Precision measurements of the Standard Model parameters with ATLAS Marino Romano (INFN – Bologna) On behalf of the ATLAS Collaboration

Beach2024

Charleston (SC)

3-7 June 2024

Introduction

- Standard Model being tested by ATLAS in a wide range of processes and energies
 - Cross-section spanning several orders of magnitude
- Ideal tools for QCD and EWK studies thanks the abundant production and clear signatures
 - O Test of state-of-the-art predictions
 - O Extraction of PDFs
 - O Determination of SM parameters
 - Important backgrounds to Higgs, BSM, etc
- O Today's menu:
 - *O Z* boson invisible width
 - *o* α_s via *Z* boson recoil
 - o Improved measurement of m_W
 - *o* e/μ LFU using *W*s from top quarks

ATL-PHYS-PUB-2023-039

Phys. Lett. B 854 (2024) 138705

 $\sqrt{s} = 13 \text{ TeV}, \ L = 37 \text{ fb}^{-1}$

Dilepton

[1]: <u>Phys. Rep., 427 (2006), 257</u>

Marino Romano - Precision SM parameters

Results Phys. Lett. B 854 (2024) 138705 $\sqrt{s} = 13 \text{ TeV}, L = 37 \text{ fb}^{-1}$ $OR^{miss}(p_T^Z)$ measured separately in $ee/\mu\mu$ channels • Flat and compatible with Standard model predictions ATLAS Svst. SM √s=13 TeV, 37 fb⁻¹ o Dominated by lepton uncertainties (low p_T) LEP Lineshape 499.0 ± 1.5 Me\ and stat. uncertainties (high p_T) L3 498 ± 17 MeV $\hat{Q} \hat{R}^{miss}$ obtained via χ^2 fit OPAL 539 ± 31 MeV ALEPH 450 + 48 MeV Oconstant assumption (SM) LEP Combination, Photon-tagged $\chi^2 = \left(R_{data}^{miss,i} - \hat{R}^{miss}\right)^T V^{-1} \left(R_{data}^{miss,i} - \hat{R}^{miss}\right)$ 503 ± 16 MeV CMS 523 ± 16 MeV O Separate fit compatible with combination ATLAS 506 ± 13 MeV $\mathcal{O} \Gamma(Z \to inv) = \hat{R}_{meas}^{miss} \times \Gamma(Z \to ll)_{LEP} =$ 350 400 450 500 550 600 $\Gamma(Z \rightarrow inv)$ [MeV] $506 \pm 2(stat.) \pm 12(syst.)$ Ø Most precise recoil-based measurement

Marino Romano - Precision SM parameters

9

Eur. Phys. J. C 84 (2024) 315

arXiv:2309.12986 [hep-ex], submitted to Nature Phys

 $\sqrt{s} = 8 \text{ TeV}, \ L = 20.2 \text{ fb}^{-1}$

Dilepton

Introduction

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

- O Strong coupling constant; the free parameter unique to the strong interaction
 - The least precisely determined of the four fundamental couplings

• World average $\alpha_s(m_Z) = 0.1179 \pm 0.0009 (\pm 0.8\%)$

- Exploit a precise measurement of the Z kinematics
 - Take advantage of leptonic signatures
 - Full phase-space differential cross section as a function of p_T and rapidity of the Z
 - No need for predictions to model the polarization and decay of the Z boson
 - Availability of accurate pQCD predictions

 $\alpha_{s}(m_{)})$

Introduction

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

- Process in the low momentum Sudakov region
 - Gluon emission with vanishingly small momenta described by the Sudakov form factor
 - ${\it o}$ Responsible for a peak in at low p_T^Z
 - **0** Sensitive to $\alpha_s(m_Z)$

Differential cross-section analysis strategy

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Exploit the factorization of Drell-Yan cross section by the production dynamic and the decay kinematic properties of the dilepton system

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}} \left\{ (1+\cos^{2}\theta) + \frac{1}{2}\,A_{0}(1-3\cos^{2}\theta) + A_{1}\,\sin2\theta\,\cos\phi + \frac{1}{2}\,A_{2}\,\sin^{2}\theta\,\cos2\phi + A_{3}\,\sin\theta\,\cos\phi + A_{4}\,\cos\phi + \frac{1}{2}\,A_{2}\,\sin^{2}\theta\,\sin2\phi + A_{5}\,\sin2\theta\,\sin\phi + A_{7}\,\sin\theta\,\sin\phi \right\},$$

Differential cross-section analysis strategy

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

O Expected yield defined with templates of the spherical harmonics and background predictions

Parametrized wrt the unpolarized cross section and angular coefficients

Differential cross-section analysis strategy

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Profile likelihood fit

◇ simultaneously extracts 8 angular coefficients and unpolarized cross section in each bin in $p_T \times y$ space

Differential cross-section analysis results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Per-mille level precision in the central region

O Sub-percent up to |y| < 3.6, thanks to dedicate forward electron selection and calibration

Differential cross-section analysis results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex]

[1]: arXiv:2303.12781 [hep-ph][2]: Phys. Rev. Lett. 116, 152001 (2016)

 $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Per-mille level precision in the central region
 Sub-percent up to |y| < 3.6, thanks to dedicate forward electron selection and calibration

Ocompared to state of the art to state-of-the-art predictions

OCD perturbative calculations based on q_T resummation at N3LO+aN4LL accuracy

OYTurbo [1] matched to MCFM [2]

CuTe+MCFM, Nangaparbat, SCETlib, Radish+NNLOJET, Artemide

Differential cross-section analysis results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

• **Per-mille** level precision in the central region

O Sub-percent up to |y| < 3.6, thanks to dedicate forward electron selection and calibration

Compared to state of the art to state-of-the-art predictions

OCD perturbative calculations based on qT resummation at aN4LL+N3LO accuracy

O Fixed order N3LO (*p_T*-integrated spectra)
 O Not affected by *q_T* resummation
 O First comparison of this kind

Differential cross-section analysis results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Per-mille level precision in the central region
 Sub-percent up to |y| < 3.6, thanks to dedicate forward electron selection and calibraiton

Ocompared to state of the art to state-of-the-art predictions

 QCD perturbative calculations based on qT resummation at approximate N4LL accuracy

• Fixed order N3LO (p_T-integrated spectra)

Enhanced sensitivity to PDF with reduction of scale uncertainties at high pQCD order

α_s measurement strategy

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

$O \chi^2(\alpha_s)$ minimization with xFitter

Inputs

Ø Measured differential cross sections

O Experimental uncertainties parametrized with Gaussian NPs $\beta_{j,exp}$

O DYTurbo predictions (N3LO+aN4LL)

MSHT20 PDF (only PDF Set which was* available at aN3LO order)

• Uncertainties parametrized in $\beta_{j,exp}$

 oa_s variations as provided in LHAPDF

O Scale uncertainties: independent $\mu_{R/F}/Q$ variations

O Uncertainty from the envelope of the 14 variations

*: aN3L0 now implemented also in NNPDF40

Eur. Phys. J. C 84 (2024) 315 arXiv:2309 12986 [hep-ev]

arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

O Most sensitivity to α_s in the very low p_T regions

- O Scale uncertainties cross checked with fits at different pQCD orders
 - or gradual convergence gives confidence on the robustness of the fit

Results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Most sensitivity to α_s in the very low p_T regions
 Scale uncertainties cross checked with fits at different pQCD orders

 $o \alpha_s(m_Z) = 0.11828^{+0.00084}_{-0.00088}$

 Most precise measurement, comparable with the PDG and Lattice world averages

Leptonic signature (highest experimental sensitivity)

First determination using N3LO+aN4LL predictions

arXiv:2403.15085 [hep-ex], submitted to EPJC

 $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

Lepton+jets

Introduction

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

Important EWK parameter in the SM

Oconstrained by theory by measuring other parameters

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha}{G_F M_Z^2}} \right) \quad \text{Tree-level}$$

Marino Romano - Precision SM parameters

• Already measured by ATLAS in 2018 with 7 TeV data [1]

O This result: re-analysis of same data

- Ø Better understanding of PDF dependence
- New statistics model
- ${\it o}$ Provides new measurement of Γ_W (first at LHC)
- Pocus on updates wrt the legacy measurement

Analysis strategy

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

• Exploit the dependence of the leptonic transverse momentum (p_T) and the transverse mass (m_T) to determine m_W

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

O Event selection in the *e*/µ+jets channel
 O Isolated leptons, $p_T > 30$ GeV

 $o u_T < 30 \text{ GeV}$

$$o\left|\vec{u}_T + \overrightarrow{p_T^l}\right| = p_T^{miss} > 30 \text{ GeV}$$

$$o m_T = \sqrt{2p_T^l p_T^{miss} (1 - \cos \Delta \varphi)} > 30 \text{ GeV}$$

 $o p_T^l$ and m_T fits in several categories

Lepton flavor

• Lepton η (3/4 regions for e/μ channels)

• W charge

 ${\mathcal O}$ Extended p_T^l and m_T fit ranges

Signal modelling

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

OQCD baseline model: Powheg+Pythia8+PHOTOS

[1]: <u>arXiv:2404.06204</u>

- $o p_T^W$ corrected to Pythia 8 (AZ tune, based on Z boson data)
- Propagated to W-boson and validated against 5.02 and 13 TeV measurements [1]
- O EW corrections: mostly unchanged and subdominant

Signal modelling

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

OQCD baseline model: Powheg+Pythia8+PHOTOS

- $o p_T^W$ corrected to Pythia 8 (AZ tune, based on Z boson data)
- Propagated to W-boson and validated against 5.02 and 13 TeV measurements [1]
- *O* EW corrections: mostly unchanged and subdominant

O Parton distribution functions

[1]: <u>arXiv:2404.06204</u>

 ${\it o}$ One of the largest source of uncertainties for m_W

$$o_{x_1} \sim \frac{M_W}{\sqrt{s}} e^{+y_W}$$
, $x_2 \sim \frac{M_W}{\sqrt{s}} e^{-y_W}$

- Studied extended set of available PDF Sets at NNLO: CT10, CT14, CT18, MMHT2014, MSHT20, NNPDF3.1, NNPDF4.0, ATLASpdf21

O CT18 used as new baseline

Statistics model

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

 $o p_T^l$ and m_T templates via m_W and Γ_W polynomial morphing

O Morphing tested to 0.1 MeV precision

[1]: <u>arXiv:2112.07274</u>

- Templates for two-side uncertainties obtained with $\pm 1\sigma$ and $\pm 2\sigma$ variations of the corresponding parameters (NPs)
 - Uncertainties estimated independently in many kinematic bins reduced to two-side uncertainties via Principal Component Analysis (PCA)
 - $\circ \Gamma_W(m_W)$ added as NPs for the $m_W(\Gamma_W)$ fits (values and uncertainties from the Global EW fit [1])

[1]: arXiv:2112.07274
Measurement of
$$m_W$$
 and Γ_W
Statistics model
 $\mathcal{L}(\vec{n}|\mu,\vec{\theta}) = \prod_j \prod_i \operatorname{Poisson}(n_{ji}|\nu_{ji}(\mu,\vec{\theta})) \cdot \operatorname{Gauss}(\vec{\theta}),$
 $p_T^l \text{ and } m$
 $p_T^l p_T^l \text{ and } m$
 $p_T^l p_T^l p_T^l \text{ and } m$
 $p_T^l p_T^l p_$

OProfile likelihood fit incorporating all NPs

- Instead of repeating the stat-only fit separately for each uncertainty template (offset method)
- ${\it o}$ Φ and μ allowed to free-float
- ${\it o}$ Separately for p_T^l and m_T and then combined

Statistics model

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

• Profile likelihood fit incorporating all NPs

- Instead of repeating the stat-only fit separately for each uncertainty template (offset method)
- ${\it o} \ \Phi$ and μ allowed to free-float

[1]: <u>arXiv:2112.07274</u>

- ${\it o}$ Separately for p_T^l and m_T and then combined
- Very good post-fit agreement with data

Results

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

 $m_W = 80366.5 \pm 9.8(\text{stat.}) \pm 12.5(\text{syst.}) \text{ MeV}$

 o One of the most precise SM parameter measurement at LHC ($\delta = 0.02\%$)

 $\Gamma_W = 2202 \pm 32(\text{stat.}) \pm 34(\text{syst.}) \text{ MeV}$

• Most precise measurement ($\delta = 2\%$), within 2 sigma from the SM

Results

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

 $m_W = 80366.5 \pm 9.8(\text{stat.}) \pm 12.5(\text{syst.}) \text{ MeV}$

 o One of the most precise SM parameter measurement at LHC ($\delta = 0.02\%$)

 $\Gamma_W = 2202 \pm 32(\text{stat.}) \pm 34(\text{syst.}) \text{ MeV}$

• Most precise measurement ($\delta = 2\%$), within 2 sigma from the SM

O Simultaneous fit performed by allowing m_W and Γ_W

Results

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

 $m_W = 80366.5 \pm 15.9(\text{stat.} + \text{syst}) \text{ MeV}$

o One of the most precise SM parameter measurement at LHC (δ = 0.02%)

Latest world (LEP+Tevatron+LHC) combination (2308.09417 [hep-ex])

o Most precise measurement ($\delta = 2\%$), within 2 sigma from the SM

o Simultaneous fit performed by allowing m_{M} and Γ_{M}

o Removal of constraintes \rightarrow increase

All experiments (4 d.o.f.)						
PDF set	m_W	$\sigma_{ m PDF}$	χ^2	$\mathrm{p}(\chi^2,n)$		
ABMP16	80392.7 ± 7.5	3.2	29	0.0008%		
CT14	80393.0 ± 10.9	7.1	16	0.3%		
CT18	80394.6 ± 11.5	7.7	15	0.5%		
MMHT2014	80398.0 ± 9.2	5.8	17	0.2%		
MSHT20	80395.1 ± 9.3	5.8	16	0.3%		
NNPDF3.1	80403.0 ± 8.7	5.3	23	0.1%		
NNPDF4.0	80403.1 ± 8.9	5.3	28	0.001%		

Marino Romano - Precision SM parameters

Introduction

arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13$ TeV, L = 140 fb⁻¹

• LHC is a $t\bar{t}$ factory: $\sigma(t\bar{t}) \sim 830$ pb at $\sqrt{s} = 13$ TeV

Introduction

arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13$ TeV, L = 140 fb⁻¹

- LHC is a $t\bar{t}$ factory: $\sigma(t\bar{t}) \sim 830$ pb at $\sqrt{s} = 13$ TeV
- Can use the Ws from tops for the measurement of

$$R_W^{\mu/e} = \frac{BR(W \to \mu\nu)}{BR(W \to e\nu)}$$

- SM predicts $R_W^{\mu/e} \sim 1$
- Dilepton channel
 - small background and small systematic uncertainties

Analysis strategy

arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13$ TeV, L = 140 fb⁻¹

O Event selection

• ee/µµ/eµ + 1*b*/2*b* ($t\bar{t}$ -focused)

• ee/μμ (*Z*-focused)

Ocrrections to reduce sensitivity to lepton reconstruction bias and mismodelling

Analysis strategy

arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13$ TeV, L = 140 fb⁻¹

O Event selection

- *ee*/μμ/*e*μ + 1*b*/2*b* (*tt*-focused)
 ee/μμ (*Z*-focused)
- Muon reweighting to reduce electron vs muon kinematic differences
 - O Reduces impact of modelling uncertainties
 - ${\it o}$ Parametrized in p_T and η
 - Applied to both MC and data

Analysis strategy

arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13$ TeV, L = 140 fb⁻¹

O Event selection

- *o* $ee/\mu\mu/e\mu + 1b/2b$ ($t\bar{t}$ -focused)
- *o ee/µµ* (*Z*-focused)
- Muon reweighting to reduce electron vs muon kinematic differences
 - O Reduces impact of modelling uncertainties
 - *•* Parametrized in p_T and η
 - Applied to both MC and data

O In-situ precise measurement of lepton efficiencies

- Isolation not well modelled, expecially in *tt* events
- Separate tag-and-probe measurement in *tt* and *Z* events
 - o As a function of lepton pT and η of the leptons

Fit strategy

arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13 \text{ TeV}, L = 140 \text{ fb}^{-1}$

- Simultaneous maximum likelihood fit in all *tt* and *Z* regions
 - o yields in $1b/2b e\mu$ regions and in the inclusive *ll* regions
 - $o m_{ll}$ spectrum in ll + 1b/2b regions
 - BR deviations correlated for signal and prompt-lepton backgrounds
 - *tW* and diboson effectively treated as signal in the *tt* regions
 - $O \Delta_Z$ in 1*b*/2*b* regions corrected by an $R_{Z+b}^{\mu\mu/ee}$ fit parameter

40

60

100

120

Marino Romano - Precision SM parameters

200 m_{μμ} [GeV]

Fit strategy

arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13 \text{ TeV}, L = 140 \text{ fb}^{-1}$

- Simultaneous maximum likelihood fit in all *tt* and *Z* regions
 - o yields in $1b/2b e\mu$ regions and in the inclusive *ll* regions
 - $o m_{ll}$ spectrum in ll + 1b/2b regions
 - BR deviations correlated for signal and prompt-lepton backgrounds
 - *tW* and diboson effectively treated as signal in the *tt* regions
 - $O \Delta_Z$ in 1*b*/2*b* regions corrected by an $R_{Z+b}^{\mu\mu/ee}$ fit parameter
- O Extract 10 parameters in total
 - O Cross-sections σ_{tt} , σ_Z
 - **O** Ratios $R_{WZ}^{\mu/e}$ and $R_{Z}^{\mu\mu/ee}$
 - *• b*-jet efficiencies ε_h^{ll}
 - Z+HF normalisations in the 1 and 2 bjets regions
 - Z+b isolation efficiency parameter $R_{Z+b}^{\mu\mu/ee}$

Marino Romano - Precision SM parameters

10

1.05

40

60

80

100

120

160

180

200 m_{μμ} [GeV]

Fit

Data / 1

47

$R_{W(ATLAS)}^{\mu/e} = R_{WZ(ATLAS)}^{\mu/e} \sqrt{R_{Z(LEP+SLD)}^{\mu\mu/ee}}$ Results	arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13$ TeV, $L = 140$ fb ⁻¹
$P_{W}^{\mu/e} = 0.9995 \pm 0.0022(\text{stat.}) \pm 0.0036(\text{syst.}) \pm 0.0014(\text{LEP} + \text{SLD}) = 0.9995 \pm 0.0046$	ATLAS
Compatible with lepton flavour universality	LEP2
Ø Better precision than the current world average	e⁺e⁻→WW, √s=183-207 GeV ΔTLΔS
Results for cross-sections:	$pp \rightarrow W, \sqrt{s}=7 \text{ TeV}, 4.6 \text{ fb}^{-1}$
$o \sigma_{t\bar{t}} = 809.5 \pm 21.6 \text{ pb}$	LHCb $pp \rightarrow W \sqrt{s} = 8 \text{ TeV} 2 \text{ fb}^{-1}$
$o \sigma_{Z_{fid}} = 774.7 \pm 6.7 \text{pb}$	CMS
In agreement with previous results	pp→tt̄, √s=13 TeV, 36 fb ⁻¹
Ø Measurement dominated by systematic	PDG average
uncertainties:	ATLAS (this result)
• PDFs, $t\bar{t}$ and Z modelling, uncertainties related to	pp→tt̄, √s=13 TeV, 140 fb ⁻¹
lepton identification and scale/resolution	0.92 0.94 0.96 0.98 1 1.02
	$B(W \rightarrow \mu \nu)/B(W \rightarrow e \nu)$

Summary and outlook

A lot of interesting results produced by ATLAS thanks to the combined performance of LHC & detectors

Ø Both Run 1 and Run 2

Presented today only a small selection of recent results

• Many more can be found in the ATLAS Public results page*

Very high precision reached in the measurement of many SM parameters

Precision on α_S , m_W and Γ_W comparable or better than world averages
 Γ_W measured for the first time at LHC

Important SM assumptions on number of generations and LFU tested and confirmed

*: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>

Differential cross-section analysis results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

• Per-mille level precision in the central region *O* Sub-percent up to |y| < 3.6, thanks to dedicate forward electron selection and calibration

Ocompared to state of the art to state-of-the-art predictions

O QCD perturbative calculations based on q_T resummation at aN4LL+N3LO accuracy

Marino Romano - Precision SM parameters

Differential cross-section analysis results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Per-mille level precision in the central region *O* Sub-percent up to |y| < 3.6, thanks to dedicate forward electron selection and calibration

Ocompared to state of the art to state-of-the-art predictions

O QCD perturbative calculations based on q_T resummation at aN4LL+N3LO accuracy

Differential cross-section analysis results

Eur. Phys. J. C 84 (2024) 315 arXiv:2309.12986 [hep-ex] $\sqrt{s} = 8$ TeV, L = 20.2 fb⁻¹

Per-mille level precision in the central region *O* Sub-percent up to |y| < 3.6, thanks to dedicate

forward electron selection and calibration

Ocompared to state of the art to state-of-the-art predictions

o QCD perturbative calculations based on q_T resummation at aN4LL+N3LO accuracy

O Effects of resummation

Analysis strategy

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

• Event selection in the e/μ +jets channel

 $oldsymbol{O}$ Isolated leptons, $p_T > 30 \text{ GeV}$

• $u_T < 30$ GeV: vector sum of the transverse energy of all clusters reconstructed in the calorimeters, not associated with the decay leptons $\vec{u}_T = \sum_i \vec{E^i}_T$ • does not involve the explicit reconstruction of jets

More on signal modelling

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

Main MC Powheg r (v1/r1556) + Py8 (AZNLO tune) + PHOTOS for FSR

EWK Uncertainties:

- Operation Provide a contract of the second secon
- Same missing higher order EWK uncertainties as the previous analysis

QCD Uncertainties:

- Reweighted to highest possible prediction
- Transverse momentum spectrum is modelled with retuned Pythia8 to fit measured p_T of the Z at 7 TeV, validate for W at 5.02 and 13 TeV
- NNLO predictions for A0-A7 validated

PDF uncertainties

- using hessian method
 - Constrained based on the Z measurement such that they leave the pTZ distribution unchanged, propagating only uncorrelated ones to W

PS uncertainties

- taken from Z measurement, propagated through the AZ tune
- IS charm and bottom quark masses varied and propagated (+-0.5-0.8 GeV)
- Factorisation scale variation 0.5,2.
- Differences between generators (pythia herwig negligible)

Measurement of m_W and Γ_W Calibration

[1]: Eur. Phys. J. C 78 (2018) 110

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

Unchanged wrt legacy measurement [1]

Precoil response calibrated with the hadronic recoil in Z+jets events

O Scale and resolution using u_{\parallel} and u_{\perp}

Closure tests performed by using a PWG+Herwig6 sample as pseudo data

Calibration

[1]: Eur. Phys. J. C 78 (2018) 110

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

Unchanged wrt legacy measurement [1]

Precoil response calibrated with the hadronic recoil in Z+jets events

Constency of the results

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

O Test 1: reproduce the legacy results		ΔΤΙΑς	
Stat-only fit + offset method		$\sqrt{s} = 7$ TeV, 4.6/4.1 fb ⁻¹ , <i>e</i> -/ μ -channel, s — PLH, total unc. — χ^2 , total	single- and multi- <i>p</i> ^ℓ -fits unc.
	μ, η <0.8, q=–1		80431 ⁺³⁷ ₋₃₇ 80427 ⁺³⁹
\sim Good closure (shifts ~12.5 MeV)	μ, η <0.8, q=+1		80309 ⁺³⁶ ₋₃₅ 80326 ⁺³⁷ ₋₃₇
	μ, 0.8< η <1.4, q=–1		80378 ⁺⁴¹ 80398 ⁺⁴¹
	μ, 0.8< η <1.4, q=+1		$80341_{-41}^{+41} 80357_{-40}^{+40}$
	μ, 1.4< η <2.0, q=–1		$\frac{80394_{-48}^{+49}}{^{-48}} \ 80378_{-51}^{+51}$
	μ, 1.4< η <2.0, q=+1		80463 ⁺⁴⁴ ₋₄₄ 80447 ⁺⁵⁰ ₋₅₀
	μ, 2.0< η <2.4, q=–1		80334 ⁺¹²⁹ 80313 ⁺¹³⁰
	μ, 2.0< η <2.4, q=+1		80312 ⁺¹²⁰ -113 80332 ⁺¹²¹ -121
	<i>e</i> , η <0.6, q=−1		80353 ⁺⁴¹ ₋₄₀ 80360 ⁺⁴² ₋₄₂
	<i>e</i> , η <0.6, q=+1		80300 ⁺⁴¹ ₋₄₀ 80336 ⁺⁴² ₋₄₂
	<i>e</i> , 0.6< η <1.2, q=−1		80306 ⁺⁴¹ ₋₄₁ 80323 ⁺⁴¹ ₋₄₁
	<i>e</i> , 0.6< η <1.2, q=+1		80375 ⁺⁴⁰ ₋₄₀ 80359 ⁺⁴⁰ ₋₄₀
	<i>e</i> , 1.8< η <2.4, q=−1		80407 ⁺⁵⁰ ₋₅₀ 80417 ⁺⁵² ₋₅₂
	<i>e</i> , 1.8< η <2.4, q=+1		80331 ⁺⁴⁷ ₋₄₇ 80345 ⁺⁴⁹ ₋₄₉
	Combination		80357 ⁺¹⁶ 80373 ⁺¹⁹
		30200 80400	80600
			m _w [MeV]
Marino Romano - Precision SM parameters			58

Constency of the results

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

- O Test 1: reproduce the legacy results
 - O Stat-only fit + offset method
 - O Good closure (shifts ~12.5 MeV)
- Test 2: pseudo experiments with central values of NPs varied randomly

Marino Romano - Precision SM parameters

Constency of the results

arXiv:2403.15085 [hep-ex] $\sqrt{s} = 7$ TeV, L = 4.6/4.1 fb⁻¹

- O Test 1: reproduce the legacy results
 - O Stat-only fit + offset method
 - O Good closure (shifts ~12.5 MeV)
- O Test 2: pseudo experiments with central values of NPs varied randomly
- Test 3: partial fits and different fit ranges

Fit equations

arXiv:2403.02133 [hep-ex] $\sqrt{s} = 13 \text{ TeV}, L = 140 \text{ fb}^{-1}$

$o t\bar{t}$ selection, different flavors $N_{1}^{e\mu} = L\sigma_{t\bar{t}} \epsilon_{e\mu} g_{e\mu}^{t\bar{t}} 2\epsilon_{b}^{e\mu} (1 - C_{b}^{e\mu} \epsilon_{b}^{e\mu}) + \sum_{\substack{k=bkg \\ k=bkg}} s_{1}^{k} g_{e\mu}^{k} N_{1}^{e\mu,k} \text{ and }$ $N_{2}^{e\mu} = L\sigma_{t\bar{t}} \epsilon_{e\mu} g_{e\mu}^{t\bar{t}} C_{b}^{e\mu} (\epsilon_{b}^{e\mu})^{2} + \sum_{\substack{k=bkg \\ k=bkg}} s_{2}^{k} g_{e\mu}^{k} N_{2}^{e\mu,k},$

o $t\bar{t}$ selection, same flavors

$$N_{1,m}^{\ell\ell} = L\sigma_{t\bar{t}} \epsilon_{\ell\ell} g_{\ell\ell}^{t\bar{t}} 2\epsilon_b^{\ell\ell} (1 - C_b^{\ell\ell} \epsilon_b^{\ell\ell}) f_{1,m}^{\ell\ell,t\bar{t}} + \sum_{\substack{k=bkg}} s_1^k g_{\ell\ell}^k f_{1,m}^{\ell\ell,k} N_1^{\ell\ell,k} \text{ and }$$
$$N_{2,m}^{\ell\ell} = L\sigma_{t\bar{t}} \epsilon_{\ell\ell} g_{\ell\ell}^{t\bar{t}} C_b^{\ell\ell} (\epsilon_b^{\ell\ell})^2 f_{2,m}^{\ell\ell,t\bar{t}} + \sum_{\substack{k=bkg}} s_1^k g_{\ell\ell}^k f_{2,m}^{\ell\ell,k} N_2^{\ell\ell,k},$$

O Z selection

$$\begin{split} N_Z^{ee} &= L \, \sigma_{Z \to \ell \ell} \, \epsilon_{Z \to ee} (1 - \Delta_Z) + \sum_{\substack{k = b \text{kg}}} s_Z^k \, N_Z^{ee,k} \text{ and} \\ N_Z^{\mu \mu} &= L \, \sigma_{Z \to \ell \ell} \, \epsilon_{Z \to \mu \mu} (1 + \Delta_Z) + \sum_{\substack{k = b \text{kg}}} s_Z^k \, N_Z^{\mu \mu,k} \,, \end{split}$$

Factors accouting for deviations in R_W

$g_{ee}^{t\bar{t}}$	=	$f_{0\tau}^{ee}(1-\Delta_W)^2$	$+f^{ee}_{1\tau}(1-\Delta_W)$	$+f^{ee}_{2\tau}$
$g^{t\bar{t}}_{e\mu}$	=	$f_{0\tau}^{e\mu}(1-\Delta_W)(1+\Delta_W)$	$+f_{1\tau}^{e\mu}$	$+f_{2\tau}^{e\mu}$
$g^{tar{t}}_{\mu\mu}$	=	$f_{0\tau}^{\mu\mu}(1+\Delta_W)^2$	$+f^{\mu\mu}_{1\tau}(1+\Delta_W)$	$+f^{\mu\mu}_{2 au}$

For *tW* and diboson backgrounds

 $g_{11'}^k = g_{11'}^{tt}$ For Z+jets background $g_{ee}^{Z+\text{jets}} = (1 - \Delta_Z)(1 - \Delta_{Z+b})$ $g_{e\mu}^{Z+\text{jets}} = 1$ $g_{\mu\mu}^{Z+\text{jets}} = (1 + \Delta_Z)(1 + \Delta_{Z+b})$

With Δ_{Z+b} being related to R_{Z+b} to account for isolation differences in Z+jets wrt Z inclusive