Heavy-Flavor Production and *B*–Hadron Lifetime Measurements in ATLAS

Dvij Chaitanya Mankad On Behalf of the ATLAS Collaboration

BEACH 2024, Charleston S.C. | June 03-08, 2024 https://indico.fnal.gov/event/62069/

Introduction

- **Flavor Physics at ATLAS** in This Talk!
 - In Measurements of Production Cross-Sections & Spectroscopy
 - Decays
 Measurements of Weak Decays

Introduction

- **Flavor Physics at ATLAS in This Talk!**
 - Measurements of Production Cross-Sections & Spectroscopy
 - **Given Sep. 2023)** Differential Production Cross-Section of J/ψ and $\psi(2S)$
 - **(Apr. 2023)** Search for Di-Charmonium Resonances in 4μ Final States
 - **(Apr. 2023)** Search for $\Upsilon(1S) + \mu^+\mu^-$ Resonance in 4μ Final States
 - Measurements of Weak Decays
 - □ (Aug. 2023) Effective Lifetime of the $B_s^0 \rightarrow \mu^+ \mu^-$ Decay

Introduction

- **Flavor Physics at ATLAS** in This Talk!
 - Measurements of Production Cross-Sections & Spectroscopy
 - \Box (Sep. 2023) Differential Production Cross-Section of J/ψ and $\psi(2S)$
 - \Box (Apr. 2023) Search for Di-Charmonium Resonances in 4μ Final States
 - **Gamma** (Apr. 2023) Search for $\Upsilon(1S) + \mu^+\mu^-$ Resonance in 4μ Final States
 - Measurements of Weak Decays
 - \Box (Aug. 2023) Effective Lifetime of the $B_s^0 \rightarrow \mu^+ \mu^-$ Decay
- Despite being a general purpose detector, competitive at flavor physics.
 - ^{\Box} Large statistics, ~full coverage \rightarrow phase space complements LHCb, good muon performance, often constrained by trigger, however, constantly optimizing! :)

Differential Production Cross-Section of J/ψ and $\psi(2S)$ arXiv:2309.17177 Eur. Phys. J. C 84 (2024) 169

Motivation

Two sources of quarkonia production:

Prompt: Coming from short-lived QCD processes.

Non-prompt: Coming from decays of *b*-hadrons.

Understanding quarkonium production in hadronic collisions still incomplete:

- [□] Perturbative QCD can describe the non-prompt production well but not prompt production.
- NRQCD approach to build a universal library of LDMEs has achieved mixed success.

This analysis:

- □ Provides experimental data in **previously unmeasured kinematic range** of quarkonia production!
- [•] Can help theoretical models with **qualitatively new information**.

[□] Color Evaporation Model is simpler in terms of parameters but faces its own problem in describing data.

B(J/ψ→μ⁺μ⁻) <mark>d²σ</mark> [nb GeV⁻

Experimental Strategy

□ Kinematic range extension:

- $\Box J/\psi: p_{\rm T} < 100 \text{ GeV} \rightarrow p_{\rm T} < 360 \text{ GeV}$
- $\Box \psi(2S): p_{\rm T} < 100 \text{ GeV} \rightarrow p_{\rm T} < 140 \text{ GeV}$

Description Possible due to updated trigger-strategy!

- □ Angular resolution of dimuon triggers not sufficient to resolve highly boosted muons coming from charmonia with $p_{\rm T} > 100 {\rm ~GeV}.$
- Instead, trigger on a single muon
 trigger with high muon p_T threshold
 (~ 50 GeV)!

Dimuon triggers still used to cover lower charmonia $p_{\rm T}$ phase space. 2309.17177

Analysis Strategy

- □ Prompt and non-prompt contributions separated using the reconstructed pseudo proper lifetime $\tau = \frac{m_{\mu\mu}}{p_{\rm T}} \frac{L_{xy}}{c}.$
- □ Measured signal yield extracted from simultaneous fits to reconstructed mass and pseudo proper lifetime in bins of $p_{\rm T}$ and y.
- Differential cross-section measured from the measured yield as:

$$\frac{d^2 \sigma^{\text{P,NP}}(pp \to \psi)}{dp_{\text{T}} dy} = \frac{1}{\mathscr{B}(\psi \to \mu\mu) \int \mathscr{L} dt} \cdot \frac{1}{\mathscr{A}(\psi) \epsilon_{\text{trig}} \epsilon_{\text{reco}} \text{SF}_{\text{trig}} \text{SF}_{\text{reco}}}$$

□ Fraction of non-prompt production F_{ψ}^{NP} and $\psi(2S)$ -to- J/ψ production ratios $R^{\text{P,NP}}$ also extracted with partial cancellations of uncertainties!

Results: Prompt J/ψ **Production**

- NLO NRQCD and ICEM seem to overestimate the high-p_T production.
- NRQCD with k_T
 -factorization seems to
 underestimate the low-p_T
 production.

ATLAS

 $pp \sqrt{s} = 13 \text{ TeV}$ $0 \le |y| < 0.75$ Prompt J/ ψ

Results: Prompt $\psi(2S)$ **Production**

- NLO NRQCD seems to over-estimation of high-p_T production.
- NRQCD with k_T -factorization seems to
 underestimate the $\psi(2S)$ production.

ATLAS

 $pp \sqrt{s} = 13 \text{ TeV}$ $0 \le |y| < 0.75$ Prompt $\psi(2S)$

Results: Non-Prompt J/ψ Production

- FONLL and GM-VFNS
 seem to overestimate the high-p_T production.

ATLAS

 $pp \sqrt{s} = 13 \text{ TeV}$ $0 \le |y| < 0.75$ Non-prompt J/ ψ

Results: Non-Prompt $\psi(2S)$ Production

 \square $k_{\rm T}$ -factorization seems to underestimate the production at low- $p_{\rm T}$.

2309.17177

ATLAS

Search for Di-Charmonium Resonances in 4µ Final States arXiv:2304.08962 <u>Phys. Rev. Lett. 131</u> (2023) 151902

Motivation

More broadly:

- Color-confinement allows for exotic bound states of quarks other than baryons and meson: $qq\bar{q}\bar{q}$, $qqqq\bar{q}$.
- BSM also predicts resonances in di-quarkonia spectrum.
- **LHCb observed a narrow** X(6900) **structure in** $m(J/\psi J/\psi)$ **in 2020!** 2006.16957
 - \Box Consistent with a charming tetraquark $T_{cc\bar{c}\bar{c}}$.

This analysis:

- Corroborate the LHCb discovery in a quite different phase space.
- \square Make sense of the additional enhancement near di- J/ψ mass threshold that LHCb observed.
- \Box Search for di-charmonium excesses in $J/\psi + \psi(2S)$ channel!

2304.08962

Analysis Strategy

\Box Search for 4μ final state produced via

- $\Box J/\psi + J/\psi$ Channel
- $\Box J/\psi + \psi(2S)$ Channel

Data

^{**u**} Full Run2 dataset with $L = 140 \text{ fb}^{-1}$ of pp collision data at $\sqrt{s} = 13 \text{ TeV}$

 \Box Trigger on low- p_{T} dimuon or trimuon triggers requiring an oppositely charged muon pair.

Event Selection

 $\Box 4\mu$ vertexing followed by two $\mu^+\mu^-$ vertexings with J/ψ or $\psi(2S)$ mass-constraints in events with two pairs of $\mu^+\mu^-$.

 \Box Background rejection via stringent cuts on the quality of the 4 μ vertex fit and on the angle b/w the charmonia candidates.

Background Modeling

- **Prompt Di-Charmonia**: SPS and DPS events. Modeled with MC corrected with data in mass sidebands.
- displacement of $\mu^+\mu^-$ vertices.
- \Box One Charmonium + Non-Resonant $\mu^+\mu^-$: Mostly due to fake muons. Purely data-driven fake estimation.

• Non-Prompt Di-Charmonia: b—Hadron Decays. Modeled with MC corrected with data in sidebands of vertexing quality and/or

Signal Modeling for the Fits

<u>Signal Modeling for Fits</u>

 $\Box J/\psi + J/\psi$ Channel

 \square Feeddown from $J/\psi + \psi(2S)$ channel signal fit taken as background

D Model A: 3 interfering BW resonances

D Model B: 2 BW where the lower resonance interferes with the SPS background

 $\Box J/\psi + \psi(2S)$ Channel

 \square Model α : 3 interfering BW resonances of Model A + standalone 4th BW resonance

\square Model β : Only 1 BW resonance

Other models considered but excluded in favor of these with the most promising of the excluded ones used to calculate systematics associated with the models.

Results: $J/\psi + J/\psi$ Channel

□ Significance for both models far exceeds 5σ

- \Box The mass of the m_2 resonance consistent with the LHCb mass as well as with the CMS search now: <u>2306.07164</u>
- **The broad structure at lower** mass can still be from other effects such as feeddown from higher dicharmonium resonances.

$$\Box T_{cc\bar{c}\bar{c}} \to \chi_{cJ'}\chi_{cJ'} \to J/\psi J/\psi \gamma \gamma$$

Brief Recap of Context for $J/\psi + \psi(2S)$ **Channel**

 \Box X(6900) is just above $J/\psi + \psi(2S)$ mass threshold!

 \Box So, we might expect an excess at the lower-end of $J/\psi + \psi(2S)$ spectrum.

- \Box Is there something going on also at ~ 7.2 GeV in the dicharmonia spectrum?
- **Technical:** To fit the feed-down background for $J/\psi + J/\psi$ channel.

CMS 2306.07164

LHCb 2006.16957

Results: $J/\psi + \psi(2S)$ **Channel**

D Model α : 4.7 σ

resonance alone at 3σ .

$J/\psi + \psi(2S)$	n
<i>m</i> ₃	7.22
Γ_3	0.09
$\Delta s/s$	±2

Search for $\Upsilon(1S) + \mu^+\mu^-$ **Resonance in** 4μ **Final States** <u>ATLAS-CONF-2023-041</u>

Motivation

- Theories of tetraquarks predict new resonances decaying to four lepton final states.
- BSM models also predict such new resonances.

□ Where to search?

- \Box In the context of search for BSM resonances, the search for 4μ resonances usually performed in **high** $m_{4\mu}$ **phase-space**.
- □ Searches by LHCb and CMS have set relatively strong limits on $\Upsilon(1S) + \mu^+\mu^-$ production at **low** $m_{4\mu}$, i.e., $m_{4\mu} < 27$ GeV.
- □ This analysis: $m_{4\mu} \in [10 \text{ GeV}, 50 \text{ GeV}]$

ATLAS-CONF-2023-041

21/

Analysis Strategy

Data

Year	\sqrt{s}	Dimuon Triggers	Trimuon Triggers	Luminosity Coll
2012	$8 { m TeV}$	2 μ with $p>4~{ m GeV}$, $m(\mu^+\mu^-)\in [2.5~{ m GeV}, 12~{ m GeV}]$, Unnprescaled	3 μ with $p>4~{ m GeV}$, Unprescaled	$20.3~{ m fb}^{-1}$
2015-2017	$13~{ m TeV}$		3 μ with $p>4~{ m GeV}$, Prescaled	$51.5~{\rm fb}^{-1}$
2018	$13~{ m TeV}$		3 μ with $p>4~{ m GeV}$, $m(\mu^+\mu^-)\in [8~{ m GeV}, 12~{ m GeV}]$, Prescaled	$58.5~{ m fb}^{-1}$

Different trigger strategies in different data-taking periods makes this analysis quite complicated.

Event Selection

Candidate object	Requirements
Muons	$p_{\rm T}(\mu) > 3 \text{ GeV and } \eta < 2.5,$
	$ z_0 \sin \theta < 1 \text{ mm and } d_0/\sigma_{d_0} < 6$
Muon quadruplet	\geq 3 muons passing LowPt selection criteria,
	$\sum q_{\mu} = 0$, four-muon vertex fit $\chi^2 / N_{d.o.f} \le 10$,
	$10 \text{ GeV} \le m_{4\mu} \le 50 \text{ GeV}$
Muon doublet	di-muon vertex fit $\chi^2 < 3$
$\Upsilon(1S)$ candidate	OS muon doublet with $p_T(\mu_{1,2}) > 4$ GeV,
	$9.2 \text{ GeV} \le m_{\mu^+\mu^-} \le 9.7 \text{ GeV}$
$\Upsilon(1S) + \mu^+\mu^-$ candidate events	$\Upsilon(1S)$ candidate plus OS muon doublet with m_{μ}
	both muon doublets point to a common PV

ATLAS-CONF-2023-041

lected

Results

Run1: 2012

- **Excess at 18 GeV** with global (local) significance of $1.9\sigma - 5.4\sigma$ $(3.6\sigma - 6.3\sigma).$
- Variation in the significance arising from the variation in fit-range and selection cuts.

Run2: 2015-2017

Excess at the same 18 GeV with a significance of 1.9*σ*.

Run2: 2018

• **No excess** found!

23/

Cross-Checks with di- $\Upsilon(1S)$

\Box Use associated production of di- $\Upsilon(1S)$ as a validation channel.

- Apply selections identical to the main analysis.
- Look at the mass-spectrum of the second OS muon pair.
- **Reduction in the signal yield of di-** $\Upsilon(1S)$ from 2012 to 2018 consistent with MC expectations.
- **Even after taking into account such** reductions in signal sensitivity, 2.7σ tension b/w Run1 and Run2 results for the $\Upsilon(1S) + \mu^+\mu^-$ search.
- \square Also check if the di- $\Upsilon(1S)$ events cause the $m_{4\mu}$ peaks.
 - Found to be flat!

Limit-Setting Interpretation

 \Box Note: LHCb and CMS did not find any excess at 18 GeV in their spectrum of $\Upsilon(1S) + \mu^+\mu^-$.

□ CMS: 2002.06393, LHCb: 1806.09707

Dvij Chaitanya Mankad (WIS)

Effective Lifetime of the $B_s^0 \rightarrow \mu^+\mu^-$ Decay <u>arXiv:2308.01171</u> JHEP09(2023) 199

Motivation

$$\Box \text{ Effective lifetime: } \tau_{\mu\mu} = \frac{\int dt \ t \cdot \langle \Gamma(B_s(t) \to \mu) \rangle}{\int dt \ \langle \Gamma(B_s(t) \to \mu) \rangle}$$

□ Related to the mass-eigenstate asymmetry:

$$A_{\Delta\Gamma}^{\mu\mu} = \frac{\Gamma(B_{sH}^0 \to \mu\mu) - \Gamma(B_{sL}^0 \to \mu\mu)}{\Gamma(B_{sH}^0 \to \mu\mu) + \Gamma(B_{sL}^0 \to \mu\mu)} = \frac{1}{y_s} \begin{bmatrix} (1-y_s^2)\tau_{\mu\mu} - (1+y_s^2)\tau_{B_s} \\ 2\tau_{B_s} - (1-y_s^2)\tau_{\mu\mu} \end{bmatrix}$$

in SM
$$y_s = \frac{\Delta\Gamma_s}{2\Gamma_s} \quad \tau_{B_s} = \frac{1}{\Gamma_s}$$
 SM Prediction: 1.624 ± 0.009

□ Uniquely sensitive to BSM contributions that might mediate $B_{sL}^0 \rightarrow \mu \mu!$

 \Box These can be completely hidden in $\mathscr{B}(B_s^0 \to \mu\mu)$ despite the rarity of the decay.

 $\mu\mu)\rangle$ $\mu)\rangle$

ps

Motivation

\Box Uniquely sensitive to BSM contributions that might mediate $B_{sL}^0 \rightarrow \mu \mu!$

 \Box These can be completely hidden in $\mathscr{B}(B_s^0 \to \mu\mu)$ despite the rarity of the decay.

Analysis Strategy

Data

• Early Run2 data (2015, 2016) with effective L = 26.3 fb⁻¹.

Event Selection

- $\square B_s^0 \to \mu^+ \mu^-$ decay vertex using two muon tracks.
- \square Primary Vertex selected to minimize Δz w.r.t. the decay vertex (~ 99 % accurate).

$$\Rightarrow t^{i}_{\mu\mu} = \frac{1}{c} \frac{L^{i}_{xy}}{p^{i}_{T}(B^{0}_{s})} m^{PDG}_{B^{0}_{s}} \text{ and } m^{i}_{\mu\mu} \text{ extracted per candidate up}$$

BDT selections applied to reduce the large combinatorial background.

$\tau_{\mu\mu}$ Measurement

- distribution are used to discriminate the signal against background.
- with varying $\tau_{\mu\mu}$.

```
using "combined" muons.
```

 \Box Signal $t_{\mu\mu}$ distributions in data extracted with sPlot technique where unbinned extended maximum likelihood fits to $m_{\mu\mu}$

 \neg $\tau_{\mu\mu}$ is measured by minimizing the binned χ^2 between the extracted signal $t_{\mu\mu}$ distribution in data and MC templates

Mass Fits

30/

Systematics

- □ Reference channel $B^{\pm} \to J/\psi(\to \mu^+\mu^-)K^{\pm}$ used to correct for data/MC discrepancies.
 - However, due to the topological and kinematic differences b/w the reference and the signal channels, data/MC discrepancies remain the largest systematics.
- In addition to the mass shape mismodeling in mass fits,
 correlations b/w lifetime and mass that can bias the
 Plot results are accounted for in systematics.
- Potential background sources not modeled in the fit are also taken as sources of systematics.

Uncertainty source	$\Delta au^{ m Ob}_{\mu\mu}$
Data - MC discrepancies	13
SSSV lifetime model	6
Combinatorial lifetime model	5
B kinematic reweighting	5
B isolation reweighting	3
SSSV mass model	2
B_d background	1
Fit bias lifetime dependency and B_s^0 eigenstates admixture	1
Combinatorial mass model	1
Pileup reweighting	1
B_c background	1
Muon Δ_{η} correction	(
$B \rightarrow hh'$ background	
Muon reconstruction SF reweighting	
Semileptonic background	
Trigger reweighting	-
Total	17
Δ	•

Result

• Measurement:

 $\tau_{\mu\mu} = 0.99^{+0.42}_{-0.07}$ (stat.) ± 0.17 (syst.) ps

 \square Recall: fitted signal yield was 58 ± 13 .

Compatible with both the SM and previous measurements.

□ Statistically dominated → Full Run2 measurement will certainly help! 2308.01171

Outlook: Flavor Physics at ATLAS in This Talk and Beyond!

Production Cross-Sections & Spectroscopy

- Differential Production Cross-Section of J/ψ and $\psi(2S)$
 - Extended up to $p_T^{J/\psi} = 360 \text{ GeV}$. A lot to work with for theoretical models!
- \square Search for Di-Charmonium Resonances in 4μ Final States
 - Corroborated the LHCb discovery of X(6900) in di- J/ψ .
 - Look out for more work on the evidence of excess in $J/\psi + \psi(2S)$.
 - More work also needed to understand the low-mass broad structure observed, also by LHCb.
- Search for $\Upsilon(1S) + \mu^+\mu^-$ Resonance in 4μ Final States
 - The excess at 18 GeV in 2012 data appears to go away in 2018 data.
 - More work needed to resolve the tension b/w Run1 and Run2.

Measurements of Weak Decays

- Effective Lifetime of the $B_s^0 \to \mu^+ \mu^-$ Decay
 - \square First measurement of effective $B_s^0 \rightarrow \mu^+ \mu^-$ lifetime by ATLAS with early Run2 data.
 - Stay tuned for full Run2 analysis!

ATLAS Public Results

Differential Production Cross-Section of J/ψ and $\psi(2S)$ arXiv:2309.17177 Eur. Phys. J. C 84 (2024) 169

Results: $\psi(2S)$ -to- J/ψ **Production Ratios**

Results: Non-Prompt Production Fractions

2309.17177

The Spin-Alignment Correction Factors

Prompt J/ψ

Non-Prompt J/ψ

2309.17177

The switch in trigger strategy kicks in... at 60 GeV

> Most dominant corrections to acceptance under the isotropic assumption, based on the best available data and theory, are taken as systematics.

Systematics

2309.17177

