

Search for charged Lepton Flavor Violation at BESII

Xudong Yu Peking University (On behalf of BESIII collaboration)

BEACH 2024 XV International Conference on Beauty, Charm, Hyperons in Hadronic Interactions 3-7 June 2024 **Courtyard Charleston Historic District** Charleston, SC

Xudong Yu (Peking University)

Outline

- Introduction \rightarrow
- → BESIII experiment
- → Highlight results of cLFV at BESIII

•
$$J/\psi \to e\tau$$

•
$$J/\psi \to e\mu$$

- → Prospect and ongoing analysis
- → Summary & outlook

Introduction

Xudong Yu (Peking University)

cLFV

 J/ψ cLFV models

Xudong Yu (Peking University)

Diagram via leptoquarks

Diagram via a Z' in TC2 models

Phys. Rev. D 67, 114001 (2003) Phys. Lett. B 496, 89 (2000)

cLFV - experimental search

→ Experimental searches in leptons (μ , τ), pseudos	calar mesons
♦ $\mathscr{B}(\mu^+ \to e^+ \gamma) < 3.1 \times 10^{-13} @ 90 \% CL$	MEG II
♦ $\mathscr{B}(\tau^+ \to e^+ \gamma) < 3.3 \times 10^{-8} @ 90 \% CL$	BABAR
♦ $\mathscr{B}(\mu \to 3e) < 1.0 \times 10^{-12} @ 90 \% \text{ CL}$	SINDRUM
	ATLAS
$ \mathfrak{B}(H^0 \to e^{\pm} \mu^{\mp}) < 4.7 \times 10^{-5} @95 \% \text{ CL} $	CMS
$ \mathfrak{B}(\phi \to e^{\pm} \mu^{\mp}) < 2 \times 10^{-6} @ 90 \% \text{ CL} $	SND
$ \mathfrak{B}(\Upsilon(1S) \to e^{\pm}\mu^{\mp}) < 3.6 \times 10^{-7} @ 90 \% \text{ CL} $	Belle
$\bigstar \ \mathscr{B}(J/\psi \to e^{\pm}\tau^{\mp}) < 7.1 \times 10^{-8} @ 90 \% \text{ CL}$	BESIII
$\bigstar \ \mathscr{B}(J/\psi \to e^{\pm}\mu^{\mp}) < 4.5 \times 10^{-9} @ 90 \% \text{ CL}$	BESIII
ب	

→ Prospect on future experiments

- ♦ Mu2e & COMET: $\mu N \rightarrow eN$
 - Improve current limit by a factor of 10^4
 - Search for New Physics with mass scale up to 10^4 TeV
 - Next goal: $< 6 \times 10^{-17} @ 90 \% CL$
- MEGII & Mu3e: similar beam requirements
 - Intensity $\mathcal{O}(10^8 \text{ muons/s})$, low momentum p = 28 MeV/c
 - MEGII aiming at sensitivity down to $6 \times 10^{-14} @ 90 \% CL$

Search for cLFV at BESIII

(K, π, B) , vector mesons $(\phi, J/\psi, \Upsilon)$, Z and H^0 decays

Eur. Phys. J. C 84, 216 (2024) Phys. Rev. Lett. 104, 021802 (2010) Nucl. Phys. B 299, 1 (1988) Phys. Rev. D 108, 032015 (2023) Phys. Rev. D 108, 072004 (2023) Phys. Rev. D 81, 057102 (2010) JHEP 05, 095 (2022) Phys. Rev. D 103, 112007 (2021) Sci. Chin. Mech. Astron. 66, 2 (2023)

cLFV - J/ψ decays

- → Theoretical predictions in various extension SM

 - * $\mathscr{B}(J/\psi \to e\mu)$: $10^{-16} \sim 10^{-9} @ 90 \% CL$
 - * $\mathscr{B}(J/\psi \to e(\mu)\tau) : 10^{-10} \sim 10^{-8} @ 90 \% CL$

Previous experimental results: \rightarrow

Decay mode	BESII UL (90% CL)	BESIII UL (90% CL)
Number of J/ψ	58×10 ⁶	225.3×10 ⁶
$\mathcal{B}(J/\psi \to e\mu)$	$< 1.1 \times 10^{-6}$	$< 1.6 \times 10^{-7}$
$\mathcal{B}(J/\psi \to e\tau)$	$< 8.3 \times 10^{-6}$	_
$\mathcal{B}(J/\psi\to\mu\tau)$	$< 2.0 \times 10^{-6}$	_

Model-independent methods, rotating mass matrix, unparticle physics, effective Lagrangian, BLMSSM

Phys. Rev. D 63, 016003 (2000) Phys. Rev. D 63, 016006 (2001) Phys. Rev. D 83, 115015 (2011) Mod. Phys. Lett. A 27, 1250172 (2012) Phys. Rev. D 94, 074023 (2016) Phys. Rev. D 97, 056027 (2018)

BESIII experiment

Xudong Yu (Peking University)

BEPCII

Beam energy: 1.0-2.475 GeV Optimum energy: 1.89 GeV

Xudong Yu (Peking University)

Linac ~ 200 m

2021: energy upgrade to 2.48 GeV **2004: started BEPCII upgrade, BESIII construction 2008: test run** 2009-now: BESIII physics run

- **1989-2004 (BEPC)**:
 - $\mathcal{L}_{\text{peak}} = 1.0 \times 10^{31} \text{ cm}^{-2} \cdot \text{s}^{-1}$
- 2009-now (BEPCII): $\mathcal{L}_{\text{peak}} = 1.1 \times 10^{33} \text{ cm}^{-2} \cdot \text{s}^{-1}$

BESIII detector

Xudong Yu (Peking University)

Data samples at BESII

BEACH2024

Xudong Yu (Peking University)

11

$J/\psi \rightarrow e\tau$

$J/\psi \rightarrow e\tau$

- \rightarrow Analyzing 10 billion J/ψ data at BESIII
 - Data sample I: 1310.6 Million J/ψ in 2009 and 2012
 - Data sample II: 8774.0 Million J/ψ in 2018 and 2019
- \rightarrow Decay topology: $J/\psi \rightarrow e\tau, \tau \rightarrow \pi \pi^0 \nu_{\tau}$
 - Select one electron and one charged pion
 - At least two photon showers and one π^0
 - Monochromatic electron $\Rightarrow P_e \& M_{e recoil}$
 - One undetected neutrino with missing energy $E_{\rm miss} > 0.43 \, {\rm GeV}$

Phys. Rev. D 103, 112007 (2021)

Analysis method

- Partial reconstruction \rightarrow
 - Missing energy $E_{\text{miss}} = E_{\text{CMS}} E_e E_{\pi} E_{\pi^0}$

$$\bullet \quad U_{\text{miss}} = E_{\text{miss}} - c | \overrightarrow{P}_{\text{miss}} |$$

 \rightarrow

Background study & signal efficiency

- Continuum background (radiative Bhabha) \rightarrow
 - Control sample: 150 pb⁻¹ $\sqrt{s} = 3.08$ GeV and 2.93 fb⁻¹ $\sqrt{s} = 3.773$ GeV
 - Normalized by 1/s (uncertainty has been considered)
 - $N_{\text{cont}} = 5.8 \pm 1.8(37.9 \pm 11.5)$ for data sample I (II)

$\rightarrow J/\psi$ decay background

- Inclusive MC + exclusive MC ($J/\psi \rightarrow \pi^+\pi^-\pi^0, \rho\pi, \omega f_2(1270), \bar{p}n\pi^+$)
- The uncertainty in J/ψ decay modeling has been considered by LUNDCHARM ↔ $N_{\rm bko}^{J/\psi} = 1.1 \pm 0.8(25.7 \pm 6.4)$ for data sample I

\rightarrow Signal efficiency

- * (20.24 ± 0.05) % $((19.37 \pm 0.02)$ %) for data s
- Systematic uncertainties are studies

Systematic uncertainties

Sources	Sample I	
Number of J/ψ	0.5%	
Quoted BF*	0.4%	
MC model	0.6%	
Pion PID*	1.0%	
Pion tracking*	1.0%	
Electron PID	0.4%	
Electron tracking*	0.1%	
Photon detection*	1.0%	
π^0 reconstruction*	1.0%	
P_e and $M_{e \text{ recoil}}$ requirements	3.0%	
$E_{\rm miss}$ requirement	1.0%	
Total uncertainty	3.9%	
	Sources Number of J/ψ Quoted BF* MC model Pion PID* Pion tracking* Electron PID Electron tracking* Photon detection* π^0 reconstruction* P_e and M_{e_recoil} requirements E_{miss} requirement Total uncertainty	

Upper limit result

- Maximum likelihood estimator, extended from the profile-likelihood approach \rightarrow
 - Parameter of interest $\mathscr{B}(J/\psi \to e\tau)$
 - Nuisance parameters $\theta = (\epsilon_{eff}, N_{bkg})$

$\Rightarrow \mathscr{B}(J/\psi \to e\tau) < 7.5 \times 10^{-8} @ 90 \% \text{ CL}$

Improve the previous best limit by two orders of magnitude

comparable with the theoretical prediction

 $\mathcal{L}(\mathcal{B}(J/\psi \to e^{\pm}\tau^{\mp}), \theta)$ $= P(N_{\rm obs}, \mathcal{B}(J/\psi \to e^{\pm}\tau^{\mp}) \cdot N_{J/\psi} \cdot \mathcal{B}_{\tau^{\mp} \to \pi^{\mp}\pi^{0}\nu_{\tau}} \cdot \epsilon_{\rm eff} + N_{\rm bkg})$ $\cdot G(\epsilon_{\text{eff}}^{\text{mc}}, \epsilon_{\text{eff}}, \sigma_{\text{eff}}^{\text{mc}}) \cdot G(N_{\text{bkg}}^{\text{exp}}, N_{\text{bkg}}, \sigma_{\text{bkg}}^{\text{exp}}),$

$J/\psi \rightarrow e\mu$

Search for cLFV at BESIII

3 Jun, 2024

THREE-BODY!

FROM THE CREATORS OF GAME OF THRONES

A NETFLIX SERIES

3 BODY PROBLEM

NOTE: Three-body is a scientific fiction written by Cixin Liu. In 2023 and 2024, it was adapted for television.

ONLY ON

MARCH 21

$J/\psi \rightarrow e\mu$ observed! Physics doesn't exist!

$J/\psi \rightarrow e\mu$

- \rightarrow Analyzing (8.998 ± 0.040) × 10⁹ J/ ψ events (without 2012 data)
- → Select two back-to-back oppositely charged tracks
 - To reject cosmic rays, TOF timing difference < 1.0 ns
 - Acollinearity angle $|\Delta \theta| = |180^\circ (\theta_1 + \theta_2)| < 1.2^\circ$
 - Acoplanarity angle $|\Delta \phi| = |180^{\circ} |\phi_1 + \phi_2|| < 1.5^{\circ}$
- Utilizing dE/dx, deposited energy and MUC hit informations for PID \rightarrow

Electron ID

- Not associated in the MUC
- $-1.5 < \chi^{e}_{dE/dx} < 1.5$
 - $\chi^{e}_{dE/dx}$: the difference between measured and expected dE/dxunder the electron hypothesis normalized by the dE/dx resolution)
- *E*/*p* > 0.96
 - E: the deposited energy in the EMC; p: the modulus of the momentum measured from MDC

Xudong Yu (Peking University)

Analysis method

- \rightarrow Signal region: $|\sum \vec{p}|/\sqrt{s} \le 0.02$ and $0.95 \le E_{vis}/\sqrt{s} \le 1.04$
 - $| \sum \vec{p} |$: The magnitude of the vector sum of the momenta
 - $E_{\rm vis}$: The total reconstructed energy of e and μ
 - 85% of the signal events fall into the signal region
- 29 candidate events are observed in data sample \rightarrow

Background study & signal efficiency

- → Continuum background $(e^+e^- \rightarrow e^+e^-(\gamma), \mu^+\mu^-(\gamma))$
 - Control sample: $\sqrt{s} = 3.773 \,\text{GeV}, 3.510 \,\text{GeV}, 3.080 \,\text{GeV}$
 - 1/s energy-dependence of cross section
 - ♦ $N_{\rm bkg2}^{\rm norm} = 12.0 \pm 3.7$
- $\rightarrow J/\psi$ decay background $(J/\psi \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, K^+K^-, p\bar{p})$
 - Inclusive MC + exclusive MC
 - * $N_{\rm bkg1}^{\rm norm} = 24.8 \pm 1.5$
- \rightarrow Detection efficiency: (21.18 ± 0.13) %
 - Systematic uncertainties are studied

Systematic uncertainties

Source	Relative uncertainty (%)
Tracking and PID	13
TOF timing	0.52
Photon veto	0.83
$ \Delta \theta $ and $ \Delta \phi $ requirement	2.6
Total	14

Control sample $e^+e^-(J/\psi) \rightarrow e^+e^-/\mu^+\mu^-$ are used

Upper limit result

- Maximum likelihood estimator, extended from the profile-likelihood approach \rightarrow
 - Parameter of interest $\mathscr{B}(J/\psi \rightarrow e\mu)$
 - Nuisance parameters $\theta = (\epsilon_{sig}, N_{J/\psi}, N_{bkg1}, N_{bkg2})$

•
$$\mathscr{B}(J/\psi \to e\mu) < 4.5 \times 10^{-9} @ 90 \% CL$$

- Improve the previous limit by a factor of more than 30
- The **most stringent limit** on cLFV in heavy quarkonium systems
- Provides constraints on the parameter spaces of new physics models

$$\mathcal{L}(\mathcal{B}, \epsilon_{\mathrm{sig}}, N_{J/\psi}, N_{\mathrm{bkg1}}, N_{\mathrm{bkg2}})$$

$$= \mathcal{P}(N_{\mathrm{obs}}|N_{J/\psi} \cdot \mathcal{B} \cdot \epsilon_{\mathrm{sig}} + N_{\mathrm{bkg1}} + N_{\mathrm{bkg2}})$$

$$\cdot \mathcal{G}(\epsilon_{\mathrm{sig}}|\epsilon_{\mathrm{sig}}^{\mathrm{MC}}, \epsilon_{\mathrm{sig}}^{\mathrm{MC}} \cdot \sigma_{\mathrm{sig}}^{\mathrm{EFF}}) \cdot \mathcal{P}\left(N_{\mathrm{bkg1}}^{J/\psi-\mathrm{MC}}|N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg2}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg1}}/N_{\mathrm{bkg2}}/N_{\mathrm{bk$$

Phys. Rev. D 97, 056027 (2018)

Prospect and ongoing analysis

Xudong Yu (Peking University)

Search for cLFV at BESIII

3 Jun, 2024

Prospect and ongoing analysis

- Update of J/ψ two-body cLFV decays with 10B events is ongoing \rightarrow
 - $I/\psi \to e\tau, \tau \to \mu\nu\nu$
 - $J/\psi \rightarrow \mu \tau$
 - Expected sensitivity $\mathcal{O}(10^{-8})$

- * $0^-: \eta', \eta_c(1S), D, D_s$

*
$$1^-: J/\psi, \psi(3686)$$

- * $J^+: \chi_{cI}, h_c(1P)$
- Radiative cLFV also possible \rightarrow
 - Sensitive to more operators

	J^P	Generate	$e\mu$	$e\tau$	$\mu \tau$	$\gamma \ell_1 \bar{\ell}$
η'	0-	$J/\psi ightarrow \gamma \eta^{\prime}, (5.25\pm 0.07) imes 10^{-3}$	$4.7 imes 10^{-4}$	_	_	
$\eta_c(1S)$	0-	$J/\psi \to \gamma \eta_c(1S), (1.7 \pm 0.4) \%$	no result	no result	no result	
J/ψ	1-	$e^+e^- \to J/\psi, 1\times 10^{10}$	4.5×10^{-9}	7.5×10^{-8}	$2.0 imes 10^{-6}$	
$\psi(3686)$	1-	$e^+e^- \rightarrow \psi(3686), 2.7\times 10^9$	no result	no result	no result	no res
χ_{cJ}	J^+	$\psi(2S) \to \gamma \chi_{cJ}, \sim 10 \%$	no result	no result	no result	
$h_c(1P)$	1+	$\psi(2S) \to \pi^0 h_c(1P), (7 \pm 5) \times 10^{-4}$	no result	no result	no result	

 \rightarrow With large J/ψ , $\psi(3686)$, $\psi(3770)$ etc. samples, cLFV searches in many other states also ongoing States with different quantum numbers sensitive to different operators in EFT [PRD 94, 074023 (2016)]

Most of them not searched

Summary & outlook

Xudong Yu (Peking University)

Summary & outlook

- \rightarrow BESIII has great potentials with unique (and increasing) datasets and analysis techniques, performed wide range study of new physics.
- \rightarrow The latest searching results for cLFV decays are reported.
- $\Rightarrow \mathscr{B}(J/\psi \rightarrow e\tau) < 7.5 \times 10^{-8} @ 90 \% CL$
- $\Rightarrow \mathscr{B}(J/\psi \rightarrow e\mu) < 4.5 \times 10^{-9} @ 90 \% CL$, currently the most stringent limit on cLFV in heavy quarkonium sector

Thanks for your attention!

Backup

Xudong Yu (Peking University)

BEACH2024

BESIII physics data

Physics of BESIII NSR 8, (11) 2021

PRINT ISSN 2095-5138 ONLINE ISSN 2053-714X academic.oup.com/ns

10 billion J/ψ collected by BESIII CPC 46, 074001 (2022)

BLMSSM

 $G_{BL} = SU(3)_C \bigotimes SU(2)_L \bigotimes U(1)_Y \bigotimes U(1)_B \bigotimes U(1)_L$

The superpotential of the BLMSSM is written as:

$$\mathcal{W}_{\text{BLMSSM}} = \mathcal{W}_{\text{MSS}}$$

 $(m_{\tilde{L}}^2)_{ii} = (m_{\tilde{R}}^2)_{ii}$

In the BLMSSM, the local B and L are spontaneously broken at the TeV scale.

 $\mathbf{W}_{R} + \mathcal{W}_{R} + \mathcal{W}_{L} + \mathcal{W}_{X}$

Parameters in likelihood function

$$J/\psi \to e\tau$$

TABLE II. A summ	ary of the analysis res	ults. See the text	Parameter	Value
for details.			$N_{\rm obs}$	29
Results	Sample I	Sample II	$N_{J/\psi}^{ m data}$	8.998×10^{9}
λ7	12	I	$\delta N_{J/\psi}^{ m data}$	0.040×10^9
$N_{\rm obs}$ $N_{\rm hbc}^{\rm exp}$	13 6.9	63.6	$\epsilon_{ m sig}^{ m MC}$	21%
$\sigma_{\rm bkg}^{\rm exp}$	1.9	13.2	$\sigma^{ m EFF}_{ m sig}$	14%
$\epsilon_{\rm eff}^{\rm mc}$	20.24%	19.37%	$N_{\rm bkg1}^{J/\psi-{ m MC}}$	275
$\sigma_{ m eff}^{ m mc}$	0.79%	0.79%	N ^{3.773} _{cont}	10
BF (90% C.L.)	7.5 ×	< 10 ⁻⁸	$N_{\rm cont}^{3.510}$	1
			$N_{\rm cont}^{3.080}$	0
			f_1	0.09090
			$f_2^{3.773}$	1.3416
			$f_2^{3.510}$	7.4390
			$f_2^{3.080}$	15.553

$J/\psi \to e\mu$

