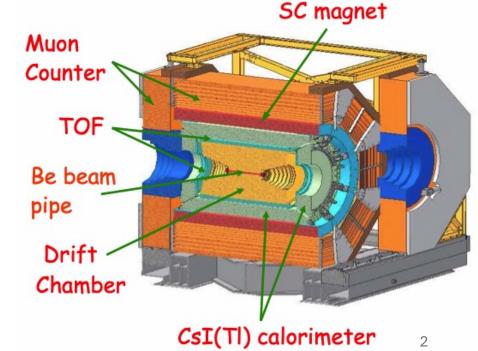
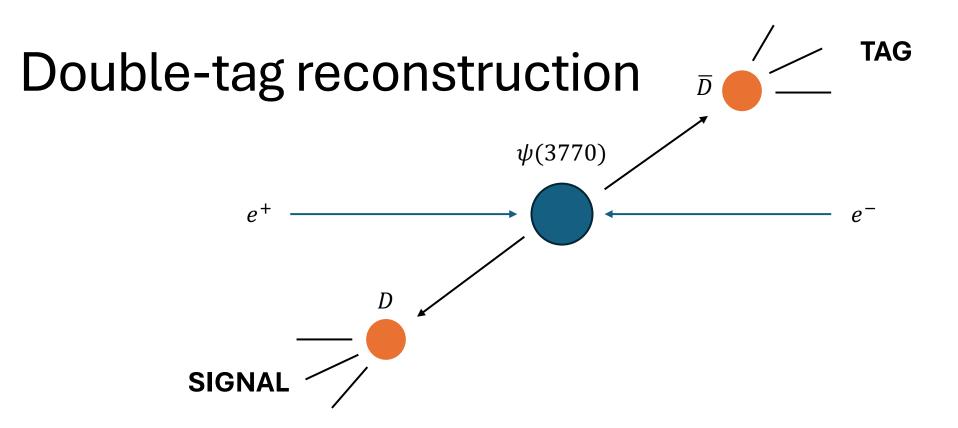
Recent charm meson results at BESIII

Innes Mackay on behalf of the BESIII collaboration

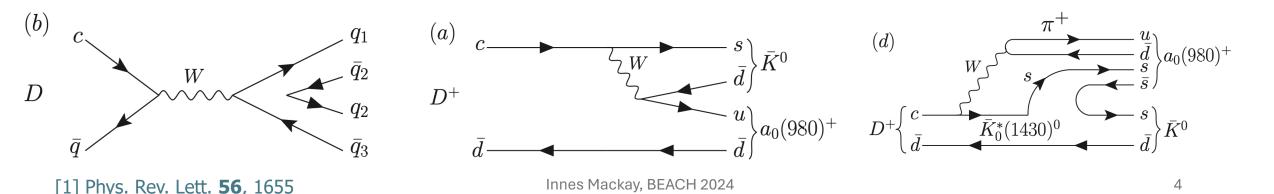
innes.mackay@physics.ox.ac.uk





Introduction to the BESIII experiment

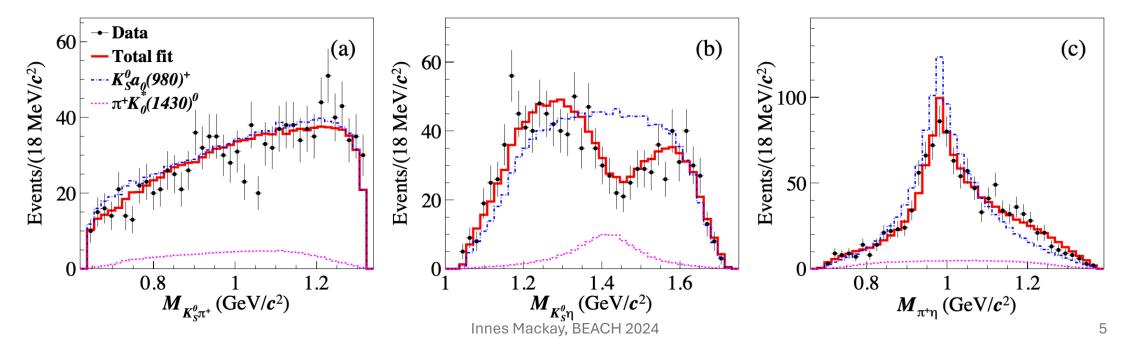
- Located in the symmetric e^+e^- BEPCII collider at IHEP, Beijing
- Operates in $E_{CM} = 2 5$ GeV with peak L~10³³ cm⁻²s⁻¹
- The detector has ~93% radial acceptance optimised for low momentum particles (~1 GeV)
- R-value, τ , **charm**, light hadron, charmonium physics + more



- Producing two D mesons on resonance allows for clean reconstruction
- Allows use of beam constrained and missing mass/energy variables
- Can determine branching fractions without knowledge of N_{DD}

$$B(D \rightarrow signal) = \frac{N_{sig}/\epsilon_{tag\&sig}}{N_{tag}/\epsilon_{tag}}$$

Observation of $D^+ \rightarrow K_S^0 a_0(980)^+$


- Hadronic charm decays not yet accurately described by theory
- The diagrammatic approach¹ works for $D \rightarrow PP$ and $D \rightarrow VP$ decays but progress in $D \rightarrow SP$ is limited due to W-annihilation amplitudes
- $D^+ \rightarrow K^0_S a_0(980)^+$ contains no contributions from W-annihilation diagrams
- Discrepancies from predicted BF could tell us more about the a₀

Observation of $D^+ \rightarrow K_S^0 a_0 (980)^+$

- Observed in an amplitude analysis of $\rm D^+\to K^0_S\pi^+\eta$ decays using 2.93 fb^-1 data collected at $\rm E_{CM}=3.773~GeV$
- Highly pure sample of ~1100 signal candidates obtained using the 6 hadronic DT final states method

•
$$B(D^+ \to K_S^0 a_0(980)^+, a_0^+ \to \pi^+ \eta) = (1.33 \pm 0.05_{stat} \pm 0.04_{syst})\%$$

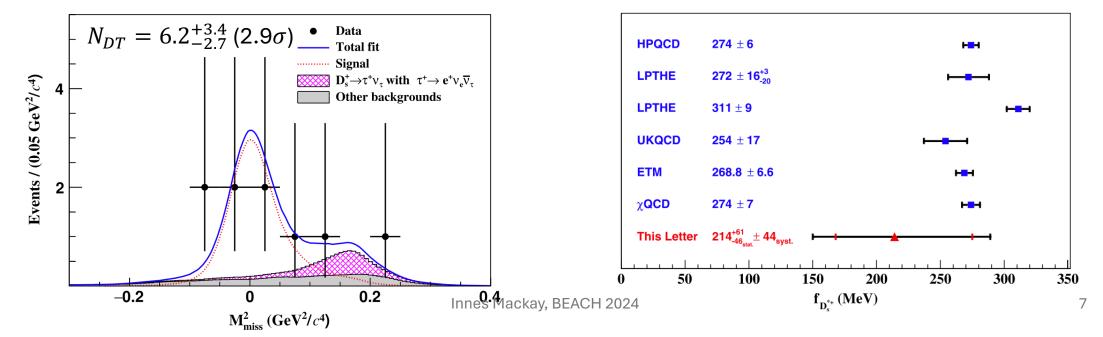
Search for purely leptonic $D_s^{*+} \rightarrow e^+ \nu_e$ decays

- The decay has never been observed but can be excellent probes of c→s transitions, CKM unitarity and LFU
- QCD effects absorbed into $f_{D_c^{*+}}$ which provides test of LQCD

$$\begin{split} \Gamma(D_s^{*+} \to \ell^+ \nu_\ell) &= \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^{*+}}^2 m_{D_s^{*+}}^3 \left(1 - \frac{m_{\ell^+}^2}{m_{D_s^{*+}}^2}\right)^2 \\ &\times \left(1 + \frac{m_{\ell^+}^2}{2m_{D_s^{*+}}^2}\right), \end{split}$$

- Measurement uses 7.33 fb⁻¹ data collected between E_{CM} =4.128-4.226 GeV where $e^+e^- \rightarrow D_s^- D_s^{*+}$ production is possible
- Double-tag method used with 16 hadronic $\mathrm{D}^-_{\mathrm{s}}$ decays

Search for purely leptonic $D_s^{*+} \rightarrow e^+ \nu_e$ decays


• Signal yield extracted from a fit to the squared missing mass

$$M_{\rm miss}^2 \equiv \left| E_{\rm cm} - \sum_k E_k \right|^2 / c^4 - \left| \sum_k \vec{p}_k \right|^2 / c^2$$

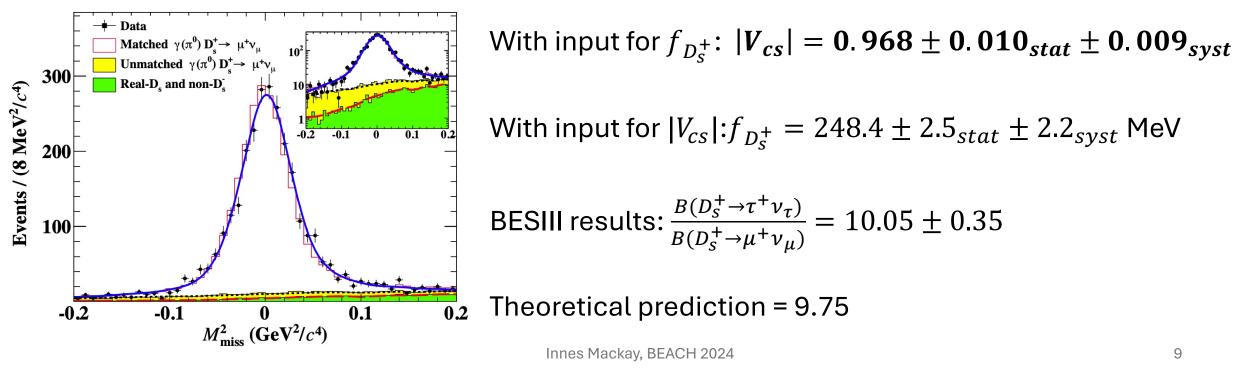
where k loops over all particles used in reconstruction

• First evidence for this decay and measurement of decay constant

•
$$BF(D_s^{*+} \rightarrow e^+\nu_e) = (2.1^{+1.2}_{-0.9_{stat}} \pm 0.2_{syst}) \times 10^{-5} (<4 \times 10^{-5} \text{ at } 90\% \text{CL})$$

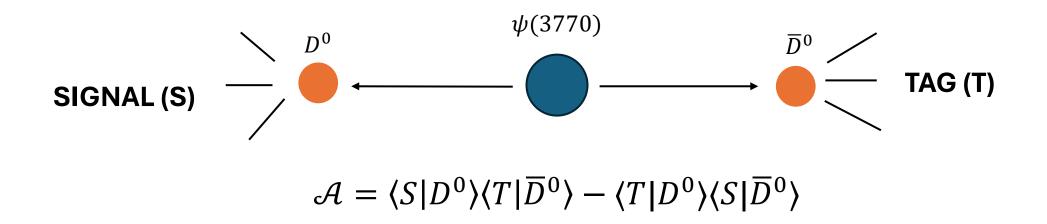
Measurement of
$$D_s^+ \rightarrow \mu^+ \nu_\mu$$

• Measure $|V_{cs}|$, LFU tests and LQCD checks


$$\Gamma_{D_s^+ \to \ell^+ \nu_{\ell}} = \frac{G_F^2}{8\pi} |V_{cs}|^2 f_{D_s^+}^2 m_{\ell}^2 m_{D_s^+} \left(1 - \frac{m_{\ell}^2}{m_{D_s^+}^2}\right)^2$$

- Measurement uses 7.33 fb⁻¹ data collected between E_{CM} =4.128-4.226 GeV where $e^+e^- \rightarrow D_s^+ D_s^{*-}$ production is possible
- Double-tag method used with 16 hadronic D_s^- decays with fully reconstructed $D_s^{*-}\to D_s^-\gamma$ or $D_s^-\pi^0$

Measurement of $D_s^+ \rightarrow \mu^+ \nu_{\mu}$


• Branching fraction determined using yields from fit to M_{miss}^2

• Determine
$$B(D_s^+ \to \mu^+ \nu_{\mu}) = (0.5294 \pm 0.0108)\%$$

 $\mathcal{B}_{D_s^+ \to \mu^+ \nu_{\mu}} = \frac{N_{\rm DT}}{N_{\rm ST} \cdot \epsilon_{\gamma(\pi^0)\mu^+ \nu_{\mu}}}$

With the	Comparison of $ V_{cs} $ • With the values of G_F , $m_{D_s^+}$, m_{τ} , m_{μ} [PDG2022] • Input $f_{D_s^+} = 249.9(0.5)$, $f_+^K(0) = 745.2(3.1)$, $f_+^{\eta}(0) = 0.495(5)$ and $f_+^{\eta'}(0) = 0.558(\frac{+47}{45})$					
CKMFitter HFLAV21	PTEP2022(2022)083C01 PRD107(2023)052008	0.97349±0.00016 0.9701±0.0081	CKMFitter HFLAV21	PTEP2022(2022)083C01 PRD107(2023)052008	0.97349±0.00016 0.9701±0.0081	•
CLEO CLEO CLEO	$\begin{array}{l} \textbf{PRD79(2009)052002,} \ \tau_{eV} \\ \textbf{PRD80(2009)112004,} \ \tau_{pV} \\ \textbf{PRD79(2009)052001,} \ \tau_{\pi V} \end{array}$	0.981±0.044±0.021 +++ 1.001±0.052±0.019 +++ 1.079±0.068±0.016 ++++	HPQCD ETM(2+1+1)	PRD104(2021)034505 PRD96(2017)054514	0.9663±0.0079 0.945±0.38	•
BaBar Belle BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹ BESIII 7.33 fb ⁻¹	PRD82(2010)091103, $\tau_{e,\mu}v$ JHEP09(2013)139, $\tau_{e,\mu,\pi}v$ PRD104(2021)052009, $\tau_{\pi}v$ PRD104(2021)032001, $\tau_{\rho}v$ PRL127(2021)171801, $\tau_{e}v$ arXiv:2303.12600[hep-ex], $\tau_{\pi}v$ arXiv:2303.12468[hep-ex], $\tau_{\mu}v$		CLEO BESIII BESIII BESIII BESIII	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.9648±0.0090±0.078 0.9769±0.0090±0.0153 0.9461±0.0067±0.0153 0.9622±0.0057±0.0067 0.9592±0.0065±0.0056	•
CLEO BaBar Belle BESIII 0.482 fb ⁻¹ BESIII 0.482 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 7.33 fb ⁻¹	 PRD79(2009)052001, μν PRD82(2010)091103, μν JHEP09(2013)139, μν PRD94(2016)072004, μν PRL122(2019)071802, μν PRD104(2021)052009, μν arXiv:2307.14585[hep-ex], μν 	1.000±0.040±0.016 +++ 1.032±0.033±0.029 +++ 0.969±0.026±0.019 ++ 0.956±0.069±0.020 +++ 0.985±0.014±0.014 ++ 0.973±0.012±0.015 ++ 0.968±0.010±0.009 ++	BESIII BESIII BESIII BESIII BESIII BESIII	$\begin{array}{l} \mbox{PRL122(2019)121801, $\eta e^+ v_e$} \\ \mbox{arxiv:} 2306.05194, $\eta e^+ v_e$} \\ \mbox{arxiv:} 2307.12852, $\eta \mu^+ v_\mu$ \\ \mbox{PRL122(2019)121801, $\eta^+ e^+ v_e$} \\ \mbox{arxiv:} 2306.05194, $\eta^+ e^+ v_e$ \\ \mbox{arxiv:} 2307.12852, $\eta^+ \mu^+ v_\mu$ \\ \mbox{PRL129(2022)231803, $\Lambda e^+ v_e$} \\ \end{array}$	0.9010±0.0582±0.0569 0.913±0.014±0.057 0.911±0.020±0.057 0.8548±0.1920±0.0794 0.941±0.044±0.081 0.907±0.067±0.078 0.936±0.017±0.025	
BESIII Combine BESIII Combine	$-1 \qquad 0$	-		-1 -0.5	0 0.5 V _{cs}	$\begin{array}{c} 1 \\ D & \rightarrow P\ell^+\nu_\ell \end{array}$
$ V_{cs} \qquad D \rightarrow \ell^+ \nu_{\ell} \qquad \checkmark$ With the highest precision: 0.9%				The third uncertai uncertainty and ur	5 5	10

Quantum correlated $D^0 \overline{D}^0$ pairs

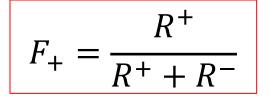
- $e^+e^- \rightarrow \psi(3770)$ proceeds through γ^* which is C-odd -- conserved in final state so decays of the D^0 and $\overline{D}{}^0$ are correlated
- Interference between the D^0 and $\overline{D}{}^0$ decays is sensitive to the strongphase difference in the signal and tag final states
- Key inputs in measurements of the CKM angle γ and charm mixing and CPV parameters

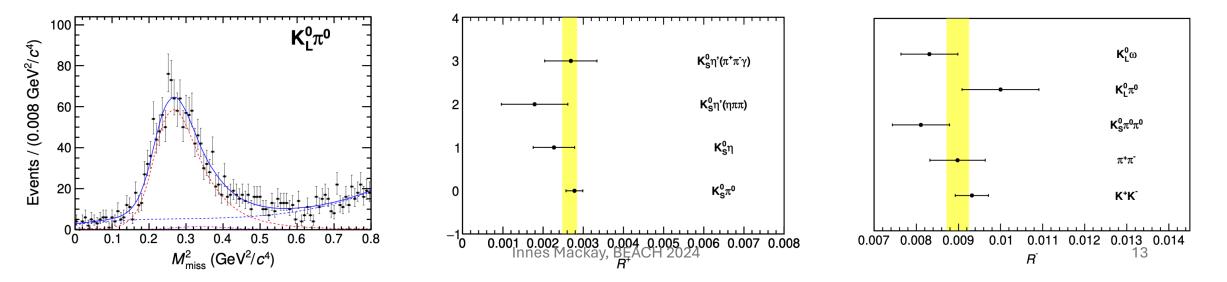
Measurement of the CP even fraction of $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$

• C-odd constraint places CP restrictions on the final states

Phys. Rev. D 108, 032003

$$|D^{0}\overline{D}^{0}\rangle - |\overline{D}^{0}D^{0}\rangle = |D_{-}D_{+}\rangle - |D_{+}D_{-}\rangle$$

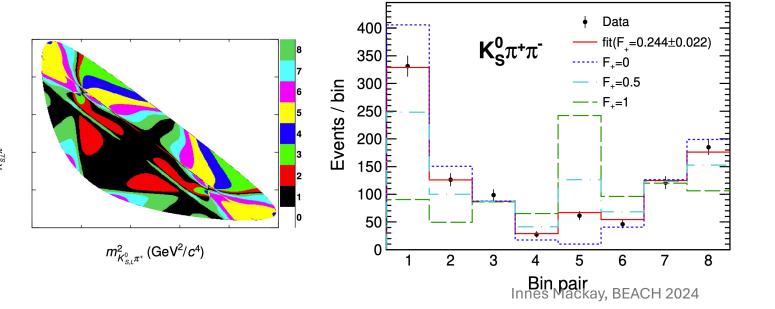

- Allows for measurement of the CP even fraction (F_+) in a decay, which is key input to measurements of the CKM angle γ
- Multiple different tag final states are used with different CP properties


Type	Tag modes
CP-even	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, K^0_L\omega, K^0_L\pi^0$
$C\!P ext{-odd}$	$K^{0}_{S}\pi^{0}, K^{0}_{S}\eta(\gamma\gamma), K^{0}_{S}\eta'(\eta\pi^{+}\pi^{-}), K^{0}_{S}\eta'(\gamma\pi^{+}\pi^{-})$
Quasi-CP	$\pi^+\pi^-\pi^0,\pi^+\pi^-\pi^+\pi^-$
Mixed CP	$K^0_{S,L}\pi^+\pi^-$
Self-tag	$K^0_S \pi^+\pi^-\pi^0$

Measurement of the CP even fraction of $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$

- *F*₊ is determined using 5 CP even and 4 CP odd tags
- Single tags used for cancellation of systematic uncertainties and $N_{D\overline{D}}$
- Fit to M_{BC} (M_{miss}^2) for tags without (with) K_L^0 particles
- Similar procedure for the quasi-CP tags e.g. $\pi^+\pi^-\pi^0$

$$R^{\mp} = \frac{N(S|T)}{N(T)} = BF(S)\epsilon(S)[1 - \eta_T^{\pm}(2F_+ - 1)] \qquad \text{where } \eta_T^{\pm} \text{ is the CP} \\ \text{eigenvalue of the tag}$$

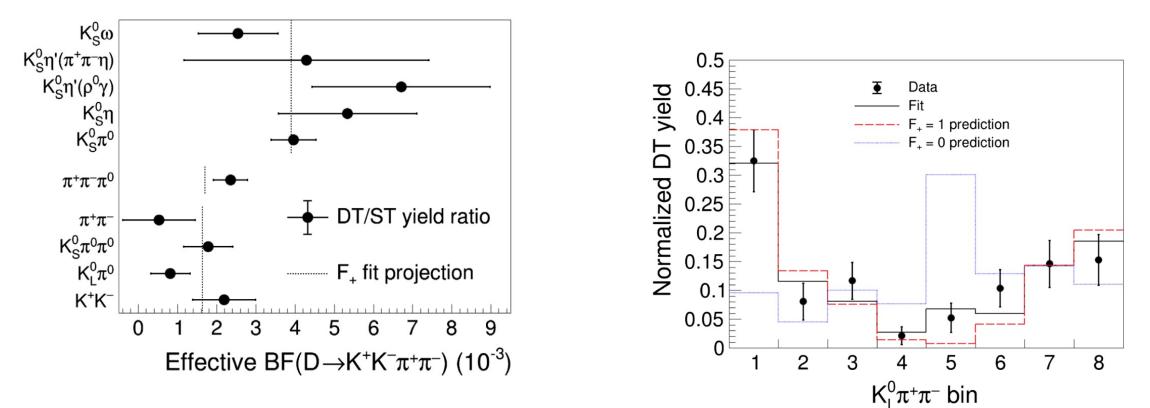


Measurement of the CP even fraction of $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$

- Integrated $F_{+}^{K_{S,L}^{0}\pi^{+}\pi^{-}} \sim 0.5$ so measurement performed in PS regions
- Symmetric 16 bin scheme is used to describe the PS

$$M_{i} = h \left[K_{i} + K_{-i} - 2c_{i}\sqrt{K_{i}K_{-i}}(2F_{+} - 1) \right]$$

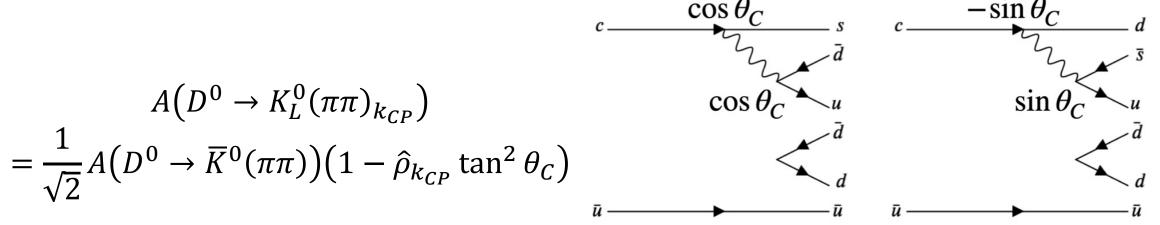
• Likelihood fit to the double tag yields performed to determine F_+ with Gaussian constrained K_i , c_i



Method	F_+
CP-tag modes	$0.229 \pm 0.013 \pm 0.002$
$\pi^+\pi^-\pi^0 ext{ tag mode}$	$0.227 \pm 0.014 \pm 0.003$
$\pi^+\pi^-\pi^+\pi^- ext{ tag mode}$	$0.227 \pm 0.016 \pm 0.003$
$\mathbf{Self} ext{-tag modes}$	$0.244 \pm 0.019 \pm 0.002$
$K^0_{S,L}\pi^+\pi^-$	$0.244 \pm 0.021 \pm 0.006$
Combined	$0.235 \pm 0.010 \pm 0.002$

Measurement of the CP even fraction of $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

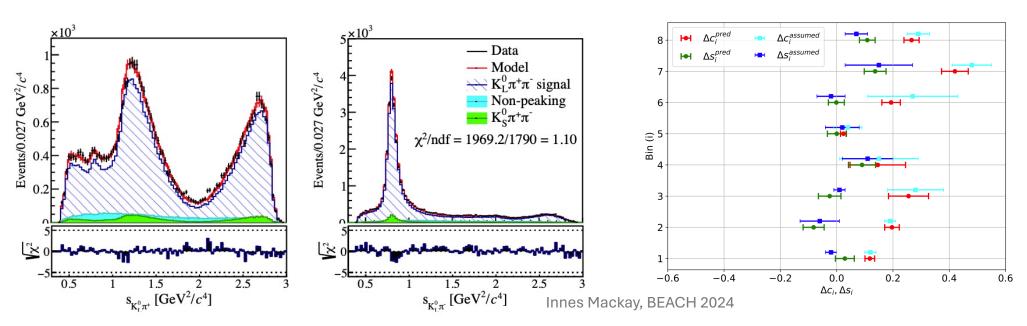
- Same procedure as in $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$
- $F_+ = 0.730 \pm 0.037 (stat.) \pm 0.021 (syst.)$


Category	Tag modes
CP even	$K^+K^-, \ \pi^+\pi^-, \ K^0_S\pi^0\pi^0, \ \pi^+\pi^-\pi^0, \ K^0_L\pi^0$
CP odd	$K^0_S\pi^0, K^0_S\eta_{\gamma\gamma}, K^0_S\eta'(\pi\pi\eta), K^0_S\eta'(ho^0\gamma), K^0_S\omega$
Mixed CP	$K^0_S \pi^+ \pi^-, \ K^0_L \pi^+ \pi^-$

Phys. Rev. D **107**, 032009

Measurement of U-spin breaking parameters in $D^0 \rightarrow K_L^0 \pi^+ \pi^-$

- Interference between CF and DCS contributions to the $D^0 \rightarrow K_L^0(\pi^+\pi^-)_{k_{CP}}$ final state can break U-spin symmetry
- $D \to K_S^0 \pi^+ \pi^-$ strong-phases measured using $K_L^0 \pi^+ \pi^-$ tags at BESIII with assumptions about U-spin breaking parameters ($\hat{\rho}$)
- Measuring will reduce systematic uncertainties on measurements of the CKM angle γ


CF $D^0 \to \bar{K}^0 \pi^+ \pi^-$ (left) and DCS $D^0 \to K^0 \pi^+ \pi^-$ (right) decay diagrams.

Measurement of U-spin breaking parameters in $D^0 \rightarrow K_L^0 \pi^+ \pi^-$

• $D^0 \to K_L^0 \pi^+ \pi^-$ amplitude analysis performed (first with a K_L^0) constraining to well-studied $D^0 \to K_S^0 \pi^+ \pi^-$ mode assuming

$$A\left(D^0 \to K_L^0(\pi\pi)_{k_{CP}}\right) = A\left(D^0 \to K_S^0(\pi\pi)_{k_{CP}}\right) \left(1 - 2\widehat{\boldsymbol{\rho}}_{k_{CP}} \tan^2 \theta_C\right)$$

• Significant deviations from 1 show U-spin symmetry breaking

Resonance	$ \hat{ ho} $
ho(770)	$1.93 \pm 0.27 \pm 0.42$
$\omega(782)$	$6.13 \pm 0.75 \pm 0.53$
$f_2(1270)$	$3.75 \pm 0.90 \pm 0.81$
$\rho(1450)$	$12.12 \pm 2.92 \pm 1.88$
$\pi\pi$ S-wave	$0.37 \pm 0.21 \pm 0.37$

Measured strong-phase differences agree with assumptions in $K_S^0 \pi^+ \pi^-$ analysis - but now with justified errors

Summary

- BESIII is an excellent laboratory for charm physics clean reconstruction and quantum correlations
- Exciting new measurements in amplitude analyses, leptonics, flavour physics
- Much more to come with the collaboration having recently finished collection of ~20fb⁻¹ data at E_{CM} =3.773 GeV (~7x larger)

Questions?