Precision measurements of kaon and pion decays at NA62

Evgueni Goudzovski

UNIVERSITY^{OF} BIRMINGHAM

<u>Outline</u>

- 1) The NA62 experiment at CERN
- 2) Measurements of K⁺ and π^0 decays with NA62 Run 1 data: K⁺ $\rightarrow \pi^+\mu^+\mu^-$, K⁺ $\rightarrow \pi^+\gamma\gamma$, K⁺ $\rightarrow \pi^0e^+\nu\gamma$, $\pi^0\rightarrow e^+e^-$.
- 3) Summary

BEACH 2024 Charleston, South Carolina • 6 June 2024

Kaon experiments at CERN

The NA62 setup

NA62 datasets

* Run 1 (2016–18): $N_{K} \sim 10^{13}$ useful K⁺ decays with the main trigger.

- ✓ Sample 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- ✓ Sample 2017 (160 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ✓ Sample 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- ✤ Run 2 (2021–): in progress (up to 3×10¹² ppp), approved till 2025.

2018

 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay

D'Ambrosio, Ecker, Isidori, Portoles JHEP 08 (1998) 004

Theory overview

 $K^{\pm}
ightarrow \pi^{\pm} \ell^+ \ell^-$ decays ($\ell = e, \mu$)

- Flavour-changing neutral-current processes
- Kinematic variable $z = m^2 (\ell^+ \ell^-) / m_K^2$
- ▶ Dominant contribution via virtual photon exchange $K^{\pm} \rightarrow \pi^{\pm}\gamma^* \rightarrow \pi^{\pm}\ell^+\ell^-$
- Form factor of the $K^{\pm} \rightarrow \pi^{\pm} \gamma^*$ transition: W(z)
- Chiral Perturbation Theory parameterization of W(z) at $\mathcal{O}(p^6)$:

 $W(z) = G_F m_K^2(\mathbf{a}_+ + \mathbf{b}_+ z) + W^{\pi\pi}(z)$

 a_+, b_+ : real parameters

 $W^{\pi\pi}(z)$: complex function, two-pion loop

Main goals of the NA62 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ measurement:

- Measure model-independent branching fraction $\mathcal{B}_{\pi\mu\mu}$
- Measure function $|W(z)|^2$
- Determine FF parameters a_+ and b_+

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay

JHEP 11 (2022) 11

- Dedicated di-muon trigger line.
- ↔ Normalisation: $K^+ \rightarrow \pi^+ \pi^- \pi^-$ decay.
- Effectively (3.48±0.09)×10¹² kaon decays.
- Signal candidates observed: 27679.
- Negligible background: about 8 events.

Analysis:

- Data divided in 50 equipopulated bins in *z*: $\left(\frac{d\Gamma(z)}{dz}\right)_{i} = \frac{N_{\pi\mu\mu,i}}{A_{\pi\mu\mu,i}} \cdot \frac{1}{\Delta z_{i}} \cdot \frac{1}{N_{K}} \cdot \frac{\hbar}{\tau_{K}}$
- Integrating $d\Gamma(z)/dz \rightarrow model-independent \mathcal{B}$
- $|W(z)|^2$ function values extracted from $d\Gamma(z)/dz$
- Fit of $|W(z)|^2$ data points \rightarrow ChPT form factor parameter measurement

 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay

- ★ A factor of 3 improvement on best previous $BR(K^+ \rightarrow \pi^+ \mu^+ \mu^-)$ measurement.
- ★ Measured form-factor parameters (a_+, b_+) are compatible between K⁺→ $\pi^+\mu^+\mu^-$ and K⁺→ $\pi^+e^+e^-$ decays: lepton universality.
- ★ Next step: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ and $K^+ \rightarrow \pi^+ e^+ e^-$ measurement with full dataset; dedicated LFU test, search for a scalar contribution

(see D'Ambrosio, Iyer, Mahmoudi, Neshatpout, arXiv:2404.03643)

K⁺→ π ⁺γγ decay

K⁺→ $\pi^+\gamma\gamma$ decay

Theory overview

- Long-distance dominated radiative decay
- Crucial test of Chiral Perturbation Theory
- Kinematic variables (q_i: photon momenta, p: kaon momentum)

$$z = rac{(q_1 + q_2)^2}{m_K^2} = rac{m_{\gamma\gamma}^2}{m_K^2}, \qquad y = rac{p \cdot (q_1 - q_2)}{m_K^2}$$

Differential decay width [D'Ambrosio and Portoles, PLB386 (1996) 403]

$$\frac{\partial^2 \Gamma}{\partial y \, \partial z} = \frac{m_K}{2^9 \pi^3} \left[z^2 \left(|A(\hat{c}, y, z) + B(z)|^2 + |C(z)|^2 \right) + \left(y^2 - \frac{1}{4} \lambda(1, r_\pi^2, z) \right)^2 |B(z)|^2 \right]$$

- * Decay spectrum and rate are determined by a single ChPT parameter c, plus external parameters extracted from $K \rightarrow 3\pi$ decays.
- The term B(z), and therefore the y-dependence, only appear at next-to-leading order, O(p⁶), in ChPT.
- Goals: measurement of c_6 and model-dependent BR.

ALPs in K⁺ $\rightarrow \pi^+a$, a $\rightarrow \gamma \gamma$ decay

PLB850 (2024) 138513

- Axion-like particle coupling to gluons: PBC scenario BC11.
- ♦ For $m_a < 3m_\pi$, the dominant decay mode is $a \rightarrow \gamma \gamma$.
- * Peak search performed in the z spectrum of the $K^+ \rightarrow \pi^+ \gamma \gamma$ decay.
- Sensitivity up to ALP lifetime of **3** ns (longer-lived ALP is invisible).

 K^+ → $\pi^0 e^+ v \gamma$ decay

 K^+ → $\pi^0 e^+ v \gamma$ decay

JHEP 09 (2023) 40

Theory and experiment overview

Inner Bremsstrahlung (IB) decay amplitude: \rightarrow divergent for $E_{\gamma} \rightarrow 0$ and $\theta_{e,\gamma} \rightarrow 0$ Theoretical predictions and experimental measurements for **3 sets** of cuts: minimal E_{γ} and $\theta_{e,\gamma}$ (in K^+ rest frame)

$$\mathsf{R}_{j} = \frac{\mathcal{B}(\mathsf{Ke3}\gamma^{j})}{\mathcal{B}(\mathsf{Ke3})} = \frac{\mathcal{B}(\mathsf{K}^{+} \to \pi^{0} e^{+} \nu \gamma \mid E_{\gamma}^{j}, \ \theta_{e,\gamma}^{j})}{\mathcal{B}(\mathsf{K}^{+} \to \pi^{0} e^{+} \nu(\gamma))}$$

	E_{γ} cut	$ heta_{m{e},\gamma}$ cut	O(p ⁶) ChPT	ISTRA+	OKA
			[EPJ C 50, 557]		
$R_1 (\times 10^2)$	$E_{\gamma} >$ 10 MeV	$ heta_{e,\gamma} > 10^\circ$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
$R_{2} (\times 10^{2})$	$E_{\gamma} >$ 30 MeV	$ heta_{e,\gamma} >$ 20 $^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
<i>R</i> ₃ (×10 ²)	$E_{\gamma} >$ 10 MeV	$0.6 < \cos heta_{e,\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

T-odd observable
$$\xi$$
 (*K*⁺ rest frame): $\xi = \frac{\overrightarrow{p_{\gamma}} \cdot (\overrightarrow{p_e} \times \overrightarrow{p_{\pi}})}{m_K^3}$; Asymmetry: $A_{\xi} = \frac{N_+ - N_-}{N_+ + N_-}$
(SM expectation ~10⁻⁴)

ChPT calculation: Kubis, Muller, Gasser, Schmid, EPJ50 (2007) 557

 K^+ → $\pi^0 e^+ v \gamma$ decay

JHEP 09 (2023) 40

Downscaled control and non-muon trigger lines

- Normalization: $K^+ \rightarrow \pi^0 e^+ \nu$ $N(\text{events}) \approx 6.6 \times 10^7, 10^{-4} \text{ background}$
- $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ signal samples, 3 regions S_i :
 - \rightarrow N(events) \approx **1.3**×10⁵ for selection S₁
 - \rightarrow Background: < 1%
 - \rightarrow Main source of bkg.: accidental activity
- Evaluation of R_j :

$$m{R}_{j} = rac{\mathcal{B}(\mathcal{K}_{e3\gamma^{j}})}{\mathcal{B}(\mathcal{K}_{e3})} = rac{m{N}_{\mathcal{K}e3\gamma^{j}}^{\mathrm{obs}} - m{N}_{\mathcal{K}e3\gamma^{j}}^{\mathrm{bkg}}}{m{N}_{\mathcal{K}e3}^{\mathrm{obs}} - m{N}_{\mathcal{K}e3}^{\mathrm{bkg}}} \cdot rac{m{A}_{\mathcal{K}e3}}{m{A}_{\mathcal{K}e3\gamma^{j}}} \cdot rac{m{\epsilon}_{\mathcal{K}e3}^{\mathrm{trig}}}{m{\epsilon}_{\mathcal{K}e3\gamma^{j}}^{\mathrm{trig}}}.$$

Evaluation of asymmetry:

$$m{A}_{\xi}^{\mathsf{NA62}} = m{A}_{\xi}^{\mathsf{Data}} - m{A}_{\xi}^{\mathsf{MC}}$$

 K^+ → $\pi^0 e^+ v \gamma$ decay

JHEP 09 (2023) 40

Results

Ratio measurement:

	$O(p^6)$ ChPT	ISTRA+	OKA	NA62
$R_1 (\times 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.715 \pm 0.005 \pm 0.010$
$R_2 (\times 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.609 \pm 0.003 \pm 0.006$
$R_{3} (\times 10^{2})$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.533 \pm 0.003 \pm 0.004$

- Precision improved by a factor > 2
- About 5% smaller value than ChPT prediction

Asymmetry measurement:

	ISTRA+	OKA	NA62
$A_{\xi}(S_1)$ (×10 ³)		$-0.1\pm3.9\pm1.7$	$-\textbf{1.2}\pm\textbf{2.8}\pm\textbf{1.9}$
$A_{\xi}(S_2)$ (×10 ³)		$-4.4\pm7.9\pm1.9$	$-\textbf{3.4}\pm\textbf{4.3}\pm\textbf{3.0}$
$A_{\xi}(S_3) \ (imes 10^3)$	15 ± 21	$7.0\pm8.1\pm1.5$	$-9.1\pm5.1\pm3.5$

- ♦ No T-odd asymmetry observed at the 10^{-3} level.
- Sensitivity does not reach the SM expectation.

Theory overview and experimental status

(loop and helicity suppressed decay)

• Experimentally observable:

 $\mathcal{B}(\pi^0
ightarrow oldsymbol{e}^+ oldsymbol{e}^-(\gamma), x > x_{ ext{cut}}), \quad x = m_{ee}^2/m_{\pi^0}^2$

- Dalitz decay $\pi^0
 ightarrow \gamma \, e^+ e^-$ dominant in low-x region
- For $x > x_{
 m cut} =$ 0.95, Dalitz decay pprox 3.3% of $\mathcal{B}(ilde{\pi^0} o e^+e^-(\gamma))$
- Previous best measurement by KTeV [Phys.Rev.D 75 (2007) 012004]
 B_{KTeV}(π⁰ → e⁺e⁻(γ), x > 0.95) = (6.44 ± 0.25 ± 0.22) × 10⁻⁸
- Using latest radiative corrections in [JHEP 10 (2011) 122], [Eur.Phys.J.C 74 (2014) 8, 3010], the result can be extrapolated and compared with theory:

Leading-order Feynman diagram

- Downscaled electron multi-track trigger line. [preliminary, to be published]
- Signal decay chain: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^-$.
- ✤ Normalisation: K⁺→π⁺e⁺e⁻ decay (selection: m_{ee} >140 MeV/c²), effectively (8.62±0.27)×10¹¹ kaon decays.

Good agreement with SM expectation

E. Goudzovski / BEACH 2024, Charleston, 6 June 2024

[preliminary, to be published]

- ✤ Irreducible K⁺→ $\pi^+e^+e^-$ background.
- ♦ Other backgrounds:
 K⁺→π⁺π⁰_D, π⁰_D→γe⁺e⁻ with a lost or converted photon, and
 - $K^+ \rightarrow \pi^+ \pi^0_{DD}$ with two undetected e^{\pm} .
- Signal yield: 597±29 events.
- Measurement of the signal BR:

$\mathcal{B}_{NA62}(\pi^0 o oldsymbol{e}^+ oldsymbol{e}^-(\gamma), x > 0.95) =$	=
$=$ (5.86 \pm 0.37) $ imes$ 10 $^{-8}$	

	$\delta \mathcal{B} \left[10^{-8} \right]$	$\delta {\cal B} / {\cal B}$ [%]
Statistical uncertainty	0.30	5.1
Total external uncertainty	0.19	3.2
Total systematic uncertainty	0.11	1.9
Trigger efficiency	0.07	1.2
Radiative corrections for $\pi^0 ightarrow e^+ e^-$	0.05	0.9
Background	0.04	0.7
Reconstruction and particle identification	0.04	0.7
Beam simulation	0.03	0.5

- NA62 Run 1 (2016–2018) dataset exploited for precision studies rare kaon and pion decays:
 - ✓ $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ [BR~10⁻⁷; JHEP 11 (2022) 11]
 - ✓ $K^+ \rightarrow \pi^+ \gamma \gamma$ [BR~10⁻⁶; PLB850 (2024) 138513]
 - ✓ **K**⁺→ π^{0} **e**⁺ $\nu\gamma$ [BR~10⁻⁴; JHEP 09 (2023) 40]
 - ✓ $\pi^0 \rightarrow e^+e^-$ [BR~10⁻⁸; preliminary, to be published]
- Uncertainties are generally dominated by statistical errors.
- NA62 is collecting data until 2025 (or 2026). New results, including those based on the full dataset, are expected in near future.