Recent results on SUSY searches in ATLAS

MELISSA YEXLEY m.yexley@cern.ch

BEACH 2024

Super Symmetry

However illusive SUSY insists on being it is an elegant model that could solve many of the unanswered questions in the SM, such as the hierarchy problem and can provide a viable dark matter candidate.

All SM particles have a Supersymmetric particle partner which has spin different by half an integer and a larger mass

Search for RPV SUSY - stop to b jet and lepton

Number of b-tagged jets ≥ 1

2 opposite sign leptons e/μ

<u>SUSY-2018-37</u>

 j_1 \dot{J}_0 ℓ_0 ℓ_1

NEW!

 $m_{h\ell}$ asymmetry

 $m_{b\ell}^0 - m_{b\ell}^1$ $m_{b\ell}^0 + m_{b\ell}^1$

Search for RPV SUSY - stop to b jet and lepton

Dominant backgrounds are: ttbar, single top and Z + jets

SUSY-2018-37

Search for RPV SUSY - stop to b jet and lepton Results significantly extend the mass exclusion limits on the "B - L stop" model from previous ATLAS searches

SUSY-2018-37

Search for RPV SUSY with 6 - 10 jets

Multijet events are the dominant background

2 complementary analysis methods are used:

• jet counting - use jet kinematics and event shapes in a semi data driven method for background extrapolation

 Mass reconstruction - use ML to address the combinatorial assignment problem to reconstruct the gluino mass

JHEP 05 (2024) 003

Many jets!

Search for RPV SUSY with 6 - 10 jets

<u>JHEP 05 (2024) 003</u>

Limits set on the production of gluinos in the gluino direct decay and cascade decay models in $U\overline{D}\overline{D}$ scenarios of RPV SUSY

Stop to top or charm Analysis

Target 3 regions of parameter space:

 $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \gg m(t)$ - highly boosted c-jets

 \bullet

• $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) > m(t)$ -moderate p_T c-jets

• $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$ low p_T c-jets, require a high p_T initial state radiation jet to trigger on

First LHC analysis with this signature!

Submitted to JHEP

Flavour violating model

Number of b-tagged jets ≥ 1

Number of c-tagged jets ≥ 1

Stop to top or charm Analysis

to distinguish from SM backgrounds

between background and signal

Submitted to JHEP

For boosted/moderate regions a cut-and-count analysis is used. Large radius top-tagging

For the compressed region, $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$, use a neural network to distinguish

Stop to top or charm Analysis

The first results to date at the LHC on a search for BSM physics in this final-state signature

Submitted to JHEP

Compressed Displaced Track Analysis

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate

If the mass splitting of the Higginos is "compressed" $\mathcal{O}(\Delta m(\tilde{\chi_1}^{\pm}, \tilde{\chi_1}^0)) \sim 1 \text{ GeV the}$ lifetime of the $\tilde{\chi}_1^{\pm}$ is $c\tau \sim \mathcal{O}(1)$ mm

Accepted by PRL

Initial state radiation jet $p_T > 200$ GeV

"Mildly displaced" track with $2 > p_T > 5$ GeV and significance of the tracks transverse impact parameter $S(d_0) > 8$

Compressed Displaced Track Analysis

Dominant backgrounds:

• $W \rightarrow \tau \nu$, a pion or lepton from a low p_T τ decay

Estimated using a semi data driven method

• $Z \rightarrow \nu \nu (\tau \tau)$ + jets and $W \rightarrow \ell \nu$ + jets, $\ell = e, \mu$ - hadrons in the jets with with measurably long lifetimes

Estimated using fully data driven method, ABCD method

Accepted by PRL

2 signal bins in $S(d_0)$ (sensitive to lower/ higher Δm)

Compressed Displaced Track Analysis

Result bridges a long-standing blind spot in the sensitivity of Higgsino searches

Accepted by PRL

pMSSM Electroweak Scan

Results from 8 ATLAS SUSY Run 2 searches used in pMSSM scans to set constraints on electroweak production of charginos and neutralinos

The pMSSM consists of 19 parameters, the scans use 5 parameters relevant for the electroweak production

2 scans are performed, one with an additional constraint on $|M_1| < 500$ GeV to focus on low-mass bino models

Electroweakino Scan

<u>JHEP 2024 (2024) 106</u>

	pMSSM Parameter	Meaning	
7	$ \begin{array}{c} \tan \beta \\ M_A \\ \mu \\ M_1, M_2, M_3 \\ A_t, A_b, A_\tau \\ M_{\tilde{q}}, M_{\tilde{u}_R}, M_{\tilde{d}_R}, M_{\tilde{l}}, M_{\tilde{e}_R} \\ M_{\tilde{Q}}, M_{\tilde{t}_R}, M_{\tilde{b}_R}, M_{\tilde{L}}, M_{\tilde{\tau}_R} \end{array} $	Ratio of the Higgs vacuum expectation Pseudoscalar (<i>CP</i> -odd) Higgs boson m Higgsino mass parameter Bino, wino and gluino mass parameter Third generation trilinear couplings First/second generation sfermion mass Third generation sfermion mass param	n values for the two doublets nass parameter rs s parameters neters
	$\sum_{i=1}^{i=1} 10^{i}$ 10^{i}	ann. $\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b}$ A/H funnel $\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow VV$ Other 2 Z/h funnel $\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow VV$ $\tilde{\chi}_{1}^{0}$	models the satisfy the relic dens constraint $\Omega h^2 \leq 0$.

Bino DM Scan

pMSSM Electroweak Scan

Fraction of models excluded

Electroweakino Scan

<u>JHEP 2024 (2024) 106</u>

Bino DM Scan

Submitted to PRL **Combinations of electroweakino and slepton searches**

Statistical combinations of previous ATLAS searches for charginos and neutralinos using various decay channels

In general the combination extends the mass reach of the produced SUSY particles by 30–100 GeV

Sensitivity of the original searches is improved by the combinations: lowering crosssection upper limits by 15%-40%

Summary & Outlook

- No signs of Supersymmetry, however, a lot of phase space has been excluded and results can be reinterpreted to other models with similar final states.
- phases space. Working on great improvements in flavour tagging: LINK.
- Plans are a foot for HL-LHC, more collision = access to probe rarer processes!
- Find all our public SUSY results here: LINK and summary plots here: LINK.

• Currently taking data in Run 3, many analyses are developing exciting, new, novel analysis techniques to probe difficult to reach regions of

Thank you for listening!

18

$\gamma\gamma bb + E_T^{miss}$ Analysis

3 Signal Regions:

• $E_T^{miss} \leq 100 \text{ GeV}$ optimised for low $m(\tilde{\chi}_1^0)$

- 100 < m(bb) < 140 GeV (bs from h)
- 60 < m(bb) < 100 GeV (bs from Z)

• $E_T^{miss} > 100$ GeV optimised for high $m(\tilde{\chi}_1^0)$

• 35 < m(bb) < 145 GeV (h & Z)

$\gamma\gamma bb + E_T^{miss}$ Analysis

Dominant background from non-resonant events: no peak around $m_{\gamma\gamma} \sim m_h \,\text{GeV} \rightarrow$ from prompt diphoton events and jets masquerading as photons

Estimate using data driven techniques ('2×2D sideband method')

Submitted to PLB

$\gamma\gamma bb + E_T^{miss}$ Analysis

cross-section for higgsino pair-production

Submitted to PLB

pure-higgsino branching fraction to $h ilde{G}$

Electroweakinos and staus JHEP 05 (2024) 150

 $2 \leq \tau$'s in final state Increased sensitivity with machine learning for the direct stau production channel

The data driven ABCD method is used to estimate the mulitjet background. Other backgrounds are estimated by normalised MC

Electroweakinos and staus

<u>JHEP 05 (2024) 150</u>

Electroweakinos and staus

<u>JHEP 05 (2024) 150</u>

Search for higgsinos in HH(4b) + E_T^{miss}

- 2 search channels:
- Low-mass Higgsinos using b-jet triggers
 - Multijet background estimate is fully data driven
 - Optimised b-tagger
- High-mass using E_T^{miss} trigger
 - Background estimate via normalised MC
 - Improved signal/background discrimination via multivariate techniques

Accepted by PRD

Search for higgsinos in HH(4b) + E_T^{miss}

Search for higgsinos in HH(4b) + E_T^{miss}

Accepted by PRD

