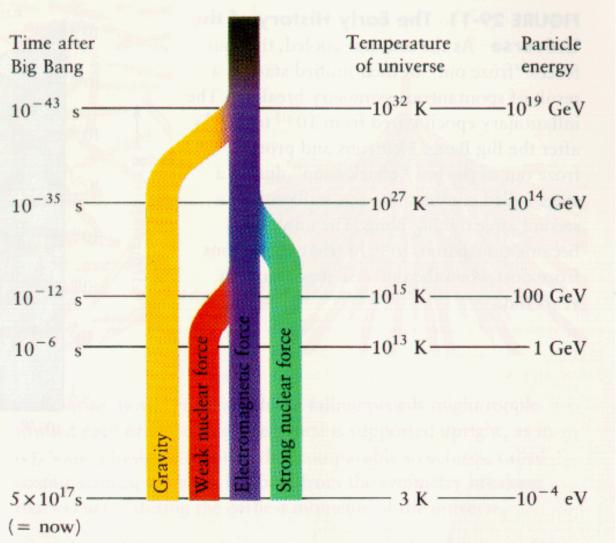



## Tests of Lorentz Invariance Violation with Gamma-rays



### **Nepomuk Otte**

G. Sinnis, M. Errando, B. Zitzer, F. Stecker, V. Vasileiou, P. Kaaret, S. Griffith, I. Taboada, A. McCann


## Topics addressed in this Talk

#### (not necessarily on this order)

- Why testing LIV?
- How to test LIV with gamma rays?
  - Energy dependent dispersion
    - ►AGN, GRB, pulsar
  - Threshold effects
    - Vacuum Cherenkov Radiation
    - Shift in threshold energy for pair production
- What limits tests for LIV in gamma-rays?
  - Source effects
- How to improve beyond systematic limits?
- What are prospects of testing LIV in gamma-rays?



## Why test LIV?



- Because of its fundamental nature
- Probe physics at Planck energy (10<sup>19</sup> GeV): Microscopic structure of space time
  - Quantum Gravity?
  - String Theory?
- Energy scale not possible to access directly
- Use theoretical predictions to search for effects:

#### Lorentz Invariance Violation

Energy dependent dispersion Threshold effects



## **Threshold Effects**

```
Stecker, Glashow (2001)
```

Result from max velocity for electrons c being different from photons c

$$c_{\rm e} \equiv c_{\gamma}(1+\delta), \quad 0 < |\delta| \ll 1$$

#### **c**<sub>e</sub><**c**

• Decay of photon into e+/e- pair possible

-> stringent constraints from 50 TeV gamma-rays observed from Crab Nebula

$$E_{\rm max} = m_{\rm e} \sqrt{2/|\delta|} \qquad \longrightarrow \qquad \delta < 2 \times 10^{-16}$$

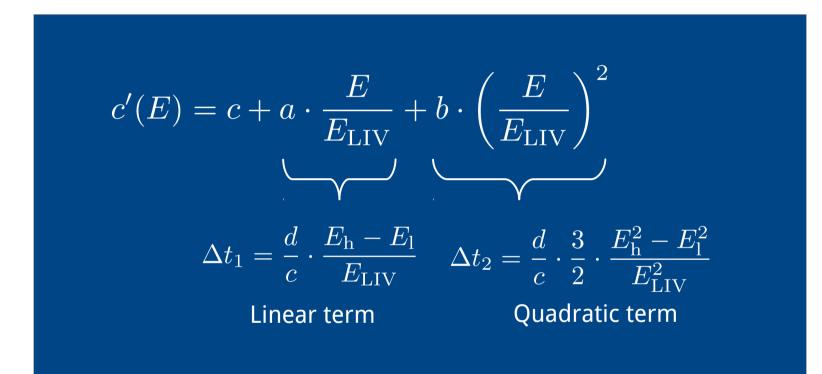
#### **c**\_e**>c**

• Maximum electron energy limited by vacuum Cherenkov radiation

 $\delta < 1.3 \times 10^{-13}$  (from max observed electron energies in CR spectrum)

Threshold for pair production increased -> lower gamma-ray opacity from EBL absorption

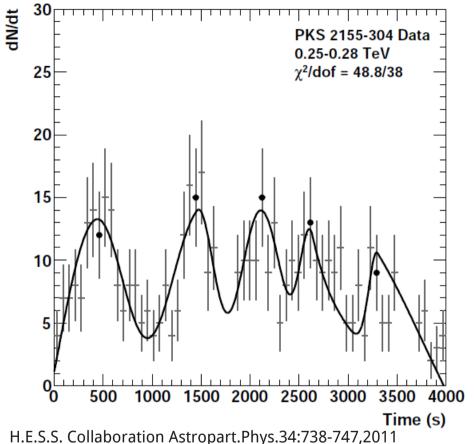
Constrained from AGN observations in TeV (20 TeV, Mkn 501)


$$\delta < 2(m_{\rm e}/E_{\gamma})^2 = 1.3 \times 10^{-15}$$

#### Expect only modest improvements of these constraints in the future (~ factor 5)



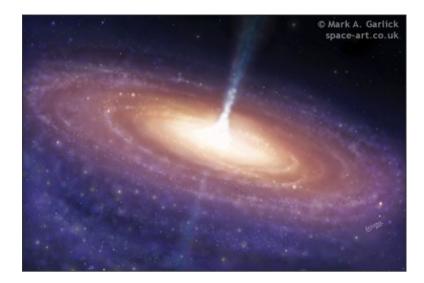
Nepomuk Otte


## Energy dependent Dispersion in Photon Sector



-> Photon energy dependent propagation times Macroscopic effect if large distances d and high photon energies E only possible with gamma-ray astroparticle physics




## LIV Tests with AGNs

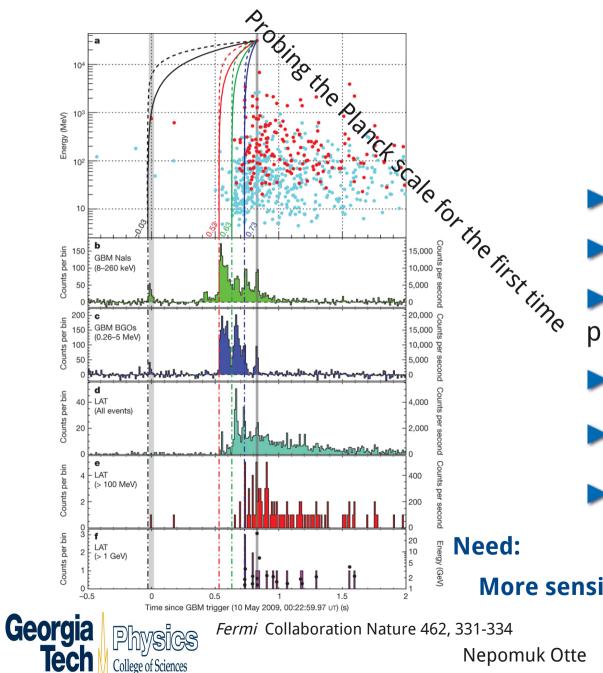


Short time scale TeV gamma-ray window opened with recent generation of IACT: H.E.S.S., **VERITAS**, and MAGIC

#### Shorter timescales possible? -> need CTA More statistics (detections) -> VERITAS, CTA






- PKS 2155-304
- ▶ z = 0.116
- ▶July 28, 2006 flare
- Flaring timescale ~min


Linear:  $E_{11} > 2.1 \times 10^{18} \text{ GeV}$ 

**Quadratic:**  $E_{LV} > 6.4 \times 10^{10} \text{ GeV}$ 

The most constraining limits on the quadratic term will come from AGN observations in the future (> factor 50)

## LIV Tests with GRBs





**GRB 090510** 

**z** = 0.903

Limits derived from one 31 GeV photon

Timescale ~seconds

**Linear:** E<sub>LIV</sub> > 1.5x10<sup>19</sup> GeV

▶ Quadratic:  $E_{IV} > 3.0 \times 10^{10} \text{ GeV}$ 

More sensitivity at highest gamma-ray energies

## GRB Observations with CTA and HAWC

No GRB detected in gamma-rays > 100 GeV

H.E.S.S., MAGIC, and **VERITAS** have active GRB groups

But we know that GRB emit up to 100 GeV (GRB 090510)

Big improvement with CTA/HAWC -> Upper limit on detection rate is a few per year (uncertain due to unkown source physics)

A complementary approach to VHE GRB observations

СТА

Long GRB

afterglow

HAWC

Short GRB

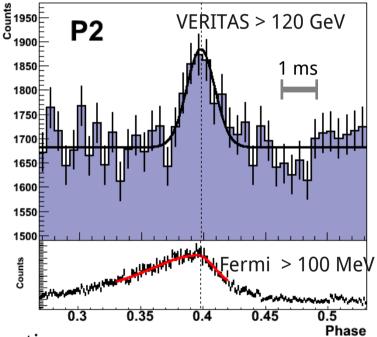
prompt emission

#### CTA and HAWC will probe LIV with GRB detections far beyond the Planck scale (linear term)



Nepomuk Otte

## LIV Test with Pulsars


A.N.O. ICRC (2011). http://arxiv.org/abs/1208.2033

#### Detection of the Crab pulsar above 100 GeV with VERITAS

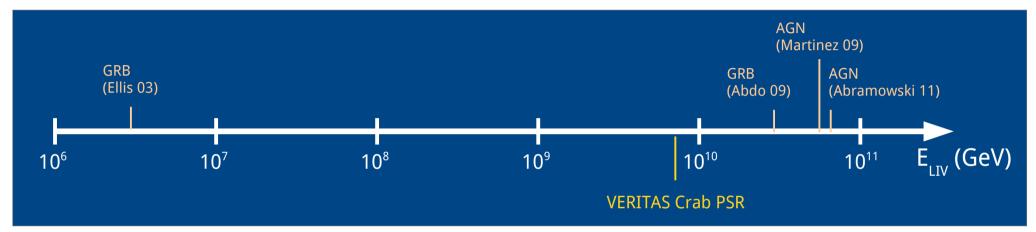
Peaks at 100 MeV (Fermi) and 120 GeV (VERITAS) line up

$$\Delta t_{95\%} < 1.65 \cdot \delta \cdot P / \sqrt{2} < 100 \,\mu s$$

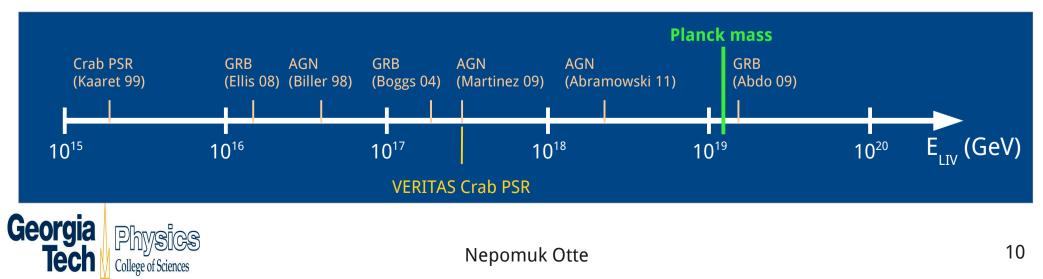
Linear:  $E_{IN} > 3x10^{17} \text{ GeV}$ 



Improved limits (factor 10) with more sensitive observations:


Deeper observations: VERITAS

Georgia


- Higher sensitivity instruments: **CTA**
- Detection of other pulsars in the VHE band: VERITAS, CTA

## An Overview over various Limits

#### **Quadratic term:**

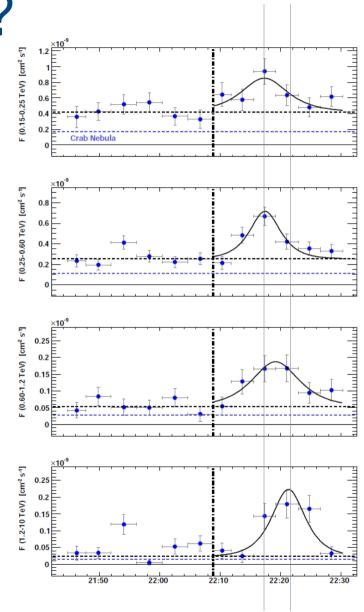


#### Linear term:



## Source intrinsic effects the ultimate hurdle?

- **M**rk 501
- ▶ July 9, 2005 flare
- ►z = 0.034


Georgia

- Delay observed between 150 GeV and 1 TeV (2.5 sigma)
- Linear:  $E_{UV} > 2.1 \times 10^{17} \text{ GeV}$
- ▶ Quadratic:  $E_{IIV} > 2.6 \times 10^{10} \text{ GeV}$

## How to distinguish between source and propagation effects?

Answer: Search for redshift dependence

-> requires large number of detected flaring AGN, GRB, pulsars



# Prospects of doing LIV Tests with gamma-rays

Only a handful of constraining observations so far

Source effects could hide LIV effects

Ten times more sources will have a significant impact but needs ten times more sensitive instruments (VERITAS -> CTA, HAWC)

Quadratic term not well constrained but could be dominating term in LIV

Reaching higher energy is more important than distance -> ground based gamma-ray instruments preferred: VERITAS, CTA, HAWC

Best available limits already come from IACT like VERITAS

► For the upper end of predicted range expect similar rate of detecting GRB with CTA/HAWC than with Fermi-LAT but at higher energies (factor 10 or more)

#### **CTA, HAWC:**

Transitioning from individual source studies to population studies for LIV



Nepomuk Otte