B-Physics results from Belle & Belle II

Seema Choudhury Iowa State University, USA (on behalf of the Belle & Belle II Collaborations)

June 04 2024

BEACH 2024

XV International Conference on Beauty, Charm, Hyperons in Hadronic Interactio

3-7 June 2024

Courtyard Charleston Historic District Charleston, SC

Seema Choudhury

BELLE

Belle II

Belle & Belle II Detectors

- Asymmetric e^+ (3.5 GeV) e^- (8 GeV) collider
- Collected total 1 ab^{-1} of data
- Data taken from 1999 to 2010
- Collected 711 fb⁻¹ at $\Upsilon(4S)$ resonance

- Asymmetric e^+ (4 GeV) e^- (7 GeV) collider
- Recorded 424 fb $^{-1}$ of data: \sim equivalent to BaBar and 1/2 of Belle data sample during Run I
- Data taken between 2019 2022
- Run I data at $\Upsilon(4S)$ resonance: 362 fb⁻¹
- Run II has started from early 2024
- Aims to collect many-ab⁻¹ of data

Advantages of Belle & Belle II

• Clean environment: Average 11 tracks per event compared to hundreds of tracks for hadron colliders

Rare decays and Lepton flavor Universality

"Traditional" modes

$B \to K^* \gamma$ at Belle II

- Involves $b \rightarrow s \gamma$ transition
- SM \mathcal{B} predictions have large theoretical uncertainties ($\sim 20\%$) related to form factors [JHEP 04 (2017) 027]
- Observables;
 - Branching fraction, ${\cal B}$
 - CP violation asymmetry

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B} \to \overline{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\overline{B} \to \overline{K}^* \gamma) + \Gamma(B \to K^* \gamma)}$$
$$\Delta \mathcal{A}_{CP} = \mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) - \mathcal{A}_{CP}(B^+ \to K^{*+}\gamma)$$

Isospin asymmetry

$$\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

- \mathcal{A}_{CP} and Δ_{0+} are theoretically clean due to cancellation of form factor contributions in ratio
- \bullet Belle [PRL 119 (2017) 191802] has observed evidence of isospin violation at 3.1σ using 711 fb $^{-1}$
- Used Run I data sample of Belle II
- \bullet Measured $\mathcal{A}_{\textit{CP}},$ $\Delta\mathcal{A}_{\textit{CP}},$ Δ_{0+} in addition to $\mathcal B$

$B \rightarrow K^* \gamma$ at Belle II

[paper in preparation]

$$K^{*0}
ightarrow K^+ \pi^-, K^0_S \pi^0 \ K^{*+}
ightarrow K^+ \pi^0, K^0_S \pi^+$$

۲

• 2D fit of $M_{
m bc}$ $(\sqrt{(E_{
m beam}/c^2)^2 - (p_B/c)^2})$ and $\Delta E (E_B - E_{\text{beam}})$ to extract signal

$$\begin{split} \mathcal{B}(B^0 \to K^{*0}\gamma) &= (4.16 \pm 0.10 \pm 0.11) \times 10^{-5} \\ \mathcal{B}(B^+ \to K^{*+}\gamma) &= (4.04 \pm 0.13 \pm 0.13) \times 10^{-5} \\ \mathcal{B}(B \to K^*\gamma) &= (4.12 \pm 0.08 \pm 0.11) \times 10^{-5} \end{split}$$

$$\begin{aligned} \mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) &= (-3.2 \pm 2.4 \pm 0.4)\% \\ \mathcal{A}_{CP}(B^+ \to K^{*+}\gamma) &= (-1.0 \pm 3.0 \pm 0.6)\% \\ \mathcal{A}_{CP}(B \to K^*\gamma) &= (-2.3 \pm 1.9 \pm 0.3)\% \end{aligned}$$

$$\Delta \mathcal{A}_{CP} = (2.2 \pm 3.8 \pm 0.7)\%$$

 $\Delta_{0+} = (5.1 \pm 2.0 \pm 1.0 \pm 1.1)\%$

- Results are consistent with WA and SM
- Similar sensitivity to Belle [PRL 119 (2017) 191802] due to improved ΔE resolution and K_{c}^{0} identification efficiency

Dominant systematic for Δ_{0+} is $f^{+-} = \Gamma(\Upsilon(4S) \to B^+B^-)$ or $f^{00} = \Gamma(\Upsilon(4S) \to B^0\overline{B^0})$

$B ightarrow (\eta,\omega,\pi, ho)\ell^+\ell^-$ at Belle

- Involves $b
 ightarrow d\ell^+ \ell^-$ transition
- \mathcal{B} for $b \to d\ell^+\ell^-$ is more sensitive to new physics than $b \to s\ell^+\ell^-$ as SM \mathcal{B} is suppressed by a factor of $|V_{td}/V_{ts}|^2 \sim 0.04$
- Typical \mathcal{B} in SM is $\mathcal{O}(10^{-8})$ or smaller [PRD 86 (2012) 114025]
- LHCb [JHEP 10 (2015) 034, PLB 743 (2015) 46]

$$\begin{split} \mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) &= (1.78 \pm 0.23) \times 10^{-8} \\ \mathcal{B}(B^0 \to \rho^0 \mu^+ \mu^-) &= (1.98 \pm 0.53) \times 10^{-8} \\ \mathcal{B}(B^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (2.11 \pm 0.52) \times 10^{-8} \end{split}$$

- Search for e channels in addition to μ channels: tests LFU in $b
 ightarrow d\ell^+ \ell^-$
- Used 711 fb $^{-1}$ data sample of Belle

$$egin{aligned} B^{\pm,0} &
ightarrow (\eta, \omega, \pi^{\pm,0},
ho^{\pm,0})$$
ee $B^{\pm,0} &
ightarrow (\eta, \omega, \pi^0,
ho^{\pm}) \mu \mu \end{aligned}$

$B \to (\eta, \omega, \pi, \rho) \ell \ell$ at Belle

[arXiv:2404.08133]

channel	$\mathcal{B}^{\mathrm{UL}}$ (10 ⁻⁸)	• 2D $M_{ m bc}$ and ΔE fit to	extract signal yield
$B^0 o \eta e^+ e^-$	< 10.5	Belle	Belle
$B^0 o \eta \mu^+ \mu^-$	< 9.4	5^{25} (b) $B^0 \to \omega \ell^+ \ell^-$	$\sum^{25} (b) B^0 \to \omega \ell^+ \ell^-$
$B^0 o \eta \ell^+ \ell^-$	< 4.8	9 20 -) (19 -)	20 - L I
$B^0 \rightarrow \omega e^+ e^-$	< 30.7		
$B^0 o \omega \mu^+ \mu^-$	< 24.9		
$B^0 o \omega \ell^+ \ell^-$	< 22.0	╴╴╴╴ _╴ ╞╟╵╵╹╵║╴╽╟┥║╹╵╹╋ <u>╢╫╙╢</u> ╡┿┥╽╢	₅ <mark>╟╷╷╷╷╷╷╷┼┼╴┼╢╵┽┼┽┟╵┥╷</mark>
$B^{\overline{0}} \rightarrow \pi^{0} e^{+} e^{-}$	< 7.9	5,2 5,22 5,24 5,26 5,28	
$B^0 o \pi^0 \mu^+ \mu^-$	< 5.9	M _{bc} [GeV/c ²] Belle	∆E [GeV] Belle
$B^0 ightarrow \pi^0 \ell^+ \ell^-$	< 3.8	$[30^{30}]$ (d) $B^+ \rightarrow \pi^+ e^+ e^-$	$\mathbf{\tilde{s}}^{25} \boxed{(\mathbf{d})_{I}B^+ \to \pi^+ e^+ e^-}$
$B^+ \rightarrow \pi^+ e^+ e^-$	< 5.4	9 25 1 1 1 1 1 1 1 1 1 1	
$B^{\overline{0}} \rightarrow \rho^{0} e^{+} e^{-}$	< 45.5		
$B^+ \rightarrow \rho^+ e^+ e^-$	< 46.7		
$B^+ o ho^+ \mu^+ \mu^-$	< 38.1	[™] ₅┟┥┧╢╵┧║╶┽┰┿┥┰╡ <mark>╎╢┥</mark> ╅╲	₅┟╷╷╷╽╷╷╽┟╽┽┽╽╁╷┟┼┽╅
$B^+ o ho^+ \ell^+ \ell^-$	< 18.9		
		0.2 0.22 0.24 0.20 0.20 0.20 0.20 0.20 0	∆ <i>E</i> [GeV]

• World's best limits for $B^{\pm,0} \to (\eta, \omega, \pi^{\pm,0}, \rho^{\pm,0})$ ee and $B^{\pm,0} \to (\eta, \omega, \pi^0, \rho^{\pm})\mu\mu$

- World's first limits for $B^0\to\omega\ell^+\ell^-,\,B^+\to\rho^+\ell^+\ell^-,\,{\rm and}\,\,B^0\to\rho^0e^+e^-$
- No LFU $(b
 ightarrow d\mu^+\mu^-/b
 ightarrow de^+e^-)$ in $b
 ightarrow d\ell^+\ell^-$ transitions

- No b d vertex
- FCNC process through loop diagram as quark emits and reabsorbs a W^- boson

• $B^0 \to \gamma \gamma$ is suppressed by a factor of $|V_{td}^2|/|V_{ts}^2| \sim$ 0.04 compared to $B_s \to \gamma \gamma$ decay

- SM $\mathcal{B} = (1.4^{+1.4}_{-0.8}) \times 10^{-8}$ [JHEP 12 (2020) 169], significant long distance contribution
- Best UL of $< 3.2 \times 10^{-7}$ by BaBar [PRD 83 (2011) 032006] at 90% CL with 426 fb⁻¹ data
- Used 1.1 ab^{-1} of data sample: 694 fb⁻¹ (Belle) + 362 fb⁻¹ (Belle II)

$B^0 ightarrow \gamma \gamma$ at Belle & Belle II

- [paper in preparation]
- 3D simultaneous fit between Belle and Belle II using $M_{\rm bc}$, ΔE , and $C'_{\rm BDT}$ (transformed BDT for continuum suppression) to extract signal yield

• $N_{
m sig} = 11.0^{+6.5}_{-5.5}$ having a significance of 2.5σ

 $\mathcal{B}^{\mathrm{UL}}(B^0 o \gamma \gamma) < 6.4 imes 10^{-8}$ at 90% CL

• Most stringent UL: 5× better than best limit from BaBar [PRD 83 (2011) 032006]

Result is not too far from SM expectation

Seema Choudhury

B-Physics results from Belle & Belle II

$B^+ ightarrow K^+ u \overline{ u}$ at Belle II

- $\mathcal{B}_{SM}(B^+ \to K^+ \nu \overline{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ [PRD 107 (2023) 119903]
- Experimentally challenging due to two neutrinos
- Best limit of $< 1.6 \times 10^{-5}$ at 90% CL from BaBar [PRD 87 (2013) 112005]
- Used Run I data sample of Belle II

[arXiv:2311.14647]

- ITA has low purity but high efficiency and HTA has high purity and low efficiency
 - ITA: signal efficiency = 8%; purity = 0.9%
 - HTA: signal efficiency = 0.4%; purity = 3.5%

• Parameter of interest: signal strength = $\mu = \frac{\mathcal{B}(B^+ \to K^+ \nu \overline{\nu})}{\mathcal{B}_{SM}(B^+ \to K^+ \nu \overline{\nu})}$

$B^+ ightarrow K^+ u \overline{ u}$ at Belle II

[arXiv:2311.14647]

- Binned fit to extract μ :
 - ITA: Classifier 2 output $[\eta(BDT_2)]$ and q^2 [mass square of neutrino pair]
 - HTA: Classifier output $[\eta(BDTh)]$

$B^+ ightarrow K^+ u \overline{ u}$ at Belle II

[arXiv:2311.14647]

- Excluded common events from ITA sample
- Correlation between common systematic uncertainties are included
 - $\mu = 4.6 \pm 1.0 \pm 0.9$
 - $\mathcal{B} = (2.3 \pm 0.5^{+0.5}_{-0.4}) \times 10^{-5}$
 - 3.5σ significance w.r.t bkg-only hypo
 - 2.7 σ departure from SM

- First evidence of $B^+ o K^+ \nu \overline{\nu}$ process
- Results are in agreement with all previous measurements

$R(X_{ au/\ell})$ at Belle II

- Semileptonic $B o X au(\ell)
 u$ is inclusive $b o c au(\ell)
 u$ transition
- Test LFU in charged-current weak interaction by measuring tau-to-light-lepton ratio

$$R(X_{\tau/\ell}) = rac{\mathcal{B}(B o X au
u)}{\mathcal{B}(B o X \ell
u)}$$

- Experimentally LFU in exclusive $B \to D^{(*)} \tau(\ell) \nu$ has a tension of 3.3σ
- $\bullet~{\rm Used}~189~{\rm fb}^{-1}$ data sample of Belle II
- Tag-side *B* is fully reconstructed hadronically
- Hadronic system X is reconstructed using remaining tracks and energy deposits in the calorimeter
- Inclusive decay with τ is challenging due to larger background from less constrained X system

[PRL 132 (2024) 211804]

- 2D fit to p_ℓ^B (in the $B_{\rm sig}$ rest frame) and $M_{\rm miss}^2$ (mass squared for undetected neutrinos) to extract signal yield
- Simultaneous extraction of signal yields for $B \rightarrow X \tau \nu$ and $B \rightarrow X \ell \nu$

Seema Choudhury

 $R(X_{\tau/\ell})$ at Belle II

CKM and CP Violation

$|V_{ub}|$ at Belle II

 |V_{ub}| is important to constrain CKM unitarity triangle and test SM

 $\mathcal{B} \propto |V_{ub}|^2 imes f$, f = form factor (LCSR, LQCD)

- Long-standing V_{xb}-puzzle between inclusive and exclusive decays
- $|V_{ub}|$ for inclusive and exclusive differ by 2.5σ experimentally

Exclusive : $B \rightarrow \pi \ell \nu$, $B \rightarrow \rho \ell \nu$

Inclusive: $B \rightarrow X_u \ell \nu$

- Used Run I data sample of Belle II
- Untagged analysis

$$egin{aligned} B^0 & o \pi^- \ell^+
u_\ell \ B^+ & o
ho^0 \ell^+
u_\ell \end{aligned}$$

• Sum of measured exclusive \mathcal{B} is $\sim 20\%$ of inclusive $\mathcal{B}(B \to X_u \ell \nu)$

$|V_{ub}|$ at Belle II

[paper in preparation]

• Simultaneous $B^0 \to \pi^- \ell^+ \nu_\ell$ and $B^+ \to \rho^0 \ell^+ \nu_\ell$ signal yields extraction with binned 3D fit to $M_{\rm bc}$, ΔE , and $q^2 = (\rho_B - \rho_{\pi^-,\rho^0})^2$

- $\bullet \ \mathcal{B}$ results are consistent with WA
- $|V_{ub}|$ results are consistent with previous exclusive measurements [PRD 107 (2023) 052008, PRD 104 (2021) 034032], and theoretical uncertainty dominated

Time dependent CP violation

• Flagship measurement for *B*-factories

 $<\!\!\Delta z\!\!> \sim 130~\mu m$ at Belle II

- Measurement relies on ability to identify flavor of tag side B
- Graphical neutral network approach for flavor tagging has improved the tagging efficiency by $\sim 18\%$ at Belle II [arXiv:2402.17260]

$B^0 ightarrow \eta' K_s^0$ at Belle II

- ullet Gluonic penguin with $b \to s q \overline{q}$ transition, q=u,d, or s
- \bullet Golden mode: Relatively large ${\cal B}$ and limited contribution from tree amplitudes
- In SM: $S pprox \sin 2\phi_1$ by 0.01 ± 0.01 and C pprox 0
- Used Run I data sample of Belle II
- Fit to $M_{
 m bc},\,\Delta E,\,C_{
 m BDT},\,\Delta t,$ and $q_{
 m tag}$ (tag-flavor)

[arXiv:2402.03713]

Seema Choudhury

June 04 2024 21 / 24

$B^0 \rightarrow K^0_S \pi^0 \gamma$ at Belle II

80

Events / 1.0 ps

Asymmetry

1 -10

-50 5

Belle II

 B_{tag}^0

 $\int Ldt = 362 \text{ fb}^{-1}$

• Radiative penguin with $b \rightarrow s\gamma$ transition

80

60

40

20

 $\frac{1}{10} - \frac{1}{-10}$

Used Run I data sample of Belle II

Res

• Challenging to get B^0 vertex without prompt tracks

$$\begin{array}{c} \underbrace{\text{Res:}} \\ M_{K_{S}^{0}\pi^{0}} \in (0.8, 1.0) \text{ GeV}/c^{2} \text{ i.e., } K^{*0} \rightarrow K_{S}^{0}\pi^{0} \\ \underbrace{\text{Non-Res:}} \\ M_{K_{S}^{0}\pi^{0}} \in (0.6, 0.8) \cup (1.0, 1.8) \text{ GeV}/c^{2} \end{array}$$

• $M_{\rm bc}$ and ΔE followed by Δt fit to extract signal yield

$$S = 0.00^{+0.27}_{-0.26} \pm 0.03$$

$$C = 0.10 \pm 0.13 \pm 0.03$$

$$S = 0.04^{+0.45}_{-0.44} \pm 0.10$$

$$C = -0.06 \pm 0.25 \pm 0.08$$

- Results in agreement with WA and SM
- $\Delta t [ps]$ • Results have improved precision compared to Belle [PRD 74 (2006) 111104] and BaBar [PRD 78 (2008) 071102]

Belle II Non-Res

 $\int Ldt = 362 \text{ fb}^{-1}$

• Results for S are most precise due to better K_c^0 identification

-5

 $\Delta t [ps]$

5 10 [paper in preparation]

$B^0 ightarrow \pi^0 \pi^0$ at Belle II

- Tree-level $b \rightarrow u$ processes allow extraction of ϕ_2 or α (least known CKM angle)
- Theoretical \mathcal{B} [PLB 794 (2008) 154, PRD 90 (2014) 014029] is 5× smaller than experimental results as amplitude calculation is challenging involving low-energy, non-perturbative gluon exchanges
- $\bullet\,$ Experimentally challenging: no tracks, γ trajectory and energy less precise than tracks
- Used Run I data sample of Belle II

 Fit to M_{bc}, ΔE, C, and w (wrong tag probability)

$${\cal B}(B^0 o \pi^0 \pi^0) = (1.26 \pm 0.20 \pm 0.12) imes 10^{-6}$$

$$\mathcal{A}_{\rm CP}(B^0 o \pi^0 \pi^0) = 0.06 \pm 0.30 \pm 0.05$$

- Results in agreement with WA
- Results have superior or comparable precision with Belle [PRD 96 (2017) 032007] and BaBar [PRD 87 (2013) 052009] in spite of small data set

Conclusions

- Exploited full data of Belle or/and Run 1 data of Belle II
- Belle and Belle II have provided many world's leading measurements, best upper limits, and evidence
- Run II data taking of Belle II has started from early 2024: collecting quality physics data
- Waiting to enter 10³⁵ luminosity era
- Many new results are on their way

A long way to go ... Stay tuned ...

Backup slides

$|V_{cb}|$ at Belle

- Angular coefficiencts from differential decay rate of exclusive semileptonic $\overline{B}\to D^*\ell\overline{\nu}_\ell$
- $|V_{cb}|$ from angular coefficients of $\overline{B} o D^* \ell \overline{
 u}_\ell$
- Angular coefficients also allow determination of form factors for $B\to D^*$ decay, test sensitive to BSM effects and LFU

 $B^0 \rightarrow D^{*+} \ell^- \nu, D^{*+} \rightarrow D^0 \pi^+$

• Differential decay rate can be decomposed in a basis of angular functions with 12 coefficients, \hat{J}_i , all dependent on w

$$\frac{\mathrm{d}\Gamma(\bar{B} \to D^*\ell\bar{\nu}_\ell)}{\mathrm{d}w\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_\mathrm{V}\,\mathrm{d}\chi} = \frac{2G_\mathrm{F}^2\eta_\mathrm{EW}^2|V_{cb}|^2m_B^4m_{D^*}}{2\pi^4} \times \left(J_{1s}\sin^2\theta_\mathrm{V} + J_{1c}\cos^2\theta_\mathrm{V} + (J_{2s}\sin^2\theta_\mathrm{V}+J_{2c}\cos^2\theta_\mathrm{V})\cos 2\theta_\ell + J_3\sin^2\theta_\mathrm{V}\sin^2\theta_\ell\cos 2\chi + J_4\sin 2\theta_\mathrm{V}\sin 2\theta_\mathrm{V}\sin 2\theta_\ell\cos \chi + J_5\sin 2\theta_\mathrm{V}\sin\theta_\ell\cos \chi + (J_{6s}\sin^2\theta_\mathrm{V} + J_{6c}\cos^2\theta_\mathrm{V})\cos\theta_\ell + J_7\sin 2\theta_\mathrm{V}\sin\theta_\ell\sin \chi + J_8\sin 2\theta_\mathrm{V}\sin 2\theta_\ell\sin \chi + J_9\sin^2\theta_\mathrm{V}\sin^2\theta_\ell\sin 2\chi\right).$$
Hadronic recoil energy $(w) = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_Bm_{D^*}}$
Used full 711 fb⁻¹ data sample of Belle
$$B^+ \to D^{*0}\ell^+\nu, D^{*0} \to D^+\pi^0$$

- Hadronic B tagging
- 12 \hat{J}_i coefficients in 4 bins of w

Seema Choudhury

$|V_{cb}|$ at Belle

- Coefficients are in good agreement with the fit using BGL [NPB 461 (1996) 493, PRD 56 (1997) 6895] and CLN [NPB 530 (1998) 153] form-factor parametrizations
- Coefficients are consistent with the SM predictions

 $\bullet\,$ Similar values of $|V_{cb}|$ using CLN and BGL form factors

[arXiv:2310.20286]

• Closing the gap with inclusive $|V_{cb}|$ measurement

 No significant deviation from SM in LFU

Seema Choudhury

- Design peak luminosity of $6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (30 times that of KEKB) to be achieved by;
 - reducing beam size by 20 times
 - increasing beam current by 1.5 times

Table 3. Systemat	Table 3. Systematic uncertainties (%) for branching fraction measurements.									
Source	$K^{*0}[K^{+}\pi^{-}]\gamma$	$K^{*0}[K_{S}^{0}\pi^{0}]\gamma$	$K^{*+}[K^{+}\pi^{0}]\gamma$	$K^{*+}[K_{S}^{0}\pi^{+}]\gamma$						
B counting	1.5	1.5	1.5	1.5						
f^{\pm}/f^{00}	1.6	1.6	1.6	1.6						
γ selection	0.9	0.9	0.9	0.9						
π^0 veto	0.7	0.7	0.7	0.7						
η veto	0.2	0.2	0.2	0.2						
Tracking efficiency	0.5	0.5	0.2	0.7						
π^+ selection	0.2	-	-	0.2						
K^+ selection	0.4	-	0.4	-						
$K_{\rm S}^0$ reconstruction	-	1.4	-	1.4						
π^0 reconstruction	-	3.9	3.9	-						
χ^2 requirement	0.2	1.0	0.2	1.0						
CSBDT requirement	0.3	0.4	0.4	0.3						
Best candidate selection	0.1	1.0	0.6	0.2						
Fit bias	0.1	0.9	0.5	0.2						
Signal PDF model	0.1	0.4	0.3	0.2						
KDE PDF model	0.1	0.8	0.6	0.2						
Simulation sample size	0.2	0.8	0.4	0.5						
Self-crossfeed fraction	_	1.0	1.0	-						
Total	2.6	5.4	4.9	3.2						

Table 2 Systematic uncertainties (%) for 4 cm measurements

Source	$K^{*0}[K^+\pi^-]\gamma$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K^0_S\pi^+]\gamma$
Fit bias	0.1	0.2	0.2
Signal PDF model	0.1	0.1	0.1
KDE PDF model	0.1	0.4	0.2
Best candidate selection	0.1	0.5	0.2
K^+ asymmetry	-	0.6	-
π^+ asymmetry	-	-	0.6
$K^+\pi^-$ asymmetry	0.3	-	-
Total	0.4	0.9	0.7

- Dominate systematics from number of $B\overline{B}$ events and f^{\pm} or f^{00}
- $A_{\rm CP}$ measurement dominate uncertainty is coming from interaction of charged hadrons with detector material which give rise to asymmetries in track reconstruction efficiency

$b ightarrow d\ell\ell$

_

- Used a classifier to suppress backgrounds from continuum ($e^+e^- o q\overline{q}, q \in u, d, s, c$) and generic B ($B\overline{B}$)
- Peaking backgrounds are either vetoed or included in the fit of signal yield extraction

channel	background source
$B^0 o \eta \mu \mu$	$B^0 o \eta K \pi$
$B^0 o \pi^0 \mu \mu$	$B^0 o \pi^0 K \pi$ & $B^0 o \pi^0 K K$
$B^+ \to \pi^+ e e$	$B^+ o K^+$ ee
$B^0 o ho^0$ ee	$J/\psi o$ e & K $^* o$ K \leftrightarrow e
$B^+ \to \rho^+ \mu \mu$	$J/\psi ightarrow \mu$ & $K^* ightarrow K \leftrightarrow \mu$, $ ho^+ \overline{D^0}(K^+ \pi^-)$

source	ηee	$\eta\mu\mu$	ωee	$\omega \mu \mu$	$\pi^0 ee$	$\pi^0 \mu \mu$	$\pi^+ ee$	$\rho^0 ee$	$\rho^0 \mu \mu$	$\rho^+ ee$	$\rho^+\mu\mu$
μ	-	0.6	-	0.6	-	0.6	-	-	0.6	-	0.6
е	0.8	-	0.8	-	0.8	-	0.8	0.8	-	0.8	-
π^+	1.0	1.0	1.0	1.0	-	-	0.5	1.0	1.0	0.5	0.5
π^0	2.3	2.3	2.3	2.3	2.3	2.3	-	-	-	2.3	2.3
γ	4.0	4.0	-	-	-	-	-	-	-	-	-
FastBDT	7.1	6.6	7.1	6.6	7.1	6.6	1.4	1.4	0.8	7.1	6.6
MC statistics	0.48	0.37	0.73	0.53	0.34	0.24	0.24	0.53	0.34	0.80	0.54
decay model	0.57	0.45	0.75	0.69	0.49	0.76	0.40	0.66	0.51	0.81	0.52
mass window	1.05	1.05	1.21	1.21	-	-	-	3.03	3.03	3.03	3.03
BCS	0.03	0.11	0.15	0.43	0.21	0.23	0.11	0.02	1.09	0.6	0.5
Tracking	0.7 - 1.4	0.7 - 1.4	1.4	1.4	0.7	0.7	1.05	1.4	1.4	1.05	1.05
PDF shape	0.04	0.04	0.43	0.07	0.10	0.09	0.50	0.20	0.06	0.34	0.32
$f^{+-/00}$	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45
$N_{B\overline{B}}$	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Total	9.35	8.95	8.37	7.91	8.07	7.64	3.56	4.80	4.76	8.75	8.29

TABLE XVII: Systematic uncertainties for $b\to d\ell\ell$ decay channels. The uncertainties are shown in %.

$b ightarrow d\ell\ell$ results

-

channel	$\mathcal{B}^{\mathrm{UL}}(10^{-8})$	$B(10^{-8})$
$B^0 o \eta e^+ e^-$	< 10.5	$0.0^{+4.9}_{-3.4}\pm0.1$
$B^0 o \eta \mu^+ \mu^-$	< 9.4	$1.9^{+3.4}_{-2.5}\pm0.2$
$B^0 o \eta \ell^+ \ell^-$	< 4.8	$1.3^{+2.8}_{-2.2}\pm0.1$
$B^0 ightarrow \omega e^+ e^-$	< 30.7	$-2.1^{+26.5}_{-20.8}\pm0.2$
$B^0 ightarrow \omega \mu^+ \mu^-$	< 24.9	$7.7^{+10.8}_{-7.5}\pm0.6$
$B^0 ightarrow \omega \ell^+ \ell^-$	< 22.0	$6.4^{+10.7}_{-7.8}\pm0.5$
$B^0 ightarrow \pi^0 e^+ e^-$	< 7.9	$-5.8^{+3.6}_{-2.8}\pm0.5$
$B^0 o \pi^0 \mu^+ \mu^-$	< 5.9	$-0.4^{+3.5}_{-2.6}\pm0.1$
$B^0 \to \pi^0 \ell^+ \ell^-$	< 3.8	$-2.3^{+2.1}_{-1.5}\pm0.2$
$B^+ \to \pi^+ e^+ e^-$	< 5.4	$0.1^{+2.7}_{-1.8}\pm0.1$
$B^0 o ho^0 e^+ e^-$	< 45.5	$23.6^{+14.6}_{-11.2}\pm1.1$
		104 F
$B^+ ightarrow ho^+ e^+ e^-$	< 46.7	$-38.2^{+24.5}_{-17.2} \pm 3.4$
$B^+ o ho^+ \mu^+ \mu^-$	< 38.1	$13.0^{+17.5}_{-13.3} \pm 1.1$
$B^+ \to \rho^+ \ell^+ \ell^-$	< 18.9	$2.5^{+14.6}_{-11.8}\pm0.2$

Seema Choudhury

$B^0 \rightarrow \gamma \gamma$ at Belle & Belle II

- Signal reconstruction by two back-to-back highly energetic photons, with $E_{\gamma}^* \in [1.4 - 3.4] \text{ GeV}$
- To reject background from Bhabha scattering or $e^+e^- \rightarrow \gamma \gamma$, timing requirement is applied
- Classifier is used to distinguish photon from K_I^0 showers
- Used classifiers to reject background from continuum, $\pi^0 \to \gamma\gamma$ and $\eta \to \gamma\gamma$

Belle II (events) (events)

+0.10

+0.28

Source	Belle	Belle II
	(%)	(%)
Photon detection efficiency	4.0	2.7
MC statistics	0.4	0.3
Number of $B\bar{B}$ pairs	1.3	1.5
f^{00}	2.5	2.5
$C_{\rm BDT}$ requirement	0.4	0.9
π^0/η veto	0.4	0.6
Timing requirement efficiency	2.8	-
Total (sum in quadrature)	5.7	4.1

TABLE II. Summary of multiplicative systematic uncertainties.

-0.48-0.32Shape modeling +0.06+0.04 ± 0.30 Total (sum in quadrature) -0.48-0.32

Belle

+0.14

+0.56

TABLE I. Summary of additive systematic uncertainties.

 Photon detection systematic is dominate, obtained using recoil technique in radiative Bhabha events $e^+e^- \rightarrow e^+e^-\gamma$ in Belle, and $e^+e^- \rightarrow \mu^+\mu^-\gamma$ in Belle II

PDF parameterization

Source

Fit bias

- ITA: low purity (0.8%) and high efficiency (8%)
- HTA: high purity (3.5%) and low efficiency (0.4%)
- Inclusive properties of tag-B is used to suppress bkg from signal side
- Background suppression:
 - ITA: 2 consecutive classifiers to suppress continuum and generic B backgrounds
 - HTA: 1 classifier to suppress continuum and generic B backgrounds

$B^+ \to K^+ \nu \overline{\nu}$ ITA result validation

- Trained two consecutive BDTs and signal efficiency was checked with $B^+ \rightarrow J/\psi K^+$ decays:
 - Remove J/ψ and correct K^+ kinematics to match $K^+ \nu \overline{\nu}$

- Closure test with measurement of ${\cal B}(B^+ o \pi^+ K^0_S) = (2.5\pm 0.5) imes 10^{-5}$
 - $\bullet\,$ Result is compatible with PDG value of (2.38 $\pm\,0.08) \times 10^{-5}$
- Controlled background using
 - Off-resonance data for continuum background
 - Background from charmless hadronic *B* decays with K_L^0 or neutrons *i.e.*, $B^+ \to K^+ K^0 \overline{K^0}$, $B^+ \to K^+ n \overline{n}$, and $B \to K^* \nu \overline{\nu}$, are considered.
 - $B^+ \to K^+ K^0 \overline{K^0}$ bkg is validated by reconstructing $B^+ \to K^+ K^0_S K^0_S$ and $B^0 \to K^0_S K^+ K^-$ decays
 - $B \to D(\to K^+ X) \ell^- \nu_\ell$ background is studied by combining K^+ with other charged tracks in the event
 - Used pion-enhanced sideband for misidentification study

$B ightarrow K u \overline{ u}$ at Belle II

Source	Correction	Uncertainty type	Uncertainty size	Impact on μ
Normalization of continuum and $B\bar{B}$ background	_	Global, 7 NP	50%	0.87
Leading B -decays branching fractions	_	Shape, 5 NP	O(1%)	0.22
Branching fraction for $B^+ \rightarrow K^+ K^0_L K^0_L$	q^2 dependent $O(100\%)$	Shape, 1 NP	20%	0.48
p-wave component for $B^+ \rightarrow K^+ K^0_S K^0_L$	q^2 dependent $O(100\%)$	Shape, 1 NP	30%	0.02
Branching fraction for $B \rightarrow D^{(**)}$	—	Shape, 1 NP	50%	0.41
Branching fraction for $B^+ \rightarrow n\bar{n}K^+$	q^2 dependent $O(100\%)$	Shape, 1 NP	100%	0.20
Branching fraction for $D \rightarrow K_L X$	+30%	Shape, 1 NP	10%	0.14
Continuum background modeling, BDT_c	Multivariate $O(10\%)$	Shape, 1 NP	100% of correction	0.01
Integrated luminosity	_	Global, 1 NP	1%	< 0.01
Number of $B\bar{B}$	_	Global, 1 NP	1.5%	0.02
Off-resonance sample normalization	_	Global, 1 NP	5%	< 0.01
Track finding efficiency	_	Shape, 1 NP	0.3%	0.20
Signal kaon PID	p, θ dependent $O(10 - 100\%)$	Shape, 7 NP	O(1%)	0.07
Photon energy scale		Shape, 1 NP	0.5%	0.07
Hadronic energy scale	-10%	Shape, 1 NP	10%	0.35
K_L^0 efficiency in ECL	-17%	Shape, 1 NP	8%	0.21
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3 NP	O(1%)	0.02
Global signal efficiency	_	Global, 1 NP	3%	0.03
MC statistics		Shape, 156 NP	O(1%)	0.52

- Main backgrounds from hadrons misidentiied as leptons and leptons originating from charmed hadrons
 - Suppressed μ fakes from π or K by rejecting $\omega \to \pi^+\pi^-\pi^0$, $K^{*0} \to \pi^-K^+$, $D^0 \to K^-\pi^-\pi^+\pi^+$, $D^+ \to \pi^+\pi^+\pi^- + [\pi^0 \text{ or } \pi^+\pi^-]$, and $D^+ \to K^-\pi^+\pi^+(\pi^0)$
 - $B \to X_c \to \ell$ background modelling: reweight $B \to X\tau(\ell)\nu$ events by taking exp-to-sim ratio in M_X bin using high p_ℓ^B sample

Source	Uncertainty [%]						
Source	e	μ	l				
Experimental sample size	8.8	12.0	7.1				
Simulation sample size	6.7	10.6	5.7				
Tracking efficiency	2.9	3.3	3.0				
Lepton identification	2.8	5.2	2.4				
$X_c \ell \nu$ reweighting	7.3	6.8	7.1				
$B\overline{B}$ background reweighting	5.8	11.5	5.7				
$X\ell\nu$ branching fractions	7.0	10.0	7.7				
$X \tau \nu$ branching fractions	1.0	1.0	1.0				
$X_c \tau(\ell) \nu$ form factors	7.4	8.9	7.8				
Total	18.1	25.6	17.3				

- Dominated systematic uncertainties are experimental and simulated sample sizes as normalization
- Control sample reweighting procedure: $B\overline{B}$ background shapes uncertainties are associated with simulation reweighting

$B^0 o \pi^- \ell^+ u_\ell$ and $B^+ o ho^0 \ell^+ u_\ell$ at Belle II

• Background from $B \to X_c \ell \nu$ is suppressed by applying $p_\ell^* > 1.0 \text{ or } > 1.4 \text{ GeV}/c^2$ for $B^0 \to \pi^- \ell^+ \nu_\ell$ and $B^+ \to \rho^0 \ell^+ \nu_\ell$

$B^0 \rightarrow \pi^- \ell^+ \nu_\ell$													
Source	q1	q^2	q^3	q_4	q_5	q_6	q7	q8	q9	q10	q11	q12	q13
Detector effects	2.0	0.9	1.1	1.0	1.0	1.1	1.1	1.0	0.9	1.2	2.3	4.1	5.8
Beam energy	0.6	0.8	0.7	0.8	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.7
Simulated sample size	4.7	3.8	3.3	3.2	3.2	2.9	3.8	3.7	4.0	4.5	5.9	8.0	13.6
BDT efficiency	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Physics constraints	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
Signal model	0.1	0.1	0.2	0.1	0.0	0.2	0.2	0.4	0.3	0.8	0.9	0.2	4.9
ρ lineshape	0.1	0.1	0.3	0.3	0.2	0.1	0.3	0.1	0.3	0.1	0.2	0.2	0.6
Nonres. $B \rightarrow \pi \pi \ell \nu_{\ell}$	0.5	0.6	0.4	0.4	0.5	1.0	1.2	1.0	0.8	1.8	1.2	2.3	14.3
DFN parameters	0.8	0.4	1.5	1.6	1.4	1.7	1.2	0.1	0.7	1.2	2.9	3.5	3.7
$B \rightarrow X_u \ell \nu_\ell \mod$	0.2	0.4	0.3	0.4	0.2	0.9	1.1	1.2	1.0	1.3	1.6	0.7	8.7
$B \rightarrow X_c \ell \nu_\ell \mod$	1.4	2.0	1.7	1.3	1.3	1.4	1.8	1.6	1.3	1.4	1.1	0.5	1.7
Continuum	15.1	11.3	7.6	7.1	5.8	5.7	8.1	8.3	9.6	10.4	14.5	23.8	34.4
Total systematic	16.4	12.6	9.3	8.7	7.7	7.7	10.0	9.9	11.1	12.2	16.6	26.0	41.6
Statistical	11.0	8.8	7.9	7.0	7.5	6.4	7.9	7.7	9.1	10.7	9.6	14.6	22.6
Total	19.7	15.4	12.2	11.2	10.7	10.0	12.7	12.6	14.4	16.3	19.1	29.8	47.3

$B^+ \rightarrow \rho^0 \ell^+ \nu_\ell$										
Source	q1	q^2	q3	q4	q_5	q_6	q7	q8	q9	q10
Detector effects	2.8	2.0	1.6	1.1	1.7	1.9	2.4	1.4	1.4	1.6
Beam energy	2.1	1.9	1.9	1.5	1.3	1.1	1.0	0.9	0.8	0.5
Simulated sample size	14.1	7.8	7.4	6.3	6.3	5.2	6.4	5.6	6.2	7.3
BDT efficiency	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
Physics constraints	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
Signal model	0.7	0.2	0.2	0.2	0.3	0.4	0.5	0.3	1.8	2.4
ρ lineshape	1.7	1.6	2.0	1.0	1.9	1.8	1.4	0.9	1.6	1.7
Nonres. $B \rightarrow \pi \pi \ell \nu_{\ell}$	5.6	6.3	6.7	8.6	9.3	10.7	10.1	7.0	7.8	11.8
DFN parameters	3.6	5.5	4.1	3.5	1.1	1.2	2.7	1.7	1.9	2.3
$B \rightarrow X_u \ell \nu_\ell \mod$	1.7	3.0	3.8	5.0	5.8	6.1	6.3	1.9	7.2	12.4
$B \rightarrow X_c \ell \nu_\ell \mod$	1.8	1.9	1.7	1.1	1.4	1.7	0.9	0.9	1.9	2.6
Continuum	31.5	24.3	17.0	19.6	13.2	14.8	16.0	16.6	15.2	18.7
Total systematic	35.6	27.5	21.0	23.5	18.8	20.5	21.6	19.4	20.2	27.0
Statistical	30.0	17.5	20.8	14.4	12.4	13.6	14.1	10.4	12.2	11.8
Total	46.6	32.6	29.6	27.6	22.6	24.6	25.8	22.0	23.6	29.5

• Continuum reweighting is dominate systematic and limited by off-resonance sample size (42 fb^{-1})

Seema Choudhury

Table II: Su	mmary of sys	tematic un	certainties f	or $C_{n'K^0}$	and
$S_{\eta' K_{s}^{0}}$.				.,3	

Source	$C_{\eta'K_s^0}$	$S_{\eta'K_s^0}$
Signal and continuum yields	< 0.001	0.002
SxF and $B\overline{B}$ yields	< 0.001	0.006
$C_{\rm BDT}$ mismodeling	0.004	0.010
Signal and background modeling	0.020	0.014
Observable correlations	0.008	0.001
Δt resolution fixed parameters	0.005	0.009
Δt resolution model	0.004	0.019
Flavor tagging	0.007	0.004
τ_{B^0} and Δm_d	< 0.001	0.002
Fit bias	0.003	0.002
Tracker misalignment	0.004	0.006
Momentum scale	0.001	0.001
Beam spot	0.002	0.002
<i>B</i> -meson motion in the $\Upsilon(4S)$ frame	< 0.001	0.017
Tag-side interference	0.005	0.011
$B\overline{B}$ background asymmetry	0.008	0.006
Candidate selection	0.007	0.009
Total	0.027	0.037

	$K^{*0}\gamma$		$K^0_S \pi^0 \gamma$	
Source	S	C	S	C
E and p scales	± 0.017	± 0.015	± 0.083	± 0.047
Vertex measurement	± 0.021	± 0.009	± 0.023	± 0.036
Flavor tagging	± 0.005	$+0.012 \\ -0.009$	+0.008 -0.009	+0.013 -0.009
Signal modeling	± 0.003	± 0.003	± 0.032	± 0.013
Δt resolution function	± 0.014	± 0.009	± 0.031	± 0.013
$ au_{B^0}$ and Δm_d	< 0.001	< 0.001	± 0.003	< 0.001
$B\overline{B}$ background asym.	+0.007 -0.008	± 0.011	$+0.030 \\ -0.026$	+0.049 -0.051
Tag-side interference	< 0.001	-0.002	+0.001	+0.001
Total	± 0.032	$^{+0.026}_{-0.025}$	$+0.102 \\ -0.100$	± 0.080

Source	B	\mathcal{A}_{CP}
π^0 efficiency	8.6~%	n/a
$\Upsilon(4S)$ branching fractions $(1 + f^{+-}/f^{00})$	$2.5 \ \%$	n/a
Continuum-suppression efficiency	$1.9 \ \%$	n/a
$B\overline{B}$ -background model	$1.7 \ \%$	0.034
Sample size $N_{B\bar{B}}$	$1.5 \ \%$	n/a
Signal model	1.2~%	0.021
Continuum-background model	0.9~%	0.025
Wrong-tag probability calibration	n/a	0.008
Total systematic uncertainty	9.6 %	0.048
Statistical uncertainty	15.9~%	0.303

- For $B^0 \to K_S^0 \pi^0 \gamma$ dominate systematic from vertex measurement: as main challenge was to find B^0 vertex without prompt tracks
 - Used $K^0_S
 ightarrow \pi^+\pi^-$ information and beamspot constraint