Searches for hidden sectors and LFV/LNV in kaon decays

Evgueni Goudzovski

UNIVERSITY^{OF} BIRMINGHAM

<u>Outline</u>

- 1) The NA62 experiment at CERN
- 2) Searches for hidden sectors in K⁺ decays
- 3) Searches for lepton flavour/number violating K⁺ decays
- 4) Summary

BEACH 2024 Charleston, South Carolina • 4 June 2024

Kaon experiments at CERN

The NA62 setup

NA62 datasets

* Run 1 (2016–18): $N_{K} \sim 10^{13}$ useful K⁺ decays with the main trigger.

- ✓ Sample 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- ✓ Sample 2017 (160 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ✓ Sample 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- ✤ Run 2 (2021–): in progress (up to 3×10¹² ppp), approved till 2025.

2018

Searches for hidden sectors in kaon decays

NA62: $K_{\pi\nu\nu}$ signal regions

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Resolution on m_{miss}^2 : $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$.

Measured kinematic background suppression:

 $\checkmark K^+ \rightarrow \pi^+ \pi^0: 1 \times 10^{-3};$ $\checkmark K^+ \rightarrow \mu^+ \nu: 3 \times 10^{-4}.$

Further background suppression:

- PID (calorimeters & RICH):
 μ suppression ~ 10⁻⁸,
 π efficiency = 64%.
- ✓ Hermetic photon veto: $\pi^{0} \rightarrow \gamma \gamma$ rejection factor = 1.4×10⁻⁸.

Hidden sectors with $K^+ \rightarrow \pi^+ \nu \nu$

JHEP 06 (2021) 93, JHEP 02 (2021) 201

- Signal regions R1,R2: search for K⁺→π⁺X (X=invisible), 0 ≤ m_X ≤ 110 MeV/c² and 154 ≤ m_X ≤ 260 MeV/c².
 - ✓ Interpretation: dark scalar, ALP, QCD axion, axiflavon.
 - ✓ Main background: $K^+ \rightarrow \pi^+ \nu \nu$.
- ✤ The π⁺π⁰ region: search for π⁰→invisible.
 - ✓ Negligible SM rate $(\pi^0 \rightarrow 4\nu)$.
 - ✓ Observation = BSM physics.
 - ✓ Reduction of $\pi^0 \rightarrow \gamma \gamma$ background: optimised π^+ momentum range.
 - ✓ Interpretation as $K^+ \rightarrow \pi^+ X$, with m_X between R1 and R2.

Search for $\pi^0 \rightarrow invisible$

- ✤ Rejection of (K⁺→π⁺π⁰(γ), π⁰→γγ) decays: simulations JHEP 02 (2021) 201 based on single-photon efficiency measurements with K⁺→π⁺π⁰ decays.
- ♦ Rejection of $\pi^0 \rightarrow \gamma\gamma$ decays for K⁺ $\rightarrow \pi^+ \nu\nu$ analysis: ε ≈ 10⁻⁸.
- ★ For π⁰→invisible search (25<p_π<40 GeV/c): ε = (2.8^{+5.9}_{-2.1})×10⁻⁹

Search for $\pi^0 \rightarrow$ invisible: (~10% of NA62 Run 1 dataset, 4×10⁹ tagged π^0 mesons)

- $K_{\pi\nu\nu}$ trigger and selection used, with $0.015 < m^2_{miss} < 0.021 \text{ GeV}^2/c^4$.
- ★ Expected $\pi^0 \rightarrow \gamma \gamma$ events: 10^{+22}_{-8} , events observed: 12.

Results: search for K⁺ $\rightarrow \pi$ ⁺X

- ↔ Mass resolution: $\delta m_x \sim 40 \text{ MeV/c}^2$ at $m_X=0$, improving at higher m_X .
- Upper limits of $BR(K^+ \rightarrow \pi^+ X)$ established depending on X mass and lifetime.
- Improvement on BNL-E949 [PRD79 (2009) 092004] over most of m_x range.
- Interpretation shown here: the dark scalar model.
- ✤ Note the KOTO result based on 2016–18 data. [PRL125 (2021) 021801]

HNL production: NA62 Run 1

- ✤ Trigger lines: K_{πνν} for K⁺→e⁺N; Control/400 for K⁺→ μ ⁺N. *PLB807 (2020) 135599*
- Numbers of K⁺ decays in fiducial volume:
 PLB816 (2021) 136259
 N_K=3.5×10¹² in the positron case; N_K=4.3×10⁹ in the muon case.
- ♦ Squared missing mass: $m_{miss}^2 = (P_K P_\ell)^2$, using STRAW and GTK trackers.
- HNL production signal: a spike above continuous missing mass spectrum.

HNL production: results

- ↔ For $|U_{e4}|^2$, complementary to search for $\pi^+ \rightarrow e^+ N$ at PIENU.
- ♦ For $|U_{\mu4}|^2$, complementary to search for $K^+ \rightarrow \mu^+ N$ at BNL-E949.
- ✤ In both cases, complementary to HNL <u>decay</u> searches at T2K.
- Future pion experiments might reach the seesaw bound.
- ♦ Upper limit at 90% CL: $BR(K^+ \rightarrow \mu^+ \nu \nu \nu) < 1.0 \times 10^{-6}$, and similar limits of $BR(K^+ \rightarrow \mu^+ \nu X)$, with X=invisible.

[PLB 807 (2020) 135599; PLB 816 (2021) 136259] **1**

E. Goudzovski / BEACH 2024, Charleston, 4 June 2024

Pair-production of exotic states

- ✤ NA62 Run 1, multi-electron trigger, N_K=8.6×10¹¹. PLB846 (2023) 138193
- ✤ Production and prompt decays of axion pairs, K⁺→π⁺aa, a→e⁺e⁻: exclusion of the QCD axion explanation for the "17 MeV anomaly".
 - ✓ Expect BR(K⁺→π⁺aa)>2×10⁻⁸ for m_a=17 MeV.
 [Alves, PRD103 (2021) 055018; Hostert and Pospelov, PRD105 (2022) 015017]
- ✤ Prompt dark cascade involving a dark scalar (S) and dark photons (A'):
 K⁺→π⁺S, S→A'A', A'→e⁺e⁻.
- ♦ The SM decay: $BR_{SM}(K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-) = (7.2 \pm 0.7) \times 10^{-11}$ [Husek, PRD106 (2022)]

Searches for LFV/LNV in kaon decays

Search for $K^+ \rightarrow \pi^- e^+ e^+$

Search for $K^+ \rightarrow \pi^- \mu^+ \mu^+$

E. Goudzovski / BEACH 2024, Charleston, 4 June 2024

 $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$ and $K^+ \rightarrow \mu^- \nu e^+ e^+$

E. Goudzovski / BEACH 2024, Charleston, 4 June 2024

Search for K⁺ $\rightarrow \pi^0 \pi \mu e$ decays

Mode	Expected	Candidates	Upper limit of BR
	background	observed	at 90% CL
$K^+ \rightarrow \pi^0 \pi^- \mu^+ e^+$	0.33±0.07	0	2.9×10 ⁻¹⁰
$K^+ \rightarrow \pi^0 \pi^+ \mu^- e^+$	0.004±0.003	0	3.1×10 ⁻¹⁰
$K^+ \rightarrow \pi^0 \pi^+ \mu^+ e^-$	0.29±0.07	0	5.0×10 ⁻¹⁰

[First presented at BEACH 2024, to be published]

E. Goudzovski / BEACH 2024, Charleston, 4 June 2024

LFV/LNV K⁺ decays: state of the art

- Kaon decays: a unique probe for new physics.
 - ✓ Large decay samples are available ($\sim 10^{13}$ decays).
 - $\checkmark\,$ Often simple and clean final states, low backgrounds.
 - ✓ Kaon SM decay width is suppressed wrt heavy mesons.
- ✤ NA62 at CERN is collecting data from 2016 till at least 2025.
 - \checkmark World's largest multi-purpose sample of K⁺ decays.
 - \checkmark The final K⁺ decay experiment, in the observable future.
 - ✓ First measurement of the ultra-rare $K^+ \rightarrow \pi^+ \nu \nu$ decay.
- Searches for hidden sectors in kaon decays at NA62 address a range of PBC benchmark scenarios.
 - ✓ $K^+ \rightarrow \pi^+ X_{inv}$: dark scalar (BC4) and ALP (BC10,11).
 - ✓ $K^+ \rightarrow \ell^+ N$: heavy neutral leptons (BC6,7).
 - ✓ Also non-minimal scenarios, e.g. $K^+ \rightarrow \pi^+ aa$.
- ✤ NA62 LFV/LNV programme: 10 decay modes addressed so far.