Charm physics at LHCb XV International Conference on Beauty, Charm, Hyperons in Hadronic Interactions Charleston, SC

Florian Reiss on behalf of the LHCb collaboration

05.06.2024 MANCHESTER 1824 The University of Manchester

Charm@LHCb

The LHCb detector at the LHC

• single-arm forward spectrometer covering $2 < \eta < 5$

[JINST 3 (2008) S08005] [IJMP A 30, 1530022 (2015)]

LHCb MC

s = 8 TeV

Excellent impact parameter resolution

- vital to distinguish displaced heavy flavor decays from background Excellent particle identification
 - vital for signal purity

Charm@LHCb

World largest sample of charm hadrons collected by LHCb

 • *O*(10¹³)*c c* pairs in Run 1+2 [Nucl. Phys. B 871 (2013)] [JHEP 2016, 159 (2016)]

LHCb collected sample of integrated luminosity of 9 fb $^{-1}$ during LHC Run 1+2

98 papers published by the Charm working group

BEACH 2024

Charm@LHCb

Broad charm program at LHCb

Charming highlights at LHCb including many 'firsts'

Charm baryons

"Observation of new Ω_c^0 states decaying to the $\Xi_c^+ K^-$ final state" (9 fb⁻¹)

- $5 \times$ larger sample since previous measurement
- confirm previously found states [PRL 118, 182001 (2017)]

New broad states $\Omega_c^0(3185)^0$ and $\Omega_c^0(3327)^0$ with overwhelming significance

Charm baryons

"Observation of Cabibbo-suppressed two-body hadronic decays and precision mass measurement of the Ω_c^0 baryon" (5.4 fb⁻¹)

• first observation of $\Omega^0_c \to \Omega^- K^+$ and $\Omega^0_c \to \Xi^- \pi^+$ decays

 $M(\Omega_c^0) = 2695.28 \pm 0.07 \,(\text{stat}) \pm 0.27 \,(\text{syst}) \pm 0.30 \,(\text{ext}) \,\text{MeV}$

Improving precision of world average on $M(\Omega_c^0)$ by factor 4 yielding in precision similar to other baryon masses

05.06.2024

BEACH 2024

Charm baryons

Perform amplitude analysis using $\Lambda_c^+ \rightarrow p K^- \pi^+$ decay and measure Λ_c^+ polarization [PRD 108 012023 (2023)]

• found 6 Λ^* , 3 Δ^* , 3 K^{*0} resonances contributing

Model-agnostic representation [JHEP 2023, 228 (2023)]

Knowledge of resonant structure opens the way to searches for CP violation in baryon decays

Rare charm decays

"Search for rare decays of D^0 mesons into two muons" (9 fb⁻¹)

• using $D^{*+} \rightarrow D^0 \pi^+$

 $\blacktriangleright \Delta m = m(D^{*+}) - m(D^0)$

- suppressed in Standard Model $O(3 \times 10^{-13})$ [PRD 66, 014009 (2002)]
 - new physics contributions could enhance branching fraction
- background from mis-identified hadrons
- similar search with $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ [PRD 97 091101 (2018)]

world's most stringent limit on BF $\mathcal{B}(D^0\!\to\mu^+\mu^-)<3.1\,(3.5)\times10^{-9}$ at 90 (95)% CL

A big part of the charm program at LHCb is mixing and CP violation (CPV)

- measure and characterize direct CPV
- search for CPV in mixing

Why is that interesting?

- measured amount of CPV can not account for matter-antimatter asymmetry
- CPV expected to be suppressed in Standard Model $(10^{-4} \text{ to } 10^{-3})$
 - $\blacktriangleright\,$ GIM mechanism and CKM elements ${\cal I}m(V_{cb}V_{ub}^*/V_{cs}V_{us}^*)\approx-6\times10^{-4}$

Precision CPV measurements can test SM at large energies

 D^0 flavour not conserved and oscillates to \overline{D}^0

•
$$|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D}^0\rangle$$

- dispersion $x = \frac{\Delta M}{\Gamma}$ absorption $y = \frac{\Delta \Gamma}{2\Gamma}$

Expressed in CP conserving x_{12} , y_{12} parameters and CPV mixing phase ϕ_{12} [PRD 103, 053008 (2021)]

•
$$x_{12} = 2 |M_{12}| / \Gamma$$

• $y_{12} = 2 |\Gamma_{12}| / \Gamma$
• $\phi_{12} = \arg\left(\frac{M_{12}}{\Gamma_{12}}\right) = \phi^M - \phi^\Gamma$
• $\phi^M = \arg(M_{12})$
• $\phi^{\Gamma} = \arg(\Gamma_{12})$

- Types of CPV
 - CPV in decay

• CPV in mixing $|q/p| \neq 1$

CPV in interference between mixing and decay φ ≡ arg(qĀ_f/pA_f) ≠ 0
 A_f = A(D⁰ → f)

$$\underbrace{M^{0}}_{f} + \underbrace{\overline{M}^{0}}_{f} \underbrace{M^{0}}_{f} \neq \underbrace{\overline{M}^{0}}_{f} \underbrace{f}_{f} + \underbrace{M^{0}}_{f} \underbrace{\overline{M}^{0}}_{f} \underbrace{\overline{f}}_{f}$$

To measure mixing, need to tag initial D^0 flavour

- $D^{*+} \rightarrow D^0 \pi^+$
- $B \to \overline{D}{}^0 \mu^+ X$

When measuring asymmetries, need to carefully account for nuisance asymmetries

$$\mathcal{A}^{CP}(f,t) = \frac{\Gamma(D \to f,t) - \Gamma(\overline{D} \to \overline{f},t)}{\Gamma(D \to f,t) + \Gamma(\overline{D} \to \overline{f},t)}$$

We measure raw asymmetry

$$A_{\mathsf{raw}}(f,t) pprox \mathcal{A}^{CP}(f,t) + A_{\mathsf{det}}(f) + A_{\mathsf{prod}}(D)$$

- $A_{det}(f)$ detection asymmetry
- $A_{\text{prod}}(D)$ production asymmetry

Need to calibrate nuisance asymmetries using control channels

• great care taken to keep systematic uncertainties low

Model-independent 'bin-flip' method [PRD 99, 012007 (2019)] using $D^0\!\to K^0_{\rm S}\pi^+\pi^-$ decays

- divide phase-space into regions with constant strong-phase difference
 - relies on measurements by CLEO and BESIII [PRD 82, 112006 (2010)] [PRD 101, 112002 (2020)]
- measure ratio of negative and positive bins in decay-time intervals

Method very sensitive to x

$$\begin{aligned} x &= (3.98^{+0.56}_{-0.54}) \times 10^{-3} \\ y &= (4.6^{+1.5}_{-1.4}) \times 10^{-3} \\ |q/p| &= 0.996 \pm 0.052 \\ \phi &= -0.056^{+0.047}_{-0.051} \end{aligned}$$

First observation of non-zero x

BEACH 2024

[PRL 122, 211803 (2019)]

Measure difference in *CP* asymmetry between $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays $\Delta A_{CP} = A_{CP}(K^- K^+) - A_{CP}(\pi^- \pi^+)$

nuisance asymmetries cancel

Combination with previous LHCb measurements $\Delta A_{CP} = (-15.4 \pm 2.9) imes 10^{-4}$

First observation of CPV in charm decays

[PRL 131, 091802 (2023)]

Measure time-integrated asymmetry $A_{CP}(K^-K^+)$ with $D^0 \rightarrow K^-K^+$

• using
$$D^{*+} \rightarrow D^0 \pi^+$$

 $A_{CP}(K^-K^+) = [6.8 \pm 5.4 \text{ (stat)} \pm 1.6 \text{ (syst)}] \times 10^{-4}$
Use $A_{CP}(f) \approx a_f^d + \frac{\langle t \rangle_f}{\tau_D} \cdot \Delta Y_f$ with measured value of ΔY_f [PRD 104, 072010
(2021)] to extract direct CPV $a_{K^-K^+}^d$ and $a_{\pi^-\pi^+}^d$

First evidence for direct CPV in specific charm decay

BEACH 2024

Search for CPV with Miranda method

[JHEP 2023, 67 (2023)]

"Search for CP violation in $D^+_{(s)} \rightarrow K^- K^+ K^+$ decays" (5.6 fb⁻¹)

- search for direct CPV in (doubly-)Cabibbo-suppressed $D^+_{(s)}$ decays
 - \blacktriangleright 0.97 × 10⁶ $D_s^+ \rightarrow K^- K^+ K^+$, 1.27 × 10⁶ $D^+ \rightarrow K^- K^+ K^+$
- model-independent technique in bins of Dalitz plot [PRD 80, 096006 (2009)]

No evidence for CPV observed. CP conserved with p-values of 13.3% and 31.6%

Search for CPV with energy test

"Search for CP violation in the phase space of $D^0 \to K^0_S K^{\pm} \pi^{\mp}$ decays with the energy test" (5.4 fb⁻¹)

- $950 \times 10^3 \ D^0 \rightarrow K^0_S K^- \pi^+$, $620 \times 10^3 \ D^0 \rightarrow K^0_S K^+ \pi^-$
- search for local CPV with unbinned, model-independent method [arXiv:1612.04705]
- quantify difference in phase space of two samples using test statistic

No evidence for local CPV. CP conserved with p-values of 70% and 66%

$D^0 \rightarrow K\pi \text{ WS/RS}$

LHC seminar

Measure ratio of DCS over CF $D^0
ightarrow K\pi$ decays

- using full Run 2 data set
 - ▶ previous LHCb measurement [PRD 97, 031101 (2018)]
- D^0 flavour tagged by using $D^{*+}
 ightarrow D^0 \pi^+$ decay

• use $D^0 \rightarrow K^+ K^-$ mode to control nuisance asymmetries

- ▶ known $\Delta Y_{K^+K^-}$, a_{KK}^d [PRD 104, 072010 (2021)] [PRL 131, 091802 (2023)]
- fit time-dependent wrong- and right-sign ratios

$$R^+_{K\pi}(t)\equiv rac{\Gamma(D^0(t) o K^+\pi^-)}{\Gamma(\overline{D}{}^0(t) o K^+\pi^-)} \quad ext{and} \quad R^-_{K\pi}(t)\equiv rac{\Gamma(\overline{D}{}^0(t) o K^-\pi^+)}{\Gamma(D^0(t) o K^-\pi^+)}$$

$D^0 \rightarrow K\pi \text{ WS/RS}$

LHC seminar

Expand ratio to extract parameters related to mixing and CPV

 $R_{K\pi}^{\pm}(t) \approx R_{\kappa\pi}(1\pm A_{\kappa\pi}) + \sqrt{R_{\kappa\pi}(1\pm A_{\kappa\pi})} (c_{\kappa\pi}\pm \Delta c_{\kappa\pi}) \frac{t}{\tau_{D^0}} + (c_{\kappa\pi}'\pm \Delta c_{\kappa\pi}') \left(\frac{t}{\tau_{D^0}}\right)^2$

- $R_{\kappa\pi}$: DCS/CF ratio
- mixing: $c_{\kappa\pi}$, $c'_{\kappa\pi}$
- CPV in decay: $A_{\kappa\pi}$
 - sensitive null test of SM
- CPV in interference: $\Delta c_{\kappa\pi}$
- CPV in mixing: $\Delta c'_{\kappa\pi}$

LHC seminar

$D^0 \rightarrow K\pi \text{ WS/RS}$

LHC seminar

No evidence for CPV

05.06.2024

BEACH 2024

$D^0 \rightarrow K\pi \text{ WS/RS}$

LHC seminar

Extract mixing and CPV parameters

•
$$c_{\kappa\pi} \approx y_{12} \cos \phi_2^{\Gamma} \cos \Delta_{\kappa\pi} + x_{12} \cos \phi_2^M \sin \Delta_{\kappa\pi}$$

• $c'_{\kappa\pi} \approx \frac{1}{4} \left(x_{12}^2 + y_{12}^2 \right)$
• $\Delta c_{\kappa\pi} \approx x_{12} \sin \phi_2^M \cos \Delta_{\kappa\pi} - y_{12} \sin \phi_2^{\Gamma} \sin \Delta_{\kappa\pi}$
• $\Delta c'_{\kappa\pi} \approx \frac{1}{2} x_{12} y_{12} \sin(\phi_2^M - \phi_2^{\Gamma})$
using strong phase difference $\Delta_{\kappa\pi} = -10^\circ \pm 3^\circ$ (from LHCb, CLEO, BESIII)
05.06.2024 BEACH 2024 Charm at LHCb Florian Reiss

22

LHCb Run 2 very impactful, but many measurement still statistically limited

Can we do better?

Virtually new detector!

• aim to collect $\approx 50 \, \text{fb}^{-1}$

[LHCb-TDR-12][arXiv:2305.10515]

Taking data right now!

BEACH 2024

Hardware-level trigger limiting factor for hadronic decay modes in Run $1\!+\!2$

removed in Upgrade I

Fully software-based trigger processing events at 30 MHz

first stage on GPUs

[LHCB-FIGURE-2024-006]

Improvements in trigger efficiency already evident

05.06.2024

Software trigger allows flexible selections

- single and pair-wise $K_{\rm S}^0$ reconstructed and selected in first trigger stage
- already about imes 3.7 more $D^0
 ightarrow K^0_{
 m S} K^0_{
 m S}$ per pb $^{-1}$ w.r.t Run 2

[LHCB-FIGURE-2024-013]

Upgrade II is key to ultimate precision

• aim to collect 300 fb⁻¹

[LHCb-PUB-2022-012]

CPV in mixing at 5σ within reach

BEACH 2024

LHCb Run 1+2 delivered many contributions to our understanding of charm

• many key measurements performed with full sample

more to come: search for CPV using three- and four-body decays and baryons LHCb Upgrade I will further improve statistically limited measurements

• novel software-level trigger greatly increases charm yields

LHCb Upgrade II will achieve ultimate precision in charm sector

• observation of CPV in mixing possible

Thank you for your attention!

Happy anniversary Charm!

05.06.2024

BEACH 2024

Observation of J/ $\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ by CMS [arXiv:2403.11352] and LHCb [LHCb-CONF-2024-001]

Back-up

Systematic uncertainties for the Ω_c^0 mass measurement.

Source	Uncertainty [MeV]
Momentum scale calibration	0.27
Energy loss correction	0.03
Fit model	0.01
Total	0.27
External input masses	0.30

Source	$\mathcal{B}(\Omega^{-}K^{+})/\mathcal{B}(\Omega^{-}\pi^{+})$	$\mathcal{B}(\Xi^-\pi^+)/\mathcal{B}(\Omega^-\pi^+)$
Tracking efficiency	1.78	1.78
PID efficiency	3.37	0.62
Trigger efficiency	1.26	0.69
Fit model	0.16	0.54
Decay model	3.59	1.32
Lifetimes of \varOmega^- and \varXi^-		0.59
Simulation sample size	0.07	0.08
Reweight strategy	2.82	0.52
Mass resolution	2.35	0.97
Total	6.51	2.76
External input BFs		1.04

Systematic uncertainties (in percentages) for the BF ratio measurement.

Model-independent 'bin-flip' method using $D^0 \!
ightarrow {\cal K}^0_{
m S} \pi^+ \pi^-$ decays

"Search for CP violation in the phase space of $D^0 \to K^0_S K^{\pm} \pi^{\mp}$ decays with the energy test" (5.4 fb⁻¹)

- search for local CPV with unbinned, model-independent method
- quantify difference in phase space of two samples using test statistic

$$T \equiv \frac{1}{2n(n-1)} \sum_{i,j\neq i}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i,j\neq i}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i,j}^{n,\overline{n}} \psi_{ij}.$$

function ψ_{ij} provides a weight to each pair of candidates, and is taken to be $\psi_{ij} = e^{-d_{ij}^2/2\delta^2}$, where $d_{ij}^2 = (s_{12,i} - s_{12,j})^2 + (s_{13,i} - s_{13,j})^2 + (s_{23,i} - s_{23,j})^2$

$D^0 \rightarrow K\pi \text{ WS/RS}$

LHC seminar

BEACH 2024

TD CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$ decays

[arXiv:2405.06556]

"Search for time-dependent CP violation in $D^0 \rightarrow \pi^+\pi^-\pi^0$ decays" (7.7 fb⁻¹)

• using
$$D^{*+} \to D^0 \pi^+$$

• 2.3×10^6 merged, 1.5×10^6 resolved
• $\Delta m = m(D^{*+}) - m(D^0)$
 $A_{CP}(f_{CP}, t) \equiv \frac{\Gamma_{D^0 \to f_{CP}}(t) - \Gamma_{\overline{D}^0 \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t) + \Gamma_{\overline{D}^0 \to f_{CP}}(t)}$
 $\approx a_{f_{CP}}^{\text{dir}} + \Delta Y_{f_{CP}} \frac{t}{\tau_{D^0}}.$

no CPV: $\Delta Y_{\pi^+\pi^-\pi^0} = (-1.3\pm 6.3\pm 2.4) imes 10^{-4}$