Cross-sections of e⁺e⁻annihilation into open or hidden charm states

Vladimir Khachatryan Hadronic Physics Group Department of Physics, Indiana University

BEACH 2024: XV INTERNATIONAL CONFERENCE ON BEAUTY, CHARM, HYPERONS IN HADRONIC INTERACTIONS JUNE 3-7 2024, CHARLESTON, SOUTH CAROLINA, USA

Outline

- > General introduction on open/hidden charm states, and on BESIII apparatus/analysis
- Representing main results of BESIII three recent papers
 - 1) arXiv:2403.14998 [hep-ex] Precise measurement of the $e^+e^- \rightarrow D_s^+D_s^-$ cross sections at center-of-mass energies from threshold to 4.95 GeV,
 - 2) arXiv:2402.03829 [hep-ex] Precise Measurement of Born Cross Sections for $e^+e^- \rightarrow D\overline{D}$ and Observation of One Structure between $\sqrt{s} = 3.80 - 4.95$ GeV,
 - 3) Phys. Rev. D 109, 092012 (2024), arXiv:2310.03361 [hep-ex] Measurement of $e^+e^- \rightarrow \eta J/\psi$ Cross Section from $\sqrt{s} = 3.808$ GeV to 4.951 GeV,

> Summary

General

introduction

- > Over past decades many charmonium-like states discovered: $J^{PC} = 1^{--}$
- Conventional charmonium states ($\psi(3770), \psi(4040), \psi(4160), \psi(4415)$) decaying to open-charm final states, such as $D^*\overline{D}^*$, etc.
- > Y states showing strong coupling to hidden-charm final states, such as $\pi^+\pi^- J/\psi$
- Above-mentioned features suggesting that perhaps the Y states not to be conventional charmonia
 - Exotic composition most likely required
 - Good candidates for hybrids, tetraquarks, and mesonic molecules

- Currently designated as $\psi(4230)$, $\psi(4360)$, and $\psi(4660)$
- Precise measurements of production cross sections and resonance parameters needed
 - to clarify nature of these states
 - to distinguish among different theoretical models

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

General-purpose detector BESIII Nucl. Instrum. Meth. A 614, 345 (2010)

Located at the Beijing Electron Positron Collider (BEPCII)

General

introduction

- Started in summer 2008 and has run at multiple energies
- Operating at peak luminosity at 10³³ cm⁻² s⁻¹
- Given the center-of-mass energy range from 2.0 to 4.95 GeV
- \succ Detector recording symmetric $e^+e^$ collisions provided by the BEPCII storage ring
- Designed for studies of hadron spectroscopy and τ - charm physics

$e^+e^- \rightarrow D_s^+D_s^-$ cross sections

cross sections

 $e^+e^- \rightarrow D^0\overline{D}^0$, $e^+e^- \rightarrow D^+D^-$

$e^+e^- \rightarrow \eta J/\psi$ cross sections **Summary**

General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction

- \succ Masses of $\psi(4230)$, $\psi(4360)$, and $\psi(4660)$ lie above open-charm threshold
 - Measurement of their couplings to open-charm channels crucial for understanding of their nature \bullet
- > Such studies being very complicated due to presence of coupled-channel effects
- \succ Knowledge of exclusive open-charm cross sections as highly desirable
 - Such as cross section for $e^+e^- \rightarrow D_s^+D_s^-$
- This process previously studied by Belle, BaBar, and CLEO-c
- Larger data samples collected by BESIII over a broader energy range
 - Allowing improved measurements of exclusive open-charm cross sections
- Recent publication by BESIII Phys. Rev. Lett. 131, 151903 (2023)
 - Unusual line shape observed in cross section of $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$

- Cross sections measured in cm energy range between 3.94 GeV and 4.95 GeV
 - Having 138 energy points corresponding to integrated luminosity of 22.9 fb^{-1} in total
 - High-statistics XYZ data sets accounting for 95% of total integrated luminosity
 - Low-statistics R-value data sets for fine scanning, accounting for integrated luminosity around 7 pb^{-1} at each energy point

Given low background level and high detection efficiency at BESIII

- Only decay of $D_s^- \to K^+ K^- \pi^-$ being reconstructed
- While D_s^+ being tagged by recoil mass
- \succ To improve signal purity, D_s^- candidates selected with two intermediate decay modes

•
$$D_s^- \to \phi \pi^-$$
 with $\phi \to K^+ K^-$

or

• $D_{s}^{-} \rightarrow K^{*}(892)^{0}K^{-}$ with $K^{*}(892)^{0} \rightarrow K^{+}\pi^{-}$

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

$e^+e^- \rightarrow D^0\overline{D}^0$, $e^+e^- \rightarrow D^+D^ e^+e^- \rightarrow \eta J/\psi$ cross sections Summary

General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction

 \succ Clear cluster of events corresponding to $D_s^+ D_s^-$ pair observed in two-dimensional plots below

> Similar signals observed in data samples at other energy points

$e^+e^- \rightarrow \eta J/\psi$ cross sections Summary

 $e^+e^- \rightarrow D_s^+ D_s^-$ cross sections $e^+e^- \rightarrow D^0 \overline{D}^0$, $e^+e^- \rightarrow D^+ D^- = e^+e^- \rightarrow \eta J/\psi$ cross sections Summary General introduction cross sections

Signal shape being described with signal MC samples convolved with Gaussian function

Born cross section determined with

$$\sigma_{\rm Born} = \frac{N_{D_s}^{\rm fit} - N_{D_s^{\pm}D_s^{\mp *}}}{2\mathcal{B}(D_s^{\pm} \to K^+ K^- \pi^{\pm})\epsilon(1 + K$$

where

- $N_{D_s}^{\text{fit}}$ obtained from fitting $M(K^+K^-\pi^{\pm})$ distribution in data
- $N_{D_s^{\pm}D_s^{\mp*}}$ describing peaking background from $e^+e^- \rightarrow D_s^+D_s^-$ (only above $E_{cm} > 4.6 \text{ GeV}$)
- Factor 1/2 taking into account contributions from both D_s^+ and D_s^- single tag reconstruction
- \mathcal{B} -- branching fraction of $D_s^{\pm} \to K^+ K^- \pi^{\pm}$
- ϵ -- signal detection efficiency, $(1 + \delta)$ -- ISR correction factor,
- $\frac{1}{|1-\Pi|^2}$ -- vacuum polarization (VP), \mathcal{L} -- integrated luminosity

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

$$\delta) rac{1}{|1-\Pi|^2} \mathcal{L}$$

General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction

 \succ As notable observation is presence of broad structure spanning from $E_{\rm cm}$ = 4.1 to 4.4 GeV

> In particular

- Dip observed close to $D_s^{*+}D_s^{*-}$ threshold (4.224 GeV) and position of ψ (4230)
- Peak observed around $\psi(4040)$

Left plot: Measured Born cross sections of $e^+e^- \rightarrow D_s^+D_s^-$ in log scale as a function of energy Right plot: Measured Born cross sections of $e^+e^- \rightarrow D_s^+D_s^-$ in **linear scale** as a function of energy Error bars include statistical and systematic uncertainties in quadrature

 $e^+e^-
ightarrow \eta J/\psi$ cross sections **Summary**

9

General introduction $e^+e^- \rightarrow D_s^+D_s^-$ cross sections	$e^+e^- \rightarrow D^0\overline{D}^0, e^+e^- \rightarrow D^+$ cross sections	⁻ <i>D</i> ⁻			
Figures showing Born cross- section ratios	$\frac{\sigma(e^+e^- \to D_s^+ D_s^-)}{(e^+e^- \to D_s^+ D_s^-)}$	$\sigma_{\mathbf{D}_{s}^{+}\mathbf{D}_{s}^{-}}$			
Significantly narrower width of ψ(4040) than PDG value observed	$\sigma(e^+e^- \to K^0_S K^0_S J/\psi)$				
 Dip around D_s^{*+}D_s^{*-} threshold and peak position of ψ(4230) observed Suggesting influence of open channel effect 	$\frac{\sigma(e^+e^- \rightarrow D_s^+ D_s^-)}{\sigma(e^+e^- \rightarrow D_s^{*+} D_s^{*-})} -$	$\sigma_{D_s^{*+}D_s^{*-}}$			
Two structures similar to those observed in modes of D _s ^{*+} D _s ^{*-} , K ⁺ K ⁻ J/ψ, K _S ⁰ K _S ⁰ J/ψ being identified	$\sigma(e^+e^- \rightarrow D_s^+D_s^-)$	$\sigma_{D_s^+D_s^-}$			
 Critical for understanding of non-exotic and exotic states in this energy region 	$\overline{\sigma(e^+e^- \to K^+K^-J/\psi)}$				
Cross-section total systematic uncertainties evaluated to be (5.6 - 6.9) %					

$e^+e^- \rightarrow \eta J/\psi$ cross sections Summary

 $e^+e^- \rightarrow D^0\overline{D}^0, \quad e^+e^- \rightarrow D^+D^-$ General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction cross sections

 \succ Looking into other processes for studying $\psi(4230), \psi(4360), \text{ and } \psi(4660)$

- Such as $e^+e^- \rightarrow D^0\overline{D}^0$ and $e^+e^- \rightarrow D^+D^-$
- > These states may be pure charmonium states
 - Should predominantly decay into *DD* final state predicted theoretically
- \succ Currently, available observed cross sections existing for limited energy points
 - Measured by BaBar and Belle using ISR process
 - Measured by CLEO through direct e^+e^- production
- \succ Highly desirable to precisely measure exclusive Born cross section of $e^+e^- \rightarrow D\overline{D}$ process
 - To validate interpretations of established ψ states
 - To provide additional insight into energy range above open-charm threshold

$e^+e^- \rightarrow \eta J/\psi$ cross sections Summary

General introductio

- Cross sections measured in cm energy range between 3.80 GeV and 4.95 GeV
 - Having 150 energy points corresponding to integrated luminosity of 20 fb^{-1} in total
 - With high-statistics XYZ data sample
 - With remaining low-statistics R-scan data sample
- \succ Single tag technique employed, given purpose of achieving high efficiency for event selection
 - D^0 candidates reconstructed from $K^-\pi^+\pi^+\pi^-$
 - D^+ candidates reconstructed from $K^-\pi^+\pi^+$
 - \overline{D}^0 candidates inferred by mass recoiling against tagged meson (M_D^{recoil}) via $K^-\pi^+\pi^+\pi^-$ system
 - D^- candidates inferred by M_D^{recoil} via $K^-\pi^+\pi^+$ system

$$M_D^{\text{recoil}} = \sqrt{(\sqrt{s} - E_D)^2} -$$

with E_D and \mathbf{p}_D to be energy and momentum for selected $K^-\pi^+\pi^+\pi^-/K^-\pi^+\pi^+$ candidates

$e^+e^- \rightarrow D_s^+ D_s^-$ cross sections $e^+e^- \rightarrow D^0 \overline{D}^0$, $e^+e^- \rightarrow D^+ D^- = e^+e^- \rightarrow \eta J/\psi$ cross sections Summary

 $-|{\bf p}_D|^2$

 \succ Signal yields for $e^+e^- \rightarrow D\overline{D}$ process at each energy point extracted by performing (extended maximum likelihood) fit to mass recoil spectrum

Two-dimensional distributions of invariant mass M_D vs. recoil mass M_D^{recoil} at \sqrt{s} = 4.1992 GeV Left plot: Dashed lines representing signal region for D meson in $D^0\overline{D}^0$ mode

Right plot: Dashed lines representing signal region for D meson in D^+D^- mode

 $e^+e^- \rightarrow D^0\overline{D}^0$, $e^+e^- \rightarrow D^+D^-$ General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction cross sections

- Signal shape being described with signal MC samples convolved with Gaussian function
 - Accounting for difference in mass resolution between data and MC-simulation

Fits to recoil mass M_D^{recoil} spectra at \sqrt{s} = 4.1992 GeV; Left plot: $D^0 \overline{D}^0$ mode; Right plot: $D^+ D^-$ mode

Data represented by dots with error bars Fit results indicated by blue solid lines Signal shown by red short-dashed lines Background shown by green long-dashed lines

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

 $e^+e^- \rightarrow D^0\overline{D}^0$, $e^+e^- \rightarrow D^+D^-$ General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introductio cross sections

Born cross section determined with

$$\sigma^{B}(s) = \frac{N_{\text{obs}}}{2\mathcal{L}(1+\delta)\frac{1}{|1-\Pi|^{2}}\epsilon\mathcal{B}}$$

Explanation the same as on slide 8th

Simultaneous fit of dressed cross sections performed for both processes of $e^+e^- \rightarrow D^0\overline{D}{}^0$ and $e^+e^- \rightarrow D^+D^-$

Parameterized as coherent sum of eight relativistic Breit-Wigner (BW) functions

$$\sigma^{\text{dressed}}(\sqrt{s}) = \left|\sum_{i=1}^{9} e^{i\phi} BW_i(\sqrt{s}) \sqrt{\frac{P(\sqrt{s})}{P(M)}}\right|^2 \qquad BW(\sqrt{s}) = \frac{\sqrt{12\pi\Gamma_{ee}}\mathcal{B}\Gamma}{s - M^2 + iM\Gamma}$$

- relative phase between different BW functions -- ϕ
- two-body phase space factor -- $P(\sqrt{s})$
- electronic partial widths -- Γ_{ee} , decay branching fractions -- \mathcal{B}

$\sigma^{\text{dressed}} = \sigma^B / |1 - \prod|^2$

 $e^+e^- \rightarrow D^0\overline{D}^0$, $e^+e^- \rightarrow D^+D^-$ General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction cross sections

Measured Born cross sections, along with results from the CLEO-c, BaBar, and Belle

ISR correction factor obtained through QED calculations

• Cross sections measured in the analysis used as inputs and iterated until convergence

16

- \succ Good assumption of using eight resonances in simultaneous fitting from $\sqrt{s} = 3.80$ to 4.95 GeV
- Potential new **resonance** *R* observed around 3.9 GeV with significance > 20σ

 $e^+e^- \rightarrow \eta J/\psi$ cross sections **Summary**

> Also, line shape strongly model-dependent

> Structure *R* may be not a $c\bar{c}$ resonance

• Threshold enhancement due to opening of $D^*\overline{D}$ channel ?

• See arXiv:2404.03896 [hep-ph] for details

17

General
introduction $e^+e^- \rightarrow D_s^+ D_s^-$ cross sections $e^+e^- \rightarrow D^0 \overline{D}^0$, $e^+e^- \rightarrow D^+ D^ e^+e^- \rightarrow \eta J/\psi$ cross sectionsSummary cross sections

 \succ Looking into other processes for studying $\psi(4230)$ and $\psi(4360)$

 $\succ \psi(4230)$ observed in processes of

• $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, $\pi^0\pi^0 J/\psi$, $K_S^0 K_S^0 J/\psi$, $K^+K^- J/\psi$, $\pi^+\pi^-\psi$ (3686), $\pi^+\pi^- h_c$, $\pi^+\pi^-\omega\chi_{c0}$

 $\succ \psi(4360)$ observed in processes of

• $e^+e^- \rightarrow \pi^+\pi^-\psi(3686), \ \pi^+\pi^-h_c, \ \pi^+\pi^-\psi_2(3823)$

Similar parameters of each of these two resonances to be known (masses and widths)

- But differences between decay modes still existing
- \succ Updated analysis of $e^+e^- \rightarrow \eta J/\psi$ at 44 cm energies between 3.808 and 4.951 GeV performed by **BESIII**

 \succ J/ ψ and η reconstructed via

•
$$J/\psi \rightarrow e^+e^-$$
 and $J/\psi \rightarrow \mu^+\mu^-$

• $\eta \rightarrow \gamma \gamma$ (Mode I) and $\eta \rightarrow \pi^0 \pi^+ \pi^-$ (Mode II)

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

Motivation

Bottom plots: Distributions of $M(\gamma\gamma) \& M(\pi^0\pi^+\pi^-)$ in J/ψ signal region of data sample at $\sqrt{s} = 4.226$ GeV

Data represented by dots with error bars Events from J/ψ mass sideband given by green histogram Fit result, signal, background shown by black solid, red long-dashed, blue short-dashed lines, respectively

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

19

Born and dressed cross sections determined with

 $e^+e^- \rightarrow D_s^+D_s^-$ cross sections

General

introduction

$$\sigma^{\mathrm{B}} = \frac{N_{\mathrm{obs}}}{\mathcal{L}_{\mathrm{int}} \cdot (1 + \delta^{\mathrm{ISR}}) \cdot \frac{1}{|1 - \Pi|^2} \cdot \mathcal{B} \cdot \epsilon}$$

Born cross section's explanation the same as on slide 9th

Fit function parameterized as coherent sum of three Breit-Wigner functions

• Describing structures around 4040, 4220 and 4390 MeV, and non-resonant component

$$\sigma_{\rm fit}^{\rm dressed}(\sqrt{s}) = |\sqrt{\sigma_{NY}(\sqrt{s})} + BW_1(\sqrt{s})e^{i\phi_1} + BW_2(\sqrt{s})e^{i\phi_2} + BW_3(\sqrt{s})e^{i\phi_3}|^2 \qquad BW_i(\sqrt{s}) = \frac{\sqrt{12\pi\mathcal{B}_i\Gamma_i^{e^+e^-}\Gamma_i}}{s - M_i^2 + iM_i\Gamma_i}\sqrt{\frac{\Phi(\sqrt{s})}{\Phi(M_i)}}$$

 $e^+e^- \rightarrow D^0\overline{D}^0, \quad e^+e^- \rightarrow D^+D^-$

cross sections

Non-resonant part parameterized following BaBar method

$$\Phi(\sqrt{s}) = \frac{q^3}{s} \qquad \sqrt{\sigma_{NY}(\sqrt{s})} = \sqrt{\Phi(\sqrt{s})e^{-p_0u}p_1}$$

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

$$\sigma^{\text{dressed}} = \frac{\sigma^{\text{B}}}{|1 - \Pi|^2}$$

$u = \sqrt{s} - (M_{\eta} + M_{J/\psi})$

$e^+e^- \rightarrow \eta J/\psi$ cross sections

Summary

22

 $e^+e^- \rightarrow D_s^+D_s^-$ cross sections

- \blacktriangleright Born cross sections of $e^+e^- \rightarrow \omega \chi_{c1,2}$ measured at cm energies from 4.308 to 4.951 GeV
- > Assuming signal of $e^+e^- \rightarrow \omega \chi_{c2}$ coming from single resonance, mass and width consistent with well-established $\psi(4415)$
 - Implying existence of hidden charm decay $\psi(4415) \rightarrow \omega \chi_{c2}$
- \succ Assuming signal of $e^+e^- \rightarrow \omega \chi_{c1}$ coming from single resonance, structure of line shape observed first time

Fits to cross sections of $e^+e^- \rightarrow \omega \chi_{c1}$ (left) and $e^+e^- \rightarrow \omega \chi_{c2}$ (right) with one single resonance

General

introduction

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

- We presented cross-section measurement results from three analyses conducted by BESIII
- \succ Namely

General

introduction

- 1) Cross sections of $e^+e^- \rightarrow D_s^+D_s^-$
 - Several new structures observed in cross-section line shape
 - Giving important input for coupled-channel analyses and theoretical model testing
- 2) Cross sections of $e^+e^- \rightarrow D\overline{D}$
 - Here also, interesting structures observed in cross-section line shape
 - Critical for deeper understanding of non-conventional/conventional states in given energy range
- 3) Cross sections of $e^+e^- \rightarrow \eta J/\psi$
 - Mass and width of measured two states consistent with those of previously measured $\psi(4230)$ and $\psi(4360)$
 - Providing more precisely studied line shape than before

Thanks !

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

Backups

 $e^+e^- \rightarrow D^0\overline{D}^0, e^+e^- \rightarrow D^+D^-$ General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction cross sections

- \succ Understanding strong interaction dynamics through a way provided by hadron spectroscopy
- Experimental data playing important role on various theoretical models
- Solution Approximation Appr
- Properties of XYZ do not fit to heavy quarkonium spectrum
- \succ Majority of these states observed in e^+e^- collisions and heavy hadron decays, like in
 - BES, BESII and BESIII experiments
 - Belle and Belle II experiments
 - CLEO and BaBar experiments
- \succ Explore other production mechanisms as well, such as in electron-proton scattering in
 - COMPASS-II, JLab experiments and EIC

Vladimir Khachatryan: BEACH 2024 conference, June 3rd 2024, Charleston, SC

General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction

- Detector cylindrical core covering 93% of the full solid angle and consisting of
 - helium-based multilayer drift chamber (MDC)
 - plastic scintillator time-of-flight system (TOF)
 - CsI(TI) electromagnetic calorimeter (EMC)
 - all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field
- > EMC measuring photon energies
 - with a resolution of 2.5% at 1 GeV in the barrel region
 - with a resolution of 5% at 1 GeV in the end cap region
- > TOF time resolution
 - 68 ps in the barrel region
 - 110 ps in the end cap region
- \succ End cap TOF system upgraded in 2015 to provide 60 ps resolution

$e^+e^- ightarrow \eta J/\psi$ cross sections

Summary

 $e^+e^- \rightarrow D^0\overline{D}^0$, $e^+e^- \rightarrow D^+D^ e^+e^- \rightarrow \eta J/\psi$ cross sections General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction cross sections

- > BESIII detector's geometric description and detector's response included GEANT4-based MC simulation software packages (BOOST & EVTGEN)
- \succ Beam energy spread and initial-state radiation (ISR) in e^+e^- annihilation simulated and modeled by KKMC program
- Combined TOF and dE/dx information used to perform PID
- Charge particle final-state radiation (FSR) incorporated with PHOTOS package
- Charged track candidates reconstructed from hits in multilayer drift chamber (MDC)
 - polar angle to satisfy $\cos \theta < 0.93$
 - point of closest approach to e^+e^- interaction vertex to be within ± 10 cm in beam direction as well as within 1 cm in the plane perpendicular to the beam direction
- Signal MC samples used to determine reconstruction efficiencies, ISR correction factors and vacuum polarization (VP)

Summary

General	$e^+e^- \rightarrow D_s^+D_s^-$ cross sections	$e^+e^- ightarrow D^0\overline{D}{}^0$, $e^+e^- ightarrow D^+D$	
introduction		cross sections	

Fit results to Born cross section

S symbolizing statistical significance

First uncertainties are statistical, second uncertainties are systematic

			e^+e^-	$\rightarrow D\bar{D}$				
Resonance	$\psi(3770)$	R	$\psi(4040)$	$\psi(4160)$	Y(4230)	Y(4360)	$\psi(4415)$	Y(4660)
Mass (MeV/ c^2)	3773.7 (fixed)	$3872.5 \pm 14.2 \pm 3.0$	4039 (fixed)	4191 (fixed)	4222.5 (fixed)	4374 (fixed)	4421 (fixed)	4630 (fixed)
Width (MeV/ c^2)	87.6 (fixed)	$179.7 \pm 14.1 \pm 7.0$	80 (fixed)	70 (fixed)	48 (fixed)	118 (fixed)	62 (fixed)	72 (fixed)
$\Gamma_{ee}\mathcal{B}(eV)$	95-106	202-292	41-44	1-2	1-2	50-144	0-2	0-1
$S(\sigma)$	10	> 20	13	7	11	11	4	8
$\chi^2/d.o.f = 346/$	/275			p-value	= 0.002			

$e^+e^- \rightarrow \eta J/\psi$ cross sections Summary

 $e^+e^- \rightarrow D^0\overline{D}^0$, $e^+e^- \rightarrow D^+D^-$ General $e^+e^- \rightarrow D_s^+D_s^-$ cross sections introduction cross sections

Fit results to $e^+e^- \rightarrow \eta J/\psi$ cross sections, with given fit para

Label i = 1, 2 and 3 symbolizing $\psi(4040), \psi(4230)$, and $\psi(4360)$, respective

Only statistical uncertainties shown

Parameter	Solution I	Solution II	Solution III	Solution IV			
$\overline{M_1 (\mathrm{MeV}/c^2)}$	4039 (fixed)						
$\Gamma_1 (MeV)$	80 (fixed)						
$\Gamma_1^{e^+e^-} \cdot \mathcal{B}_1 \text{ (eV)}$	1.0 ± 0.2	7.1 ± 0.6	1.1 ± 0.2	7.8 ± 0.6			
$M_2 (\mathrm{MeV}/c^2)$	4219.7 ± 2.5						
Γ_2 (MeV)	80.7 ± 4.4						
$\Gamma_2^{e^+e^-} \cdot \mathcal{B}_2 \text{ (eV)}$	4.0 ± 0.5	5.5 ± 0.7	8.7 ± 1.0	11.9 ± 1.1			
$\overline{M_3}$ (MeV/ c^2)	4386.4 ± 12.6						
Γ_3 (MeV)	176.9 ± 32.1						
$\Gamma_3^{e^+e^-} \cdot \mathcal{B}_3 \text{ (eV)}$	1.8 ± 0.6	2.1 ± 0.7	4.3 ± 1.3	5.0 ± 1.5			
ϕ_1 (rad)	3.1 ± 0.6	-1.8 ± 0.1	3.3 ± 0.4	-1.6 ± 0.1			
ϕ_2 (rad)	-2.8 ± 0.1	2.9 ± 0.2	-2.0 ± 0.1	-2.6 ± 0.2			
ϕ_3 (rad)	-2.9 ± 0.1	3.0 ± 0.1	2.8 ± 0.1	2.4 ± 0.7			
$p_0 \;(\;{\rm MeV^{-1}})$	1.5 ± 0.4	1.5 ± 0.4	1.5 ± 0.4	1.6 ± 0.4			
$p_1 (\text{GeV}^{-3})$	390.0 ± 155.3	389.3 ± 155.6	389.5 ± 155.1	389.5 ± 154.5			

$e^+e^- ightarrow \eta J/\psi$ cross sections

Summary

ameters
$$M_i$$
, Γ_i , $\Gamma_i^{e^+e^-}$, B_i , and ϕ_i

