

B-Physics results from Belle \& Belle II

Seema Choudhury

 lowa State University, USA

Belle \& Belle II Detectors

- Asymmetric $e^{+}(3.5 \mathrm{GeV})-e^{-}(8 \mathrm{GeV})$ collider
- Collected total $1 \mathrm{ab}^{-1}$ of data
- Data taken from 1999 to 2010
- Collected $711 \mathrm{fb}^{-1}$ at $\Upsilon(4 S)$ resonance

- Asymmetric $e^{+}(4 \mathrm{GeV})$ - $e^{-}(7 \mathrm{GeV})$ collider
- Recorded $424 \mathrm{fb}^{-1}$ of data: ~ equivalent to BaBar and $1 / 2$ of Belle data sample during Run I
- Data taken between 2019-2022
- Run I data at $\Upsilon(4 S)$ resonance: $362 \mathrm{fb}^{-1}$
- Run II has started from early 2024
- Aims to collect many-ab-1 of data

Advantages of Belle \& Belle II

- Clean environment: Average 11 tracks per event compared to hundreds of tracks for hadron colliders

- Good particle identification and performance
- Similar sensitivity for μ and e
- High photon detection efficiency
- Good π^{0} mass resolution

- Dealing with missing energy:
- fully reconstruct the partner B meson: full event interpretation
- Identify invisible particle using, $M_{\text {miss }}^{2}=\left(p_{e^{+} e^{-}}-p_{\text {visible }}\right)^{2}$

Belle II Preliminary $\int c d t=62.8 \mathrm{fb}^{-1}$

- Unique for B factories:
- channels with $\pi^{0}, \gamma, \eta^{\left({ }^{\prime}\right)}, K_{L} \ldots$
- final states with one or more missing ν

Physics Programs

Rare decays and Lepton flavor Universality

- Involves $b \rightarrow \boldsymbol{s} \gamma$ transition
- SM \mathcal{B} predictions have large theoretical uncertainties ($\sim 20 \%$) related to form factors [JHEP 04 (2017) 027]

- Observables;
- Branching fraction, \mathcal{B}
- $C P$ violation asymmetry

$$
\mathcal{A}_{C P}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{*} \gamma\right)-\Gamma\left(B \rightarrow K^{*} \gamma\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{*} \gamma\right)+\Gamma\left(B \rightarrow K^{*} \gamma\right)}
$$

$$
\Delta \mathcal{A}_{C P}=\mathcal{A}_{C P}\left(B^{0} \rightarrow K^{* 0} \gamma\right)-\mathcal{A}_{C P}\left(B^{+} \rightarrow K^{*+} \gamma\right)
$$

- Isospin asymmetry

$$
\Delta_{0+}=\frac{\Gamma\left(B^{0} \rightarrow K^{* 0} \gamma\right)-\Gamma\left(B^{+} \rightarrow K^{*+} \gamma\right)}{\Gamma\left(B^{0} \rightarrow K^{* 0} \gamma\right)+\Gamma\left(B^{+} \rightarrow K^{*+} \gamma\right)}
$$

- $\mathcal{A}_{C P}$ and Δ_{0+} are theoretically clean due to cancellation of form factor contributions in ratio
- Belle [PRL 119 (2017) 191802] has observed evidence of isospin violation at 3.1σ using $711 \mathrm{fb}^{-1}$
- Used Run I data sample of Belle II
- Measured $\mathcal{A}_{C P}, \Delta \mathcal{A}_{C P}, \Delta_{0+}$ in addition to \mathcal{B}

$$
\begin{aligned}
& K^{* 0} \rightarrow K^{+} \pi^{-}, K_{S}^{0} \pi^{0} \\
& K^{*+} \rightarrow K^{+} \pi^{0}, K_{S}^{0} \pi^{+}
\end{aligned}
$$

- 2D fit of $M_{\mathrm{bc}}\left(\sqrt{\left(E_{\text {beam }} / c^{2}\right)^{2}-\left(p_{B} / c\right)^{2}}\right)$ and $\Delta E\left(E_{B}-E_{\text {beam }}\right)$ to extract signal

$$
\begin{aligned}
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \gamma\right) & =(4.16 \pm 0.10 \pm 0.11) \times 10^{-5} \\
\mathcal{B}\left(B^{+} \rightarrow K^{*+} \gamma\right) & =(4.04 \pm 0.13 \pm 0.13) \times 10^{-5} \\
\mathcal{B}\left(B \rightarrow K^{*} \gamma\right) & =(4.12 \pm 0.08 \pm 0.11) \times 10^{-5}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}_{C P}\left(B^{0} \rightarrow K^{* 0} \gamma\right) & =(-3.2 \pm 2.4 \pm 0.4) \% \\
\mathcal{A}_{C P}\left(B^{+} \rightarrow K^{*+} \gamma\right) & =(-1.0 \pm 3.0 \pm 0.6) \% \\
\mathcal{A}_{C P}\left(B \rightarrow K^{*} \gamma\right) & =(-2.3 \pm 1.9 \pm 0.3) \%
\end{aligned}
$$

$$
\begin{gathered}
\Delta \mathcal{A}_{C P}=(2.2 \pm 3.8 \pm 0.7) \% \\
\Delta_{0+}=(5.1 \pm 2.0 \pm 1.0 \pm 1.1) \%
\end{gathered}
$$

- Results are consistent with WA and SM
- Similar sensitivity to Belle [PRL 119 (2017) 191802] due to improved ΔE resolution and K_{S}^{0} identification efficiency
- Dominant systematic for Δ_{0+} is $f^{+-}=\Gamma\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)$or $f^{00}=\Gamma\left(\Upsilon(4 S) \rightarrow B^{0} \overline{B^{0}}\right)$

$B \rightarrow(\eta, \omega, \pi, \rho) \ell^{+} \ell^{-}$at Belle

- Involves $b \rightarrow d \ell^{+} \ell^{-}$transition
- \mathcal{B} for $b \rightarrow d \ell^{+} \ell^{-}$is more sensitive to new physics than $b \rightarrow s \ell^{+} \ell^{-}$as SM \mathcal{B} is suppressed by a factor of $\left|V_{t d} / V_{t s}\right|^{2} \sim 0.04$
- Typical \mathcal{B} in SM is $\mathcal{O}\left(10^{-8}\right)$ or smaller [PRD 86 (2012)
 114025]
- LHCb [JHEP 10 (2015) 034, PLB 743 (2015) 46]

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) & =(1.78 \pm 0.23) \times 10^{-8} \\
\mathcal{B}\left(B^{0} \rightarrow \rho^{0} \mu^{+} \mu^{-}\right) & =(1.98 \pm 0.53) \times 10^{-8} \\
\mathcal{B}\left(B^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) & =(2.11 \pm 0.52) \times 10^{-8}
\end{aligned}
$$

- Search for e channels in addition to μ channels: tests LFU in $b \rightarrow d \ell^{+} \ell^{-}$
- Used $711 \mathrm{fb}^{-1}$ data sample of Belle

$$
\begin{aligned}
B^{ \pm, 0} & \rightarrow\left(\eta, \omega, \pi^{ \pm, 0}, \rho^{ \pm, 0}\right) e e \\
B^{ \pm, 0} & \rightarrow\left(\eta, \omega, \pi^{0}, \rho^{ \pm}\right) \mu \mu
\end{aligned}
$$

channel	$\mathcal{B}^{\text {UL }}\left(10^{-8}\right)$
$B^{0} \rightarrow \eta e^{+} e^{-}$	<10.5
$B^{0} \rightarrow \eta \mu^{+} \mu^{-}$	<9.4
$B^{0} \rightarrow \eta \ell^{+} \ell^{-}$	< 4.8
$B^{\overline{0}} \rightarrow \bar{\omega} \bar{e}^{+} \bar{e}^{-}$	<30.7
$B^{0} \rightarrow \omega \mu^{+} \mu^{-}$	< 24.9
$B^{0} \rightarrow \omega \ell^{+} \ell^{-}$	< 22.0
$B^{\overline{0}} \rightarrow \bar{\pi}^{0} \bar{e}^{+} e^{-}$	$<\overline{7.9}$
$B^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}$	<5.9
$B^{0} \rightarrow \pi^{0} \ell^{+} \ell^{-}$	<3.8
$\bar{B}^{+} \xrightarrow{-} \bar{\pi}^{+} e^{+} e^{-}$	< 5.4
$B^{\overline{0}} \xrightarrow{-} \bar{\rho}^{0} \bar{e}^{+}{ }^{-} e^{-}$	$<4 \overline{5} .5$
$\bar{B}^{+} \xrightarrow{-} \bar{\rho}^{+} e^{+} e^{-}$	< 46.7
$B^{+} \rightarrow \rho^{+} \mu^{+} \mu^{-}$	< 38.1
$B^{+} \rightarrow \rho^{+} \ell^{+} \ell^{-}$	< 18.9

- 2D M_{bc} and ΔE fit to extract signal yield

- World's best limits for $B^{ \pm, 0} \rightarrow\left(\eta, \omega, \pi^{ \pm, 0}, \rho^{ \pm, 0}\right) e e$ and $B^{ \pm, 0} \rightarrow\left(\eta, \omega, \pi^{0}, \rho^{ \pm}\right) \mu \mu$
- World's first limits for $B^{0} \rightarrow \omega \ell^{+} \ell^{-}, B^{+} \rightarrow \rho^{+} \ell^{+} \ell^{-}$, and $B^{0} \rightarrow \rho^{0} e^{+} e^{-}$
- No LFU $\left(b \rightarrow d \mu^{+} \mu^{-} / b \rightarrow d e^{+} e^{-}\right)$in $b \rightarrow d \ell^{+} \ell^{-}$transitions
- No b-d vertex
- FCNC process through loop diagram as quark emits and reabsorbs a W^{-}boson

- $B^{0} \rightarrow \gamma \gamma$ is suppressed by a factor of $\left|V_{t d}^{2}\right| /\left|V_{t s}^{2}\right| \sim 0.04$ compared to $B_{s} \rightarrow \gamma \gamma$ decay
- $\operatorname{SM~} \mathcal{B}=\left(1.4_{-0.8}^{+1.4}\right) \times 10^{-8}$ [JHEP 12 (2020) 169], significant long distance contribution
- Best UL of $<3.2 \times 10^{-7}$ by BaBar [PRD 83 (2011) 032006] at $90 \% \mathrm{CL}$ with $426 \mathrm{fb}^{-1}$ data
- Used $1.1 \mathrm{ab}^{-1}$ of data sample: $694 \mathrm{fb}^{-1}($ Belle $)+362 \mathrm{fb}^{-1}$ (Belle II)
- 3D simultaneous fit between Belle and Belle II using $M_{\mathrm{bc}}, \Delta E$, and $C_{\mathrm{BDT}}^{\prime}$ (transformed BDT for continuum suppression) to extract signal yield

- $N_{\text {sig }}=11.0_{-5.5}^{+6.5}$ having a significance of 2.5σ

$$
\mathcal{B}^{\mathrm{UL}}\left(B^{0} \rightarrow \gamma \gamma\right)<6.4 \times 10^{-8} \text { at } 90 \% \mathrm{CL}
$$

- Most stringent UL: $5 \times$ better than best limit from BaBar [PRD 83 (2011) 032006]
- Result is not too far from SM expectation

$B^{+} \rightarrow K^{+} \nu \bar{\nu}$ at Belle II

- $\mathcal{B}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)=(5.58 \pm 0.37) \times 10^{-6}[\mathrm{PRD}$ 107 (2023) 119903]
- Experimentally challenging due to two neutrinos
- Best limit of $<1.6 \times 10^{-5}$ at 90% CL from BaBar [PRD 87 (2013) 112005]

- Used Run I data sample of Belle II

Inclusive Tag

- ITA has low purity but high efficiency and HTA has high purity and low efficiency
- ITA: signal efficiency $=8 \%$; purity $=0.9 \%$
- HTA: signal efficiency $=0.4 \%$; purity $=3.5 \%$
- Parameter of interest: signal strength $=\mu=\frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)}{\mathcal{B}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)}$

$B^{+} \rightarrow K^{+} \nu \bar{\nu}$ at Belle II

- Binned fit to extract μ :
- ITA: Classifier 2 output $\left[\eta\left(\mathrm{BDT}_{2}\right)\right]$ and q^{2} [mass square of neutrino pair]
- HTA: Classifier output [η (BDTh $)$]

- $\mu=5.4 \pm 1.0 \pm 1.1$
- $\mu=2.2_{-1.7-1.1}^{+1.8+1.6}$
- $\mathcal{B}=(2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$
- $\mathcal{B}=\left(1.1_{-0.8-0.5}^{+0.9+0.8}\right) \times 10^{-5}$
- 3.5σ significance w.r.t bkg-only hypo
- 1.1σ significance w.r.t bkg-only hypo
- 2.9σ departure from SM

$B^{+} \rightarrow K^{+} \nu \bar{\nu}$ at Belle II

- Excluded common events from ITA sample
- Correlation between common systematic uncertainties are included
- $\mu=4.6 \pm 1.0 \pm 0.9$
- $\mathcal{B}=\left(2.3 \pm 0.5_{-0.4}^{+0.5}\right) \times 10^{-5}$
- First evidence of $B^{+} \rightarrow K^{+} \nu \bar{\nu}$ process
- Results are in agreement with all previous measurements
- 3.5σ significance w.r.t bkg-only hypo
- 2.7σ departure from SM
- Semileptonic $B \rightarrow X \tau(\ell) \nu$ is inclusive $b \rightarrow c \tau(\ell) \nu$ transition
- Test LFU in charged-current weak interaction by measuring tau-to-light-lepton ratio

$$
R\left(X_{\tau / \ell}\right)=\frac{\mathcal{B}(B \rightarrow X \tau \nu)}{\mathcal{B}(B \rightarrow X \ell \nu)}
$$

- Experimentally LFU in exclusive $B \rightarrow D^{(*)} \tau(\ell) \nu$ has a tension of 3.3σ

- Used $189 \mathrm{fb}^{-1}$ data sample of Belle II
- Tag-side B is fully reconstructed hadronically
- Hadronic system X is reconstructed using remaining tracks and energy deposits in the calorimeter
- Inclusive decay with τ is challenging due to larger background from less constrained X system

$R\left(X_{\tau / \ell}\right)$ at Belle II

- 2D fit to p_{ℓ}^{B} (in the $B_{\text {sig }}$ rest frame) and $M_{\text {miss }}^{2}$ (mass squared for undetected neutrinos) to extract signal yield
- Simultaneous extraction of signal yields for $B \rightarrow X \tau \nu$ and $B \rightarrow X \ell \nu$

$R\left(X_{\tau / e}\right)=0.232 \pm 0.020 \pm 0.037$
$R\left(X_{\tau / \mu}\right)=0.222 \pm 0.027 \pm 0.050$
$R\left(X_{\tau / \ell}\right)=0.228 \pm 0.016 \pm 0.036$
- $R\left(X_{\tau / \ell}\right)$ result is consistent with SM predictions of 0.223 ± 0.005 [JHEP 11 (2022) 007]
- First measurement at B-factories with $\Upsilon(4 S)$
- Result is also consistent with $R\left(D^{(*)}\right)$

CKM and CP Violation

- $\left|V_{u b}\right|$ is important to constrain CKM unitarity triangle and test SM

$$
V_{\mathrm{CKM}}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

$\mathcal{B} \propto\left|V_{u b}\right|^{2} \times f, f=$ form factor (LCSR, LQCD)

- Long-standing $V_{x b}$-puzzle between inclusive and exclusive decays
- $\left|V_{u b}\right|$ for inclusive and exclusive differ by 2.5σ experimentally
Exclusive : $B \rightarrow \pi \ell \nu, B \rightarrow \rho \ell \nu$
Inclusive: $B \rightarrow X_{u} \ell \nu$
- Used Run I data sample of Belle II
- Untagged analysis

$$
\begin{aligned}
& B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell} \\
& B^{+} \rightarrow \rho^{0} \ell^{+} \nu_{\ell}
\end{aligned}
$$

- Sum of measured exclusive \mathcal{B} is $\sim 20 \%$ of inclusive $\mathcal{B}\left(B \rightarrow X_{u} \ell \nu\right)$

- Simultaneous $B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$ and $B^{+} \rightarrow \rho^{0} \ell^{+} \nu_{\ell}$ signal yields extraction with binned 3D fit to $M_{\mathrm{bc}}, \Delta E$, and $q^{2}=\left(p_{B}-p_{\pi^{-}, \rho^{0}}\right)^{2}$

$$
\begin{aligned}
& \mathcal{B}\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}\right)=(1.516 \pm 0.042 \pm 0.059) \times 10^{-4} \\
& \mathcal{B}\left(B^{+} \rightarrow \rho^{0} \ell^{+} \nu_{\ell}\right)=(1.625 \pm 0.079 \pm 0.180) \times 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& \left|V_{u b}\right|_{B \rightarrow \pi \ell \nu}=(3.73 \pm 0.07 \pm 0.07 \pm 0.16) \times 10^{-3} \\
& \left|V_{u b}\right|_{B \rightarrow \rho \ell \nu}=(3.19 \pm 0.12 \pm 0.17 \pm 0.26) \times 10^{-3}
\end{aligned}
$$

- \mathcal{B} results are consistent with WA
- $\left|V_{u b}\right|$ results are consistent with previous exclusive measurements [PRD 107 (2023) 052008, PRD 104 (2021) 034032], and theoretical uncertainty dominated

Time dependent $C P$ violation

- Flagship measurement for B-factories

- Measurement relies on ability to identify flavor of tag side B
- Graphical neutral network approach for flavor tagging has improved the tagging efficiency by $\sim 18 \%$ at Belle II [arXiv:2402.17260]
- Gluonic penguin with $b \rightarrow s q \bar{q}$ transition, $q=u, d$, or s
- Golden mode: Relatively large \mathcal{B} and limited contribution from tree amplitudes
- In SM: $S \approx \sin 2 \phi_{1}$ by 0.01 ± 0.01 and $C \approx 0$
- Used Run I data sample of Belle II

- Fit to $M_{\mathrm{bc}}, \Delta E, C_{\mathrm{BDT}}, \Delta t$, and q_{tag} (tag-flavor)

$C=-0.19 \pm 0.08 \pm 0.03$
$S=0.67 \pm 0.10 \pm 0.04$
- Results in agreement with WA
- Precision comparable with Belle [JHEP 10 (2014) 165] and BaBar [PRD 79 (2009) 052003] is spite of small data set
- Radiative penguin with $b \rightarrow s \gamma$ transition
- Used Run I data sample of Belle II
- Challenging to get B^{0} vertex without prompt tracks

Res:

$$
\begin{gathered}
M_{K_{S}^{0} \pi^{0}} \in(0.8,1.0) \mathrm{GeV} / c^{2} \text { i.e., } K^{* 0} \rightarrow K_{S}^{0} \pi^{0} \\
M_{K_{S}^{0} \pi^{0}} \in\left(0.6, \frac{\text { Non-Res: }}{0.8) \cup(1.0,1.8) \mathrm{GeV} / c^{2}}\right.
\end{gathered}
$$

- M_{bc} and ΔE followed by Δt fit to extract signal yield

$$
\begin{aligned}
& S=0.00_{-0.26}^{+0.27} \pm 0.03 \\
& C=0.10 \pm 0.13 \pm 0.03
\end{aligned}
$$

$$
S=0.04_{-0.44}^{+0.45} \pm 0.10
$$

$$
C=-0.06 \pm 0.25 \pm 0.08
$$

- Results have improved precision compared to Belle [PRD 74 (2006) 111104] and BaBar [PRD 78 (2008) 071102]
- Results for S are most precise due to better K_{S}^{0} identification
- Tree-level $b \rightarrow u$ processes allow extraction of ϕ_{2} or α (least known CKM angle)
- Theoretical \mathcal{B} [PLB 794 (2008) 154, PRD 90 (2014) 014029] is $5 \times$ smaller than experimental results as amplitude calculation is challenging involving low-energy, non-perturbative gluon exchanges
- Experimentally challenging: no tracks, γ trajectory and energy less precise than tracks
- Used Run I data sample of Belle II

- Fit to $M_{\mathrm{bc}}, \Delta E, C$, and w (wrong tag probability)

$$
\mathcal{B}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=(1.26 \pm 0.20 \pm 0.12) \times 10^{-6}
$$

$\mathcal{A}_{\mathrm{CP}}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=0.06 \pm 0.30 \pm 0.05$

- Results in agreement with WA
- Results have superior or comparable precision with Belle [PRD 96 (2017) 032007] and BaBar [PRD 87 (2013) 052009] in spite of small data set

Conclusions

- Exploited full data of Belle or/and Run 1 data of Belle II
- Belle and Belle II have provided many world's leading measurements, best upper limits, and evidence
- Run II data taking of Belle II has started from early 2024: collecting quality physics data
- Waiting to enter 10^{35} luminosity era
- Many new results are on their way

A long way to go ... Stay tuned ...

Backup slides

- Angular coefficiencts from differential decay rate of exclusive semileptonic $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$
- $\left|V_{c b}\right|$ from angular coefficients of $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$
- Angular coefficients also allow determination of form factors for $B \rightarrow D^{*}$ decay, test sensitive to BSM effects and LFU

- Differential decay rate can be decomposed in a basis of angular functions with 12 coefficients, \hat{J}_{i}, all dependent on w

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)}{\mathrm{d} w \mathrm{~d} \cos \theta_{\ell} \operatorname{dos} \theta_{\mathrm{V}} \mathrm{~d} \chi}= & \frac{2 G_{\mathrm{F}}^{2} \eta_{\mathrm{EW}}^{2}\left|V_{\mathrm{cb}}\right|^{2} m_{B}^{4} m_{\mathrm{D}}}{2 \pi^{4}} \times\left(J_{1 s} \sin ^{2} \theta_{\mathrm{V}}+J_{1 c} \cos ^{2} \theta_{\mathrm{V}}\right. \\
& +\left(J_{2 s} \sin ^{2} \theta_{\mathrm{V}}+J_{2 c} \cos ^{2} \theta_{\mathrm{V}}\right) \cos 2 \theta_{\ell}+J_{3} \sin ^{2} \theta_{\mathrm{V}} \sin ^{2} \theta_{\ell} \cos 2 \chi \\
& +J_{4} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \cos \chi+J_{5} \sin 2 \theta_{V} \sin \theta_{\ell} \cos \chi+\left(J_{6 s} \sin ^{2} \theta_{\mathrm{V}}+J_{6 c} \cos ^{2} \theta_{\mathrm{V}}\right) \cos \theta_{\ell} \\
& \left.+J_{7} \sin 2 \theta_{V} \sin \theta_{\ell} \sin \chi+J_{8} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \sin \chi+J_{9} \sin ^{2} \theta_{\mathrm{V}} \sin ^{2} \theta_{\ell} \sin 2 \chi\right) \\
& \text { Hadronic recoil energy }(w)=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}}
\end{aligned}
$$

- Used full $711 \mathrm{fb}^{-1}$ data sample of Belle
- Hadronic B tagging

$$
\begin{aligned}
& B^{+} \rightarrow D^{* 0} \ell^{+} \nu, D^{* 0} \rightarrow D^{+} \pi^{0} \\
& B^{0} \rightarrow D^{*+} \ell^{-} \nu, D^{*+} \rightarrow D^{0} \pi^{+}
\end{aligned}
$$

- $12 \hat{J}_{i}$ coefficients in 4 bins of w

$\left|V_{c b}\right|$ at Belle

[arXiv:2310.20286]

- Coefficients are in good agreement with the fit using BGL [NPB 461 (1996) 493, PRD 56 (1997) 6895] and CLN [NPB 530 (1998) 153] form-factor parametrizations
- Coefficients are consistent with the SM predictions

$$
\begin{aligned}
& \left|V_{c b}\right|=(41.0 \pm 0.3 \pm 0.4 \pm 0.5) \times 10^{-3}(\mathrm{BGL}) \\
& \left|V_{c b}\right|=(40.9 \pm 0.3 \pm 0.4 \pm 0.4) \times 10^{-3}(\mathrm{CLN})
\end{aligned}
$$

- Similar values of $\left|V_{c b}\right|$ using CLN and BGL form factors

This work
(41.0 ± 0.7) $\times 10^{-3}$

- Closing the gap with inclusive $\left|V_{c b}\right|$ measurement

- No significant deviation from SM in LFU

- Design peak luminosity of $6.5 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (30 times that of KEKB) to be achieved by;
- reducing beam size by 20 times
- increasing beam current by 1.5 times

$B \rightarrow K^{*} \gamma$ at Belle II

Source	$K^{* 0}\left[K^{+} \pi^{-}\right] \gamma$	$K^{* 0}\left[K_{\mathrm{S}}^{0} \pi^{0}\right] \gamma$	$K^{*+}\left[K^{+} \pi^{0}\right] \gamma$	$K^{*+}\left[K_{\mathrm{S}}^{0} \pi^{+}\right] \gamma$				
B counting	1.5	1.5	1.5	1.5				
$f^{ \pm} / f^{00}$	1.6	1.6	1.6	1.6				
γ selection	0.9	0.9	0.9	0.9				
π^{0} veto	0.7	0.7	0.7	0.7				
η veto	0.2	0.2	0.2	0.2				
Tracking efficiency	0.5	0.5	0.2	0.7				
π^{+}selection	0.2	-	-	0.2				
K^{+}selection	0.4	-	0.4	-				
K_{S}^{0} reconstruction	-	1.4	-	1.4				
π^{0} reconstruction	-	3.9	3.9	-	Table 2. Systematic	uncertainties (\%)	for $\mathcal{A}_{C P}$ measur	ements.
χ^{2} requirement	0.2	1.0	0.2	1.0	Source	$K^{* 0}\left[K^{+} \pi^{-}\right] \gamma$	$K^{*+}\left[K^{+} \pi^{0}\right] \gamma$	$K^{*+}\left[K_{\mathrm{S}}^{0} \pi^{+}\right] \gamma$
CSBDT requirement	0.3	0.4	0.4	0.3	Fit bias	0.1	0.2	0.2
Best candidate selection	0.1	1.0	0.6	0.2	Signal PDF model	0.1	0.1	0.1
Fit bias	0.1	0.9	0.5	0.2	KDE PDF model	0.1	0.4	0.2
Signal PDF model	0.1	0.4	0.3	0.2	Best candidate selection	0.1	0.5	0.2
KDE PDF model	0.1	0.8	0.6	0.2	K^{+}asymmetry	-	0.6	-
Simulation sample size	0.2	0.8	0.4	0.5	π^{+}asymmetry	-	-	0.6
Self-crossfeed fraction	-	1.0	1.0	-	$K^{+} \pi^{-}$asymmetry	0.3	-	-
Total	2.6	5.4	4.9	3.2	Total	0.4	0.9	0.7

- Dominate systematics from number of $B \bar{B}$ events and $f^{ \pm}$or f^{00}
- A_{CP} measurement dominate uncertainty is coming from interaction of charged hadrons with detector material which give rise to asymmetries in track reconstruction efficiency

$b \rightarrow$ dll

- Used a classifier to suppress backgrounds from continuum ($e^{+} e^{-} \rightarrow q \bar{q}, q \in u, d, s, c$) and generic $B(B \bar{B})$
- Peaking backgrounds are either vetoed or included in the fit of signal yield extraction

channel	background source
$B^{0} \rightarrow \eta \mu \mu$	$B^{0} \rightarrow \eta K \pi$
$B^{0} \rightarrow \pi^{0} \mu \mu$	$B^{0} \rightarrow \pi^{0} K \pi \& B^{0} \rightarrow \pi^{0} K K$
$B^{+} \rightarrow \pi^{+} e e$	$B^{+} \rightarrow K^{+} e e$
$B^{0} \rightarrow \rho^{0} e e$	$J / \psi \rightarrow e \& K^{*} \rightarrow K \leftrightarrow e$
$B^{+} \rightarrow \rho^{+} \mu \mu$	$J / \psi \rightarrow \mu \& K^{*} \rightarrow K \leftrightarrow \mu, \rho^{+} \overline{D^{0}}\left(K^{+} \pi^{-}\right)$

source	$\eta e e$	$\eta \mu \mu$	$\omega e e$	$\omega \mu \mu$	$\pi^{0} e e$	$\pi^{0} \mu \mu$	$\pi^{+} e e$	$\rho^{0} e e$	$\rho^{0} \mu \mu$	$\rho^{+} e e$	$\rho^{+} \mu \mu$
μ	-	0.6	-	0.6	-	0.6	-	-	0.6	-	0.6
e	0.8	-	0.8	-	0.8	-	0.8	0.8	-	0.8	-
π^{+}	1.0	1.0	1.0	1.0	-	-	0.5	1.0	1.0	0.5	0.5
π^{0}	2.3	2.3	2.3	2.3	2.3	2.3	-	-	-	2.3	2.3
γ	4.0	4.0	-	-	-	-	-	-	-	-	-
FastBDT	7.1	6.6	7.1	6.6	7.1	6.6	1.4	1.4	0.8	7.1	6.6
MC statistics	0.48	0.37	0.73	0.53	0.34	0.24	0.24	0.53	0.34	0.80	0.54
decay model	0.57	0.45	0.75	0.69	0.49	0.76	0.40	0.66	0.51	0.81	0.52
mass window	1.05	1.05	1.21	1.21	-	-	-	3.03	3.03	3.03	3.03
BCS	0.03	0.11	0.15	0.43	0.21	0.23	0.11	0.02	1.09	0.6	0.5
Tracking	$0.7-1.4$	$0.7-1.4$	1.4	1.4	0.7	0.7	1.05	1.4	1.4	1.05	1.05
PDF shape	0.04	0.04	0.43	0.07	0.10	0.09	0.50	0.20	0.06	0.34	0.32
$f^{+-/ 00}$	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45
$N_{B \bar{B}}$	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Total	9.35	8.95	8.37	7.91	8.07	7.64	3.56	4.80	4.76	8.75	8.29

TABLE XVII: Systematic uncertainties for $b \rightarrow d \ell \ell$ decay channels. The uncertainties are shown in \%.

$b \rightarrow$ dll results

channel	$\mathcal{B}^{\mathrm{UL}}\left(10^{-8}\right)$	$\mathcal{B}\left(10^{-8}\right)$
$B^{0} \rightarrow \eta e^{+} e^{-}$	<10.5	$0.0_{-3.4}^{+4.9} \pm 0.1$
$B^{0} \rightarrow \eta \mu^{+} \mu^{-}$	<9.4	$1.9_{-2.5}^{+3.4} \pm 0.2$
$B^{0} \rightarrow \eta \ell^{+} \ell^{-}$	<4.8	$1.3_{-2.2}^{+2.8} \pm 0.1$
$B^{0} \rightarrow \omega e^{+} e^{-}$	<30.7	$-2.1_{-20.8}^{+26.5} \pm 0.2$
$B^{0} \rightarrow \omega \mu^{+} \mu^{-}$	<24.9	$7.7_{-7.8}^{+10.5} \pm 0.6$
$B^{0} \rightarrow \omega \ell^{+} \ell^{-}$	<22.0	$6.4_{-7.8}^{+10.7} \pm 0.5$
$B^{0} \rightarrow \pi^{0} e^{+} e^{-}$	<7.9	$-5.8_{-2.8}^{+3.6} \pm 0.5$
$B^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}$	<5.9	$-0.4_{-2.6}^{+3.5} \pm 0.1$
$B^{0} \rightarrow \pi^{0} \ell^{+} \ell^{-}$	<3.8	$-2.3_{-1.5}^{+2.1} \pm 0.2$
$B^{+} \rightarrow \pi^{+} e^{+} e^{-}$	<5.4	$0.1_{-1.8}^{+2.7} \pm 0.1$
$B^{0} \rightarrow \rho^{0} e^{+} e^{-}$	<45.5	$23.6_{-11.2}^{+14.6} \pm 1.1$
$B^{+} \rightarrow \rho^{+} e^{+} e^{-}$	<46.7	$-38.2_{-17.2}^{+24.5} \pm 3.4$
$B^{+} \rightarrow \rho^{+} \mu^{+} \mu^{-}$	<38.1	$13.0_{-13.3}^{+17.5} \pm 1.1$
$B^{+} \rightarrow \rho^{+} \ell^{+} \ell^{-}$	<18.9	$2.5_{-11.8}^{+14.6} \pm 0.2$

$B^{0} \rightarrow \gamma \gamma$ at Belle \& Belle II

- Signal reconstruction by two back-to-back highly energetic photons, with $E_{\gamma}^{*} \in[1.4-3.4] \mathrm{GeV}$
- To reject background from Bhabha scattering or $e^{+} e^{-} \rightarrow \gamma \gamma$, timing requirement is applied
- Classifier is used to distinguish photon from K_{L}^{0} showers
- Used classifiers to reject background from continuum, $\pi^{0} \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$

TABLE II. Summary of multiplicative systematic uncertainties.

Source	Belle $(\%)$	Belle II $(\%)$
Photon detection efficiency	4.0	2.7
MC statistics	0.4	0.3
Number of $B \bar{B}$ pairs	1.3	1.5
f^{00}	2.5	2.5
$C_{\text {BDT requirement }}$	0.4	0.9
π^{0} / η veto	0.4	0.6
Timing requirement efficiency	2.8	-
Total (sum in quadrature)	5.7	4.1

- Photon detection systematic is dominate, obtained using recoil technique in radiative Bhabha events $e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$ in Belle, and $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$ in Belle II

$B \rightarrow K \nu \bar{\nu}$ at Belle II

- ITA: low purity (0.8%) and high efficiency (8\%)
- HTA: high purity (3.5\%) and low efficiency (0.4\%)
- Inclusive properties of tag- B is used to suppress bkg from signal side
- Background suppression:
- ITA: 2 consecutive classifiers to suppress continuum and generic B backgrounds
- HTA: 1 classifier to suppress continuum and generic B backgrounds

$B^{+} \rightarrow K^{+} \nu \bar{\nu}$ ITA result validation

- Trained two consecutive BDTs and signal efficiency was checked with $B^{+} \rightarrow J / \psi K^{+}$decays:
- Remove J / ψ and correct K^{+}kinematics to match $K^{+} \nu \bar{\nu}$

- Closure test with measurement of $\mathcal{B}\left(B^{+} \rightarrow \pi^{+} K_{S}^{0}\right)=(2.5 \pm 0.5) \times 10^{-5}$
- Result is compatible with PDG value of $(2.38 \pm 0.08) \times 10^{-5}$
- Controlled background using
- Off-resonance data for continuum background
- Background from charmless hadronic B decays with K_{L}^{0} or neutrons i.e., $B^{+} \rightarrow K^{+} K^{0} \overline{K^{0}}$, $B^{+} \rightarrow K^{+} n \bar{n}$, and $B \rightarrow K^{*} \nu \bar{\nu}$, are considered.
- $B^{+} \rightarrow K^{+} K^{0} \overline{K^{0}}$ bkg is validated by reconstructing $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ and $B^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays
- $B \rightarrow D\left(\rightarrow K^{+} X\right) \ell^{-} \nu_{\ell}$ background is studied by combining K^{+}with other charged tracks in the event
- Used pion-enhanced sideband for misidentification study

$B \rightarrow K \nu \bar{\nu}$ at Belle II

Source	Correction	Uncertainty type	Uncertainty size	Impact on μ
Normalization of continuum and $B \bar{B}$ background	-	Global, 7 NP	50\%	0.87
Leading B-decays branching fractions	-	Shape, 5 NP	$O(1 \%)$	0.22
Branching fraction for $B^{+} \rightarrow K^{+} K_{L}^{0} K_{L}^{0}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	20\%	0.48
p-wave component for $B^{+} \rightarrow K^{+} K_{S}^{0} K_{L}^{0}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	30\%	0.02
Branching fraction for $B \rightarrow D^{(* *)}$	-	Shape, 1 NP	50\%	0.41
Branching fraction for $B^{+} \rightarrow n \bar{n} K^{+}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	100\%	0.20
Branching fraction for $D \rightarrow K_{L} X$	+30\%	Shape, 1 NP	10\%	0.14
Continuum background modeling, BDT_{c}	Multivariate $O(10 \%)$	Shape, 1 NP	100\% of correction	0.01
Integrated luminosity	-	Global, 1 NP	1\%	<0.01
Number of $B \bar{B}$	-	Global, 1 NP	1.5\%	0.02
Off-resonance sample normalization	-	Global, 1 NP	5\%	<0.01
Track finding efficiency	-	Shape, 1 NP	0.3\%	0.20
Signal kaon PID	p, θ dependent $O(10-100 \%)$	Shape, 7 NP	$O(1 \%)$	0.07
Photon energy scale	-	Shape, 1 NP	0.5\%	0.07
Hadronic energy scale	-10\%	Shape, 1 NP	10\%	0.35
K_{L}^{0} efficiency in ECL	-17\%	Shape, 1 NP	8\%	0.21
Signal SM form factors	q^{2} dependent $O(1 \%)$	Shape, 3 NP	$O(1 \%)$	0.02
Global signal efficiency	-	Global, 1 NP	3%	0.03
MC statistics	-	Shape, 156 NP	$O(1 \%)$	0.52

$R\left(X_{\tau / \ell}\right)$ at Belle II

- Main backgrounds from hadrons misidentiied as leptons and leptons originating from charmed hadrons
- Suppressed μ fakes from π or K by rejecting $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}, K^{* 0} \rightarrow \pi^{-} K^{+}, D^{0} \rightarrow K^{-} \pi^{-} \pi^{+} \pi^{+}$, $D^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}+\left[\pi^{0}\right.$ or $\left.\pi^{+} \pi^{-}\right]$, and $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\left(\pi^{0}\right)$
- $B \rightarrow X_{c} \rightarrow \ell$ background modelling: reweight $B \rightarrow X \tau(\ell) \nu$ events by taking exp-to-sim ratio in M_{X} bin using high p_{ℓ}^{B} sample

$R\left(X_{\tau / \ell}\right)$ at Belle II

Source	Uncertainty [\%]		
	e	μ	ℓ
Experimental sample size	8.8	12.0	7.1
Simulation sample size	6.7	10.6	5.7
Tracking efficiency	2.9	3.3	3.0
Lepton identification	2.8	5.2	2.4
$X_{c} \ell \nu$ reweighting	7.3	6.8	7.1
$B \bar{B}$ background reweighting	5.8	11.5	5.7
$X \ell \nu$ branching fractions	7.0	10.0	7.7
$X \tau \nu$ branching fractions	1.0	1.0	1.0
$X_{c} \tau(\ell) \nu$ form factors	7.4	8.9	7.8
Total	18.1	25.6	17.3

- Dominated systematic uncertainties are experimental and simulated sample sizes as normalization
- Control sample reweighting procedure: $B \bar{B}$ background shapes uncertainties are associated with simulation reweighting
- Background from $B \rightarrow X_{c} \ell \nu$ is suppressed by applying $p_{\ell}^{*}>1.0$ or $>1.4 \mathrm{GeV} / \mathrm{c}^{2}$ for $B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$ and $B^{+} \rightarrow \rho^{0} \ell^{+} \nu_{\ell}$

$B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{\ell}$													
Source	$q 1$	$q 2$	q3	$q 4$	$q 5$	$q 6$	$q 7$	$q 8$	$q 9$	$q 10$	$q 11$	$q 12$	$q 13$
Detector effects	2.0	0.9	1.1	1.0	1.0	1.1	1.1	1.0	0.9	1.2	2.3	4.1	5.8
Beam energy	0.6	0.8	0.7	0.8	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.6	0.7
Simulated sample size	4.7	3.8	3.3	3.2	3.2	2.9	3.8	3.7	4.0	4.5	5.9	8.0	13.6
BDT efficiency	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Physics constraints	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
Signal model	0.1	0.1	0.2	0.1	0.0	0.2	0.2	0.4	0.3	0.8	0.9	0.2	4.9
ρ lineshape	0.1	0.1	0.3	0.3	0.2	0.1	0.3	0.1	0.3	0.1	0.2	0.2	0.6
Nonres. $B \rightarrow \pi \pi \ell \nu_{\ell}$	0.5	0.6	0.4	0.4	0.5	1.0	1.2	1.0	0.8	1.8	1.2	2.3	14.3
DFN parameters	0.8	0.4	1.5	1.6	1.4	1.7	1.2	0.1	0.7	1.2	2.9	3.5	3.7
$B \rightarrow X_{u} \ell \nu_{\ell}$ model	0.2	0.4	0.3	0.4	0.2	0.9	1.1	1.2	1.0	1.3	1.6	0.7	8.7
$B \rightarrow X_{c} \ell \nu_{\ell}$ model	1.4	2.0	1.7	1.3	1.3	1.4	1.8	1.6	1.3	1.4	1.1	0.5	1.7
Continuum	15.1	11.3	7.6	7.1	5.8	5.7	8.1	8.3	9.6	10.4	14.5	23.8	34.4
Total systematic	16.4	12.6	9.3	8.7	7.7	7.7	10.0	9.9	11.1	12.2	16.6	26.0	41.6
Statistical	11.0	8.8	7.9	7.0	7.5	6.4	7.9	7.7	9.1	10.7	9.6	14.6	22.6
Total	19.7	15.4	12.2	11.2	10.7	10.0	12.7	12.6	14.4	16.3	19.1	29.8	47.3

$B^{+} \rightarrow \rho^{0} \ell^{+} \nu_{\ell}$										
Source	$q 1$	$q 2$	$q 3$	$q 4$	$q 5$	$q 6$	$q 7$	$q 8$	$q 9$	$q 10$
Detector effects	2.8	2.0	1.6	1.1	1.7	1.9	2.4	1.4	1.4	1.6
Beam energy	2.1	1.9	1.9	1.5	1.3	1.1	1.0	0.9	0.8	0.5
Simulated sample size	14.1	7.8	7.4	6.3	6.3	5.2	6.4	5.6	6.2	7.3
BDT efficiency	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
Physics constraints	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
Signal model	0.7	0.2	0.2	0.2	0.3	0.4	0.5	0.3	1.8	2.4
ρ lineshape	1.7	1.6	2.0	1.0	1.9	1.8	1.4	0.9	1.6	1.7
Nonres. $B \rightarrow \pi \pi \ell \nu_{\ell}$	5.6	6.3	6.7	8.6	9.3	10.7	10.1	7.0	7.8	11.8
DFN parameters	3.6	5.5	4.1	3.5	1.1	1.2	2.7	1.7	1.9	2.3
$B \rightarrow X_{u} \ell \nu_{\ell}$ model	1.7	3.0	3.8	5.0	5.8	6.1	6.3	1.9	7.2	12.4
$B \rightarrow X_{c} \ell \nu_{\ell}$ model	1.8	1.9	1.7	1.1	1.4	1.7	0.9	0.9	1.9	2.6
Continuum	31.5	24.3	17.0	19.6	13.2	14.8	16.0	16.6	15.2	18.7
Total systematic	35.6	27.5	21.0	23.5	18.8	20.5	21.6	19.4	20.2	27.0
Statistical	30.0	17.5	20.8	14.4	12.4	13.6	14.1	10.4	12.2	11.8
Total	46.6	32.6	29.6	27.6	22.6	24.6	25.8	22.0	23.6	29.5

- Continuum reweighting is dominate systematic and limited by off-resonance sample size (42 fb ${ }^{-1}$)

$B^{0} \rightarrow \eta^{\prime} K_{S}^{0}, \quad B^{0} \rightarrow K_{S}^{0} \pi^{0} \gamma$, and $B^{0} \rightarrow \pi^{0} \pi^{0}$

Table II: Summary of systematic uncertainties for $C_{\eta^{\prime} K_{S}^{0}}$ and $S_{\eta^{\prime} K_{S}^{0}}$.

Source	$C_{\eta^{\prime} K_{S}^{0}}$	$S_{\eta^{\prime} K_{S}^{0}}$
Signal and continuum yields	<0.001	0.002
SxF and $B \bar{B}$ yields	<0.001	0.006
$C_{\text {BDT }}$ mismodeling	0.004	0.010
Signal and background modeling	0.020	0.014
Observable correlations	0.008	0.001
Δt resolution fixed parameters	0.005	0.009
Δt resolution model	0.004	0.019
Flavor tagging	0.007	0.004
$\tau_{B^{0} \text { and } \Delta m_{d}} \quad<0.001$	0.002	
Fit bias	0.003	0.002
Tracker misalignment	0.004	0.006
Momentum scale	0.001	0.001
Beam spot	0.002	0.002
B-meson motion in the $\Upsilon(4 S)$ frame	<0.001	0.017
Tag-side interference	0.005	0.011
$B \bar{B}$ background asymmetry	0.008	0.006
Candidate selection	0.007	0.009
Total	0.027	0.037

Source	$K^{* 0} \gamma$		$K_{S}^{0} \pi^{0} \gamma$	
	S	C	S	C
E and p scales	± 0.017	± 0.015	± 0.083	± 0.047
Vertex measurement	± 0.021	± 0.009	± 0.023	士0.036
Flavor tagging	± 0.005	${ }_{-0.009}^{+0.012}$	${ }_{-0.009}^{+0.008}$	${ }_{-0.009}^{+0.013}$
Signal modeling	± 0.003	± 0.003	± 0.032	± 0.013
Δt resolution function	± 0.014	± 0.009	± 0.031	± 0.013
$\tau_{B^{0}}$ and Δm_{d}	<0.001	<0.001	± 0.003	< 0.001
$B \bar{B}$ background asym.	${ }_{-0.008}^{+0.007}$	± 0.011	${ }_{-0.026}^{+0.030}$	${ }^{+0.049}$
Tag-side interference	<0.001	-0.002	+0.001	+0.001
Total	± 0.032	${ }_{-0.025}^{+0.026}$	${ }_{-0.100}^{+0.102}$	± 0.080
Source			\mathcal{B}	$\mathcal{A}_{C P}$
π^{0} efficiency			8.6 \%	
$\Upsilon(4 S)$ branching frac	tions ($1+$	$\left.f^{+-} / f^{00}\right)$	2.5 \%	
Continuum-suppressi	n efficienc		1.9 \%	
$B \bar{B}$-background mod			1.7 \%	0.034
Sample size $N_{B \bar{B}}$			1.5%	
Signal model			1.2 \%	0.021
Continuum-backgrou	d model		0.9 \%	0.025
Wrong-tag probability	calibrati		n/a	0.008
Total systematic unce	rtainty		9.6 \%	0.048
Statistical uncertainty			15.9 \%	0.303

- For $B^{0} \rightarrow K_{S}^{0} \pi^{0} \gamma$ dominate systematic from vertex measurement: as main challenge was to find B^{0} vertex without prompt tracks
- Used $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$information and beamspot constraint

