Observation of the $\Sigma^+ \rightarrow \rho \mu^+ \mu^-$ rare decay at LHCb

Gabriele Martelli
Istituto Nazionale di Fisica Nucleare - Sezione di Perugia
On behalf of the LHCb collaboration

Charleston, 3-7 June 2024
BEACH 2024: XV International Conference on Beauty, Charm, Hyperons in Hadronic Interactions
Large Hadron Collider (LHC)
- Located at CERN
- World largest particle collider
 - 26.7 km long, 100 m underground
- Proton/heavy ion beams collide in **four points**
Large Hadron Collider (LHC)
- Located at CERN
- World largest particle collider
 - 26.7 km long, 100 m underground
- Proton/heavy ion beams collide in four points

Large Hadron Collider beauty (LHCb)
- Investigate the quark flavour sector
 - CP violation
 - Rare decays with possible New Physics (NP) hints
- Positioned in the forward region relative to the collision point
- Large production $b\bar{b}$ and $c\bar{c}$ cross sections within its acceptance
 - 72(144) µb and 1.4(2.6) mb at $\sqrt{s} = 7(13)$ TeV
Large Hadron Collider (LHC)
- Located at CERN
- World largest particle collider
 - 26.7 km long, 100 m underground
- Proton/heavy ion beams collide in four points

Large Hadron Collider beauty (LHCb)
- Investigate the quark flavour sector
 - CP violation
 - Rare decays with possible New Physics (NP) hints
- Positioned in the forward region relative to the collision point
- Large production $b\bar{b}$ and $c\bar{c}$ cross sections within its acceptance
 - $72\pm144\,\mu$b and $1.4\pm2.6\,mb$ at $\sqrt{s} = 7\pm13\,TeV$

22 countries are involved in the collaboration
- About 1700 scientists, engineers and technicians
- More than 700 articles published up-to-date
[https://lhcb.web.cern.ch/]

Observation of the $\Sigma^{+}\rightarrow p\mu\mu$ rare decay at LHCb - G. Martelli
Observation of the $\Sigma \rightarrow p\mu\mu$ rare decay at LHCb - G. Martelli

\[\sigma_{ip} = \left[15 + \frac{29}{p_T(GeV)} \right] \mu m \]
\[\Sigma^+ \to p \mu^+ \mu^- \] - The decay

\[\Sigma^+ \to p \mu^+ \mu^- \] is a FCNC process allowed only at loop level

- Short distance SM \(\mathcal{B} \sim \mathcal{O}(10^{-12}) \)
- Dominated by long distance contributions from \(\Sigma^+ \to (N \pi)^+ \) decays

\[1.6 \times 10^{-8} < \mathcal{B}(\Sigma^+ \to p \mu^+ \mu^-) < 9.1 \times 10^{-8} \]

[JHEP 1810 (2018) 040]
\[\Sigma^+ \rightarrow p\mu^+\mu^- - \text{The decay} \]

- \(\Sigma^+ \rightarrow p\mu^+\mu^- \) is a FCNC process allowed only at loop level
 - Short distance SM \(B \sim O(10^{-12}) \)
 - Dominated by long distance contributions from \(\Sigma^+ \rightarrow (N\pi)^+ \) decays
 \[1.6 \times 10^{-8} < B(\Sigma^+ \rightarrow p\mu^+\mu^-) < 9.1 \times 10^{-8} \]
 [JHEP 1810 (2018) 040]

- First evidence from the HyperCP experiment
 - Three candidates observed in absence of background
 - Measured branching fraction:
 \(B(\Sigma^+ \rightarrow p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8} \)
$\Sigma^+ \rightarrow p\mu^+\mu^-$ - The decay

- $\Sigma^+ \rightarrow p\mu^+\mu^-$ is a FCNC process allowed only at loop level
 - Short distance SM $B \sim O(10^{-12})$
 - Dominated by long distance contributions from $\Sigma^+ \rightarrow (N\pi)^+$ decays $1.6 \times 10^{-8} < B(\Sigma^+ \rightarrow p\mu^+\mu^-) < 9.1 \times 10^{-8}$
 [JHEP 1810 (2018) 040]

- First evidence from the HyperCP experiment
 - Three candidates observed in absence of background
 - Measured branching fraction:
 $B(\Sigma^+ \rightarrow p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$

- The Anomaly
 - Same dimuon invariant mass for the observed candidates
 - Possible $\Sigma^+ \rightarrow pX^0(\rightarrow \mu^+\mu^-)$ decay
 $m_{X^0} = 214.3 \pm 0.5$ MeV
 $B(\Sigma^+ \rightarrow pX^0(\rightarrow \mu^+\mu^-)) = (3.1^{+2.4}_{-1.9} \pm 1.5) \times 10^{-8}$
Many BSM hypotheses

“Sgoldstino interpretation of HyperCP events”

“On the possibility of a new boson X^0 (214MeV) in $\Sigma^+ \rightarrow p\mu^+\mu^-$”

“Does the HyperCP Evidence for the Decay $\Sigma^+ \rightarrow p\mu^+\mu^-$ Indicate a Light Pseudoscalar Higgs Boson?”

“U-boson and the HyperCP exotic events”
Many BSM hypotheses

“Sgoldstino interpretation of HyperCP events”

“On the possibility of a new boson X^0 (214MeV) in $\Sigma^+ \to p\mu^+\mu^-$”

“Does the HyperCP Evidence for the Decay $\Sigma^+ \to p\mu^+\mu^-$ Indicate a Light Pseudoscalar Higgs Boson?”

“U-boson and the HyperCP exotic events”

New searches for low dimuon mass resonances

$\Upsilon(2S, 3S) \to \gamma\mu^+\mu^-$

$B^0 \to K^0\mu^+\mu^-$
$B^0 \to \rho^0\mu^+\mu^-$

$B^0 \to \mu^+\mu^-\mu^+\mu^-$

$B^0 \to K^0\mu^+\mu^-$

$J/\psi \to \gamma\mu^+\mu^-$
Many BSM hypotheses

“Sgoldstino interpretation of HyperCP events”

“On the possibility of a new boson X^0 (214 MeV) in $\Sigma^+ \to p \mu^+ \mu^-$”

“Does the HyperCP Evidence for the Decay $\Sigma^+ \to p \mu^+ \mu^-$ Indicate a Light Pseudoscalar Higgs Boson?”

“U-boson and the HyperCP exotic events”

New searches for low dimuon mass resonances

$\Upsilon(2S, 3S) \to \gamma \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$
$B^0 \to \rho^0 \mu^+ \mu^-$

$B^0 \to \mu^+ \mu^- \mu^+ \mu^-$

$B^0 \to K^0 \mu^+ \mu^-$

$J/\psi \to \gamma \mu^+ \mu^-$
“Evidence for the rare decay $\Sigma^+ \rightarrow p\mu^+\mu^-$”
- Run 1 dataset
 $\sqrt{s} = 7.8$ TeV, $\mathcal{L} = 3.0$ fb$^{-1}$

Stronger evidence by LHCb
- Excess of signal candidates w.r.t. background
 $N_{\Sigma^+ \rightarrow p\mu^+\mu^-} = (10.2^{+3.9}_{-3.5})$
- Measured branching fraction:
 $\mathcal{B}(\Sigma^+ \rightarrow p\mu^+\mu^-) = (2.2^{+0.9+1.5}_{-0.8-1.1}) \times 10^{-8}$
- Consistent with SM prediction

Observation of the $\Sigma \rightarrow p\mu\mu$ rare decay at LHCb - G. Martelli
“Evidence for the rare decay $\Sigma^+ \rightarrow p\mu^+\mu^-$”

- Run 1 dataset
 $\sqrt{s} = 7,8$ TeV, $\mathcal{L} = 3.0$ fb$^{-1}$

Stronger evidence by LHCb

- Excess of signal candidates w.r.t. background
 $N_{\Sigma^+ \rightarrow p\mu^+\mu^-} = (10.2^{+3.9}_{-3.5})$
- Measured branching fraction:
 $\mathcal{B}(\Sigma^+ \rightarrow p\mu^+\mu^-) = (2.2^{+0.9+1.5}_{-0.8-1.1}) \times 10^{-8}$
- Consistent with SM prediction

Search for the X^0 resonance

- No significant peak found in the $m_{\mu^+\mu^-}$ distribution
- Upper limit at 90% C.L.
 $\mathcal{B}(\Sigma^+ \rightarrow pX^0(\rightarrow \mu^+\mu^-)) < 1.4 \times 10^{-8}$
- HyperCP result central value excluded
New $\Sigma^+ \rightarrow p\mu^+\mu^-$ results by BESIII [Phys. Rev. Lett. 130 (2023) 211901]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BESIII</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B} \left(10^{-3}\right)$</td>
<td>$0.996 \pm 0.021 \pm 0.018$</td>
<td>1.23 ± 0.05</td>
</tr>
<tr>
<td>α</td>
<td>$-0.651 \pm 0.056 \pm 0.020$</td>
<td>-0.76 ± 0.08</td>
</tr>
</tbody>
</table>

- $\Sigma^+ \rightarrow p\mu^+\mu^-$ and $\Sigma^+ \rightarrow p\gamma$ share the same form-factors

$$\Gamma = \frac{G_F e^2}{\pi} (a^2 + b^2) E_\gamma^3 \quad \alpha = \frac{2\Re[ab^*]}{a^2 + b^2}$$

- $\mathcal{B}(\Sigma^+ \rightarrow p\mu^+\mu^-)$ prediction will change with latest BESIII input
New $\Sigma^+ \to p\mu^+\mu^-$ results by BESIII [Phys. Rev. Lett. 130 (2023) 211901]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BESIII</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \left(10^{-3}\right)$</td>
<td>$0.996 \pm 0.021 \pm 0.018$</td>
<td>1.23 ± 0.05</td>
</tr>
<tr>
<td>α</td>
<td>$-0.651 \pm 0.056 \pm 0.020$</td>
<td>-0.76 ± 0.08</td>
</tr>
</tbody>
</table>

- $\Sigma^+ \to p\mu^+\mu^-$ and $\Sigma^+ \to p\gamma$ share the same form-factors
 $$\Gamma = \frac{G_F^2 e^2}{\pi} (a^2 + b^2) E_\gamma^3 \quad \alpha = \frac{2R[ab^*]}{a^2 + b^2}$$

- $B(\Sigma^+ \to p\mu^+\mu^-)$ prediction will change with latest BESIII input

Chiral perturbation theory (χPT)
- Relativistic and heavy baryon approaches
- Four-fold degeneracy in each method [arXiv:2404.15268]

Experiments should be able to solve it

<table>
<thead>
<tr>
<th>Re a (MeV)</th>
<th>Re b (MeV)</th>
<th>$10^8 B_{\mu\mu}$</th>
<th>$10^8 B_{\mu\mu}^{Re(a,b)=0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12.15 ± 0.24</td>
<td>4.78 ± 0.42</td>
<td>2.7 ± 0.2</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>-4.78 ± 0.42</td>
<td>12.15 ± 0.24</td>
<td>7.8 ± 0.3</td>
<td>5.8 ± 0.2</td>
</tr>
<tr>
<td>4.78 ± 0.42</td>
<td>-12.15 ± 0.24</td>
<td>4.2 ± 0.2</td>
<td>5.8 ± 0.2</td>
</tr>
<tr>
<td>12.15 ± 0.24</td>
<td>-4.78 ± 0.42</td>
<td>1.2 ± 0.1</td>
<td>1.8 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Re a (MeV)</th>
<th>Re b (MeV)</th>
<th>$10^8 B_{\mu\mu}$</th>
<th>$10^8 B_{\mu\mu}^{Re(a,b)=0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-9.74 ± 0.54</td>
<td>6.17 ± 0.74</td>
<td>3.7 ± 0.5</td>
<td>2.7 ± 0.3</td>
</tr>
<tr>
<td>-6.17 ± 0.74</td>
<td>9.74 ± 0.54</td>
<td>6.1 ± 0.5</td>
<td>4.5 ± 0.4</td>
</tr>
<tr>
<td>6.17 ± 0.74</td>
<td>-9.74 ± 0.54</td>
<td>3.2 ± 0.3</td>
<td>4.5 ± 0.4</td>
</tr>
<tr>
<td>9.74 ± 0.54</td>
<td>-6.17 ± 0.74</td>
<td>1.9 ± 0.2</td>
<td>2.7 ± 0.3</td>
</tr>
</tbody>
</table>
Observation of the $\Sigma^+ \rightarrow p\mu^+\mu^-$ rare decay at LHCb
LHCb-CONF-2024-002

Shown for the first time ever!
Observation of the $\Sigma^+ \rightarrow p\mu^+\mu^-$ rare decay at LHCb
LHCb-CONF-2024-002

General overview
- New improvements w.r.t. Run 1
- Analysis strategy

Search for the $\Sigma^+ \rightarrow p\mu^+\mu^-$ decay
- Selection
- Fit and signal evaluation

Search for the HyperCP-like resonance
- Confirm/exclude the Anomaly

Shown for the first time ever!
New improvements

➤ **Increase in statistics**
 - Run 1 $\rightarrow \sqrt{s} = 7, 8$ TeV, $\mathcal{L} = 3.0$ fb$^{-1}$
 - Run 2 $\rightarrow \sqrt{s} = 13$ TeV, $\mathcal{L} = 5.4$ fb$^{-1}$
 ✓ Factor ~ 4 larger w.r.t. previous analysis
 - Larger MC samples

➤ **Increase in performances**
 - Run 1 \rightarrow Highly prescaled minimum bias data
 - Run 2 \rightarrow Dedicated trigger lines
 ✓ Gain of a factor ~ 13 in signal efficiency
 - Improved PID performance on protons and muons
New improvements

Increase in statistics
- Run 1 \rightarrow $\sqrt{s} = 7, 8$ TeV, $\mathcal{L} = 3.0$ fb$^{-1}$
- Run 2 \rightarrow $\sqrt{s} = 13$ TeV, $\mathcal{L} = 5.4$ fb$^{-1}$
 - Factor ~ 4 larger w.r.t. previous analysis
- Larger MC samples

Increase in performances
- Run 1 \rightarrow Highly prescaled minimum bias data
- Run 2 \rightarrow Dedicated trigger lines
 - Gain of a factor ~ 13 in signal efficiency
- Improved PID performance on protons and muons

New accessible measurements
- Differential branching fraction vs dimuon mass
- Forward-backward asymmetry in the decay
- Σ^+ and Σ^- polarisations
- “Direct” CP violation measurement

$$\mathcal{A}_{CP} = \frac{B(\Sigma^+ \rightarrow p\mu^+\mu^-) - B(\Sigma^- \rightarrow \bar{p}\mu^+\mu^-)}{B(\Sigma^+ \rightarrow p\mu^+\mu^-) + B(\Sigma^- \rightarrow \bar{p}\mu^+\mu^-)}$$

8 June 2024
Dedicated trigger

Run 1: “take what is there”
- Analyse data already collected with very small efficiency

Run 2 improvements for strange physics [LHCb-PUB-2017-023]:
- HLT1: Complementary forward tracking lowered down to 80 MeV for muon tracks
 Generic Hlt1DiMuonNoL0 for soft dimuons not requiring only L0Muon or L0Dimuon triggered events in input
- HLT2: Generic Hlt2DiMuonSoft for soft dimuons
 Dedicated Hlt2RareStrangeSigmaPMuMu for $\Sigma^+ \to p\mu^+\mu^-$ decays

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>$\Sigma \to p\mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>0.269 ± 0.006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Run 1</th>
<th>Run 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hlt1Global</td>
<td>L0</td>
<td>0.191 ± 0.011</td>
</tr>
<tr>
<td>Hlt1DiMuonNoL0</td>
<td>L0</td>
<td>-</td>
</tr>
<tr>
<td>Hlt2Global</td>
<td>Hlt1Global</td>
<td>0.162 ± 0.023</td>
</tr>
<tr>
<td>Hlt2DiMuonSoft</td>
<td>Hlt1Global</td>
<td>-</td>
</tr>
<tr>
<td>Hlt2SigmaPMuMu</td>
<td>Hlt1Global</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>0.0083 ± 0.0013</td>
<td>0.111 ± 0.004</td>
</tr>
</tbody>
</table>
Dedicated trigger

- **Run 1: “take what is there”**
 - Analyse data already collected with very small efficiency

- **Run 2 improvements for strange physics [LHCb-PUB-2017-023]:**
 - HLT1: Complementary forward tracking lowered down to 80 MeV for muon tracks
 - Generic Hlt1DiMuonNoL0 for soft dimuons not requiring only L0Muon or L0Dimuon triggered events in input
 - HLT2: Generic Hlt2DiMuonSoft for soft dimuons
 - Dedicated Hlt2RareStrangeSigmaPMuMu for $\Sigma^+ \rightarrow p\mu^+\mu^-$ decays

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>$\Sigma \rightarrow p\mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>0.269 ± 0.006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hlt1Global</th>
<th>L0</th>
<th>Run 1</th>
<th>Run 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hlt1DiMuonNoL0</td>
<td>L0</td>
<td>0.191 ± 0.011</td>
<td>0.459 ± 0.014</td>
</tr>
<tr>
<td>Hlt2Global</td>
<td>Hlt1Global</td>
<td>0.162 ± 0.023</td>
<td>0.901 ± 0.012</td>
</tr>
<tr>
<td>Hlt2DimuonSoft</td>
<td>Hlt1Global</td>
<td>-</td>
<td>0.804 ± 0.016</td>
</tr>
<tr>
<td>Hlt2SigmaPMuMu</td>
<td>Hlt1Global</td>
<td>-</td>
<td>0.485 ± 0.020</td>
</tr>
</tbody>
</table>

| Total | 0.0083 ± 0.0013 | 0.111 ± 0.004 |

Increase in trigger efficiency from HLT
Analysis strategy

➤ Blind analysis technique
 • Avoid introduction of biases
 • Blinded $m_{p\mu^+\mu^-}$ region: $1173 < m_{p\mu^+\mu^-} < 1205$ MeV/c^2

Selection: Reject most of the background sources and isolate the signal candidates
 • Loose preselection on kinematic variables
 • Tight selection with PID variables
 • Multivariate operator and optimisation

Fit: Estimate the signal candidates
 • Unblinding and fit to the full $m_{p\mu^+\mu^-}$ distribution

Dimuon spectrum: Look for a resonant structure
 • Background subtraction with the *sPlot* method
 • Scan in the $m_{\mu^+\mu^-}$ invariant mass
Selection

$$\tau_{\Sigma^+} = (8.018 \pm 0.026) \times 10^{-11} \text{ s}$$

Decay products may be reconstructed with
- Long tracks
- Downstream tracks

Loose preselection
- Kinematic variables
- Reduce the dataset size
Tight selection
- PID variables

Only long tracks today
Selection

\[\tau_{\Sigma^+} = (8.018 \pm 0.026) \times 10^{-11} \text{ s} \]

Decay products may be reconstructed with
- Long tracks
- Downstream tracks

Residual background sources
- Combinatorial
- \(\Lambda \rightarrow p\pi^- \) decays with misID \(\pi^- \rightarrow \mu^- \) with accidental \(\mu^+ \)

Small q-value
- Few modes can mimic the signal final state
 \[(m_{\Sigma^+} - m_p - 2m_\mu) = 39.78 \text{ MeV}/c^2 \]
- \(K^+ \rightarrow \pi^+\pi^-\pi^+ \) and \(K^+ \rightarrow \pi^+\mu^+\mu^- \) decays
 - Mass peak shifter higher w.r.t. the signal

Loose preselection
- Kinematic variables
- Reduce the dataset size
Tight selection
- PID variables

No other baryon decays with a final state proton
- Larger reconstructed mass w.r.t. the signal
Final selection with a multivariate operator
- BDT built in TMVA
- Trained to reject combinatorial on:
 - MC signal sample
 - Sidebands in data sample

Discriminating variables (backup slides for description)
- \(\log(1 - \Sigma^+\text{DIRA}) \)
- \(\Sigma^+\text{IP}\chi^2, \text{DOCA}, \text{FD}\chi^2, Vtx\chi^2 \)
- \(p\text{IP}\chi^2, p_T \)
- \(\text{min(}\mu\text{IP}\chi^2), \text{min(}\mu p_T) \)

Data divided in a \(\Lambda \) veto sample and a complementary one
- Very similar distribution at high BDT values
- A BDT requirement will reject both background sources
Optimisation

- Optimisation for the best chances of observation
 - Performed on:
 - MC and data samples
 - Optimal point chosen as the largest significance

\[S = \frac{N_S}{\sqrt{N_S + (N_C + N_\Lambda)}} \]

- \(N_S \) = Expected signal yield
- \(N_C \) = Expected combinatorial
- \(N_\Lambda \) = Expected \(\Lambda \) background

- Four dimensions
 - BDT
 - PID variables
 - \(\Lambda \) vetos \(\Rightarrow |m_{p\pi^-} - m^{PDG}_\Lambda| > 6, 8, 10 \text{ MeV}/c^2 \)

LHCb Preliminary

- 5.4 fb\(^{-1}\)

Bijective transformation to the BDT output

BDT > 0.35
Extended maximum likelihood fit

- $\Sigma^+ \rightarrow p\mu^+\mu^-$ parametrized by an *Hypatia* function

 $N_{\Sigma^+\rightarrow p\mu^+\mu^-} = 279 \pm 19$

- Background by a modified *Argus* function

\[N = 2.5 \text{ MeV} / (2.5 \text{ MeV} / c^2) \]

\[\text{Candidates} / (5.4 \text{ fb}^{-1}) \]
Extended maximum likelihood fit

- $\Sigma^+ \rightarrow p\mu^+\mu^-$ parametrized by an Hypatia function
- $N_{\Sigma^+\rightarrow p\mu^+\mu^-} = 279 \pm 19$
- Background by a modified Argus function

First observation with overwhelming significance
Observation of the $\Sigma \rightarrow p \mu^+ \mu^-$ rare decay at LHCb - G. Martelli

- **Background subtraction**
 - *sPlot* method using $m_{\mu^+\mu^-}$ as discriminant variable
 - Event-by-event signal re-weight

- No significant peaking structure is visible
 - Data compared with simulated phase space
 - Simulation re-weighted according to SM amplitude
 - Good agreement found in the full $m_{\mu^+\mu^-}$ distribution

Yield / (2 MeV/c^2) vs. $m_{\mu^+\mu^-}$ [MeV/c^2]

LHCb Preliminary

- 5.4 fb^{-1}
- Same distribution in 88 bins

- **Data**
- Simulation PHSP
- Simulation SM
Scan in the $m_{\mu^+\mu^-}$ invariant mass
- $\pm 2\sigma_{\mu^+\mu^-}$ around the Σ^+ mass with sidebands $[1.5 - 4.0]\sigma_{\mu^+\mu^-}$
- Steps of $\pm 0.5\sigma_{\mu^+\mu^-}$ in signal windows of $\pm 1.5\sigma_{\mu^+\mu^-}$

No significant structure is found and considering a putative candidate with $m_{X^0} = 214.3$ MeV/c2:
- The fractional contribution to all the candidates in the mass window is 3.7%
- The difference w.r.t. to the expected background from the $m_{\mu^+\mu^-}$ sidebands is -4 events
Conclusions and outlook

“Observation of the $\Sigma^+ \to p\mu^+\mu^-$ rare decay at LHCb”

- First observation of the decay with significance greater than 5σ
- Investigated the dimuon spectrum for NP resonances
 - No significant structure is found
 - HyperCP Anomaly excluded
LHCb-CONF-2024-002

Near future (Run 2)
- Integrated branching fraction measurement with the $\Sigma^+ \to p\pi^0$ decay

\[
\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = \frac{\varepsilon_{\Sigma^+ \to p\pi^0}}{\varepsilon_{\Sigma^+ \to p\mu^+\mu^-}} \cdot \frac{\mathcal{B}(\Sigma^+ \to p\pi^0)}{N_{\Sigma^+ \to p\pi^0}} \cdot N_{\Sigma^+ \to p\mu^+\mu^-}
\]

Far future (Run 2 and Run 3)
- Large signal yield \rightarrow new accessible measurements
 - Charge-parity symmetry violation
 - Forward-backward asymmetries
On behalf of the LHCb collaboration thank you for your attention
Backup slides
Summary

- $IP\chi^2$ - The difference in the vertex-fit χ^2 of a given PV reconstructed with and without the particle being considered;
- $DOCA$ - The maximum distance of closest approach between any pair of the three daughter tracks;
- $FD\chi^2$ - The flight distance of the mother particle from the primary vertex divided by its uncertainty;
- $DIRA$ - The angle between the mother particle momentum and the lines joining the primary and the decay vertex;
- $Vtx\chi^2$ - The χ^2 of the vertex fit.