Closed-Time-Path (CTP) formulation for non-equilibrium QFT
 - involve time integration for scattering terms

Schwinger, 1961; Mahanthappa, 1962; Bakshi, Mahanthappa, 1963; Keldysh, 1965

"memory effects": time-dependent CP asymmetry

Leptogenesis

Buchmuller, Fredenhagen, 2000; Simone, Riotto 2007; Lindner, Muller 2007

- time scale of Kernel << relaxation time scale ~ $(\Gamma_{N1})^{-1}$
 - Classical Boltzmann equations \approx Quantum Boltzmass equations
- In resonance leptogenesis: $\Delta M = (M_2-M_1) \sim \Gamma_{N2}$
 - Kernel time scale ~ $(\Delta M)^{-1} > (\Gamma_{N1})^{-1}$ possible
 - Quantum Boltzmann equations important!!

$$R_{max}^{Boltzmann} = \frac{M_1 M_2}{2|M_1 \Gamma_1 - M_2 \Gamma_2|}$$

$$resonance behavior confirmed b_{10^0}$$

$$R_{max}^{KB} = \frac{M_1 M_2}{2(M_1 \Gamma_1 + M_2 \Gamma_2)}$$

$$resonance behavior confirmed b_{10^0}$$

$$resonance behavior confirmed b_{10^0}$$

$$resonance behavior confirmed b_{10^0}$$

$$resonance behavior confirmed b_{10^0}$$

Mu-Chun Chen, UC Irvine

Leptogenesis

In

 10^{0}

 $2N_1^{eq}$

 10^{-1}

 $N_1^{\text{th}} + \tilde{N}_1^{\text{th}}$

 10^{1}

 $\sigma + \psi + \phi$

 $N_{2,3} + \tilde{N}_{2,3}$

3 7111

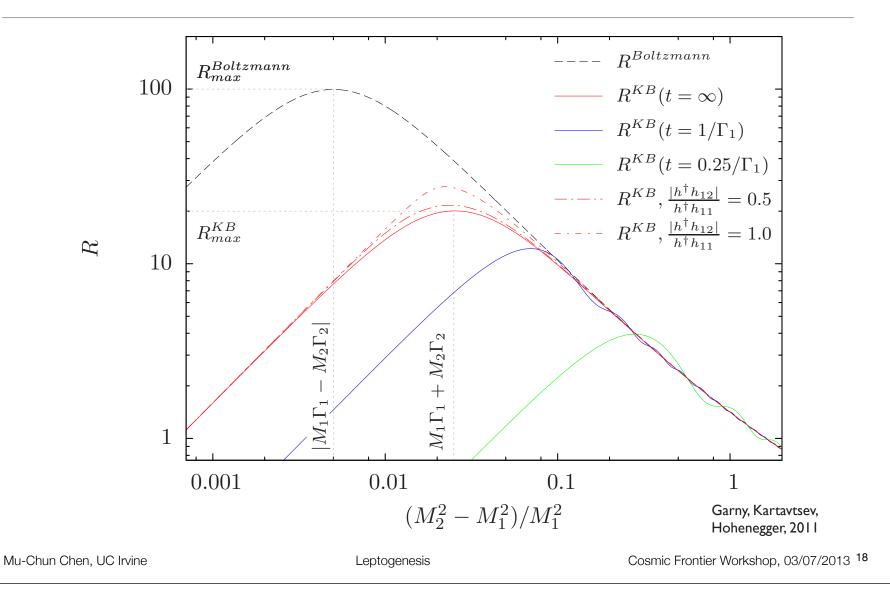
 10^{2}

 10^{50}

 10^{45}

1040

10³⁵


 10^{30}

 10^{25}

 10^{0}

abs N(a)

Quantum Boltzmann Equations

Conclusions

- origin of matter: one of the great mysteries in particle physics and cosmology
- leptogenesis: appealing mechanism connected to neutrino physics
- various leptogenesis realizations:
 - standard leptogenesis: gravitino problem, incompatible with SUSY
 - Low scale alternatives:
 - resonance leptogenesis
 - Dirac leptogenesis
 - Soft leptogenesis (CP phases in soft SUSY sector; decouple from neutrino physics; require small B term)

Conclusions

- tested by "archeological" evidences
- model-independent ways:
 - Kinematic test, Cosmology (absolute neutrino mass bound)
 - Neutrino-less double beta decay (Majorana vs Dirac leptogenesis)
- model-dependently: connections to CPV in other sectors possible
 - searches at neutrino experiments (leptonic CPV, mixing parameters)
 - complementarity test from other B or L violating processes
 - e.g. N-Nbar oscillation \Rightarrow constraint scale of leptogenesis
- Toward Theory of Leptogenesis: Quantum Boltzmann equation (nonequilibrium QFT)