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The Fermilab Muon g-2 Experiment released its Run-2/3
results in August 2023:
a, (FNAL,Run 2/3) = 0.00116592057(25) [0.21 ppm]

New PRD paper at ArXiv:2402.15410

This talk includes:
* Introduction to muon g-2 and the
Fermilab Muon g-2 Experiment
« EXxperiment setup, measurements, and corrections
 Result and Improvements in Run 2/3
« Updates and outlook
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MUON AND MUON g — 2

Muon: 2"d generation charged lepton

~200x more massive than electron
— More sensitive to virtual particles (loops)
— Not heavy enough for hadronic decays

2.2 us lifetime (at rest), easier to manipulate at
accelerators
— Decays to e™, Vg, v, In a self-analyzing parity
violating manner (i.e., electrons tend to be
emitted along the muon’s spin direction)

“g” is a dimensionless factor linking magnetic

moment /i of a particle with its spin s:

o9
U me

J

“‘gyromagnetic ratio’

Dirac theory of elementary spin-%z particle says g=2,
on the tree level. Standard Model tells us there are
other contributions. We define the anomalous
magnetic moment a as:

g — 2
a=—
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Standard Model of Elementary Particles

three generations of matter
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STANDARD MODEL PREDICTIONS OF q,

= Last comprehensive update from Muon g-2 Theory Initiative: 2020 White Paper, Phys. Rep. 887 (2020)

= Most recent update in the previous talk by Shaun Lahert o
Contribution Error?

from A. El-Khadra

= The SM contributions to a, was
ap" = 116591810(43) x 107

Dominant contribution from QED, but dominant uncertainty from QCD

= HVP from two approaches
— Dispersive approach using e-e* data
— Lattice QCD (not used in 2020 WP)

= Alot of progresses over the last years!

7 - o
+ + + + e
_ Z
# poop T oo T o
Schwinger Vacuum Hadronic Virtual Hadronic Light-
Dirac 1st order QED  polarization Particle (HVP) by-Light Electroweak
2 a/2m higher order QED 6845(40) x 10t 92(18) x 101 153.6(1.0) x 101!
Uncertainty: 0.1 x 101 4 Dominant uncertainty Argonne &

AAAAAAAAAAAAAAAAAA



WHAT CAN WE LEARN FROM MUON g — 27

~

—------------_\

= Precision test of the Standard Model: / \\
— BNL muon g-2 saw a ~3.5¢ discrepancy [ Pastand future experiments :
— Theory calculations were to ~0.4 parts-per-million (ppm) : 1
— Experiment goal for entire Fermilab Muon g-2 Experiment: 1+ CERNII(1974) :
0.14 ppm (total, 0.10 ppm each for stat. and syst. uncertainties) : 270ppm precision i
. . « CERN Ill (1978): i

» |ndicator of new physics: [ .

: : . | /ppm precision |
certain BSM physics models can accommodate large deviations I« BNL ES821 (2006): [
(see https:/arxiv.org/pdf/2104.03691.pdf) : 0.54ppm precision :

— Certain flavors of SUSY i (~3.5¢ deviation from I

— Some Two-Higgs doublet models I theory) [

— Lepto-quarks, vector-like leptons : :

— Some axion-like particles, etc. I - Fermilab E989 (us) 1

= Like other experiments on the intensity/precision frontier, confirmed : i
deviation can be indicators for new physics, and consistency with 1 * E34 at JPARC (~JFY2028) ll
SM predictions can largely constrain parameter spaces for new ‘\ Different technical details

AAAAAAAAAAAAAAAAAA


https://arxiv.org/pdf/2104.03691.pdf

= Critical timeline milestones:
— CDO0in 2012
— Magnet move from BNL in 2013
— First muon beamin 2017
* 6 physics runs over 6 years
_ End Of data taklng In 2023 Photo credit: Reidar Hahn, Fermilab

— Firstresultin 2021
— Run 2/3 result released in August 2023

= Experiment located on Fermilab Muon Campus
— 8 GeV proton beam from Booster
— Hit proton target in the target hall to produce
pions among other particles

[ Delivery Ring
— Pions decay to muons in the delivery ring, / -
muons with “magic momentum” are selected Recy.cler

and transferred to MC-1 Eermilab Mugh Campus Ring




HOW TO MEASURE MUON g — 2:
MUONS IN A STORAGE RING

» Polarized muons are stored in a ring of dipole magnetic field
= For g>2, muon spin rotates ahead of muon momentum as muon goes around the ring
* The frequency difference w, Is the difference of spin precession frequency and cyclotron frequency:

--------------------------------------------------------------

— — — = = 1 _))(E:= e
wazws—wcz—aM%B +%§[(au—y2 )ﬁ +aH(L) (,B-B),B'J

------------------------------------------------------------

— For horizontally circulating muons in a vertical B field, ﬁ .B=0,
third term goes to O

— For a special Lorentz factor y,, = \/1 +1/a, =~ 29.3
(p = 3.094 GeV/c), second term also cancels to the first order
= “Magic momentum”

= Then only the first term left. Things to measure are:
— Spin precession frequency w,
— Magnetic field B




THE STORAGE RING MAGNET Cr

)

B—‘\ outer coil

muon
region

pole piece

L, surface
correction coil

fixed NMR probes

W outer coil

I:I L—p=7112mm
(

inner coil top hat

= Superconducting coils with C-shaped yokes
= 1.45T field strength

= Size determined by the “magic momentum” and the
magnetic field strength

= Hats and wedges shims tune the dipole, iron foils
fine tune the field, and surface correction coils tune
higher multipoles

= Typical field RMS around the ring <20 ppm
5 Argonne &
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MUON INJECTION & STORAGE:
INFLECTOR MAGNET

S Injected
7 ,‘ muon beam (Central Orbit 1

Inflector
Cryostat

Inflector Body

Fixed NMR "%%
L . - < 2 277 i S i
— —=LE220 !',!{'-/.,!!_/_,!{7’ ' L
\\\\\=\\\ , T I L~}
\ Y = ==~/ Stored Y
muon beam

Muon Beam Vacuum Chamber

Inflector top view 9

= |nflector magnet cancels main field for muon
Injection through yoke

= Muons injected with 77mm offset from ideal orbit

Inflector
Services

Helium Channel
(for cooling)

Helium Channel
(for radiation shield)

Coil

Beam
Channel
Inner
" Call
”
X
N— Jacket
NiTi/Nb/Cu _/
Magnetic Flux
Shield

Inflector cross section
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MUON INJECTION & STORAGE:
KICKER MAGNET

= 3 fast kicker magnets (Kickers) tweak the
muon direction from injection trajectory to
the center of the aperture

= Pulse <149 ns

inflector

2

uad rupoles

=7 \/\/ ', - \/
NS

=

Kicker plates
10 Argonne &
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MUON INJECTION & STORAGE:
ELECTROSTATIC QUADRUPOLES

= N\ 4L / " —— = Vertical motions and space charge of muons
: NN M will make them go up or down freely and get
lost

= Electrostatic quadrupoles vertically contain
the beam

= Also used to scrape the beam

11




MEASURING MUON SPIN PRECESSION FREQUENCY:

....

Using the 24 calorimeters around the ring, decay
positron time and energy are measured

Cherenkov PbF2 crystals read out by SiPMs

Time resolution ~100 ps, energy resolution ~5% at
2 GeV

A laser calibration system monitors calorimeter gain

12 Argonne &
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MEASURING MUON SPIN PRECESSION FREQUENCY

* Due to self-analyzing parity violating weak decay, high energy positrons are emitted more along the
direction of the muon spin

= Decay positron distribution above an optimal energy threshold of E~1.7 GeV, over time, produces
“‘wiggle” plot

= Main feature in the wiggle plot coming from the spin precession w, and muon lifetime
N(t) = Noe‘t/f[l — A cos(wyt + ¢)]

= Additional features of beam dynamics is captured through more complicated fit function
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MEASURING THE MUON DISTRIBUTION:

STRAW TRACKERS

14

Time since injection: 5.0 us

Muon Orbit
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2 in-vacuum straw trackers
— Sub-millimeter tracking uncertainty
— Track reconstruction allows relating decayed
positrons to the initial muon orbit

Beam profile tells the muon distribution inside the
storage region

It provides a handle on beam dynamics

Argonne &
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BEAM DYNAMICS CORRECTIONS

/ \ \ Beam dynamics related corrections

Unblinding factor Frequency from wiggle plot

» Tracker measurements combining with simulations are used to understand the beam dynamics
Inside the storage ring

= Additional dynamics-related corrections in two categories are applied:
— Spin dynamics: corrections since spin precession frequencies contain additional terms.

* C,: Electric field correction. Muons not exactly at magic momentum, a, — +* 0.

Yy -1
* (C,: Vertical beam motion correction. ,§ B #0.
— Varying phases:
* (Cpq: w, phase depends on the decay position inside the beam duct due to detector
acceptance. With changing beam profile over time, bias rises and needs correction.
» (44 Differential decay. Boosted muon lifetime is momentum dependent, whose magnitude
changes over time. Needs correction.
* Cp;:- Muon loss is also momentum dependent.

15 Argonne &
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MEASURING MAGNETIC FIELD: PULSED NMR

= We measure the magnetic field through measuring Larmor frequency of shielded protons using pulsed
Nuclear Magnetic Resonance (NMR)

_ hawy, (T)
 2pp(T)
= A cylindrical proton-rich sample (petroleum jelly)

= Coil provides an RF m/2 pulse to rotate the sample magnetization. The same coil picks up the signal
during relaxation. Bottom right plot shows the signal mixed down to ~50 kHz W
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MEASURING MAGNETIC FIELD

A cross-sectional view of the beam duct with trolley.
Fixed probes are above and below.

= 17 probes are mounted on a trolley
— Measure in the muon storage region
— Capable of tracking higher order multipoles, more sampling points around the ring
— Only intermittent (every 3~5 days) as trolley blocks the storage ring

rgonne National
S

&7, U.S. DEPARTMENT OF A Laboratory is a
6l ENERGY U.S. Department of Energy laboratory 17
Rt managed by UChicago Argonne, LLC.
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THE TROLLEY

wuw 06

» The trolley can move around the ring and measure the
magnetic field at different azimuthal slices: B(x,y, ¢ = ¢;)

= Barcode system around the ring tells the location of the trolley

support rail structure

cable clamp

2 ' barcode reader




THE TROLLEY [
T = “%k
£ 10 g —
g 0 A — &
= Moving around the ring at 1~1.5 cm/s, taking data sl ¥ —
at 2Hz: ~9000 2D field maps around the ring Y ‘ /’»—\, ;
= At each of these slices, the spatial dependence of @
the magnetic field can be expressed as multipole e T TR I
moments m;, which comes from the general
solution to the source-free Laplace equation in Trolley
polar coordinates. ,
- n multipole
B = By = Ay + Z (T‘_> [A, cos(nf) + B, sin(nf)] Moment (common name) By(r, )
n=1 0
m, (normal dipole) Ag

m, (normal quadrupole)

m; (skew quadrupole)

m, (skew sextupole)
ms (normal sextupole)

m,, (skew octupole)

rgonne National
S

:’“‘) U.S. DEPARTMENT OF A Laboratory is a
) E G U.S. Department of Energy laboratory 1 9
R NER Y managed by UChicago Argonne, LLC.

A % cos(f)
B, % sin(A)
Bz(%)2 sin(26)
Ay(£)? cos(20)

B3(£)’ cos(36)
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MEASURING I\/IAGNETIC FIELD

A cross-sectional view of the beam duct with trolley.
Fixed probes are above and below.

» Fixed probes (FPs) permanently installed outside of the muon storage region track the magnetic field
over time

20 Argonne &
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FIXED PROBES: MAGNETIC FIELD OVER TIME

= 378 NMR probes around the ring out of the beam duct
— 72 azimuthal location, in groups of 6 and 4 probes
— Symmetric arrangement at each location

Y [mm)]

o @ @ O

= Monitors the field change over time every ~1s Not exist
: : t 4-prob
= Only six (four) moments can be calculated at a six-probe %Cat?gﬁse

(four-probe) station. In practice we track up to ms
» Help to interpolate the magnetic field over time

| 1 i | 5

T ] T L
=350  -17.5 0:0 300 450
X [mm]

o | [

9
o
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MAGNETIC FIELD ANALYSIS
calibration > field maps > tracking >> muon weighting >> transients > Wy,

B t) - M(x,y,¢; t)dV
- fcalib fM(X, y’(p’ t)dV

Trolley probes are calibrated against a plunging probe containing a cylindrical water sample and a known
factor can be used to link the measurement to a value for spherical samples

(1+ By + B,)

Trolley runs provides fine measurements of at limited time. Fixed probes have rich information
on the field over time. Interpolation from the two provides magnetic field at all locations and all time

Magnetic field weighted by muon distribution

Transient field corrections are aDD|Ied

401

T

20 -

y [mm]
o
Relative muon intensity [arb. u.]

—40
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17.5

RUN 2/3 RESULT

FNAL Run-1 % {1 }
FNAL Run-2/3 —11—

FNAL Run-1 + Run-2/3 +—@—

World Average

195 200 205 210 215

a,x10° = 1165900

185  19.0

18.0

23

= With spin precession frequency w, and Larmor

frequency @, of shielded protons in a spherical
sample experiencing the same field as the stored
muons from the NMR probes, the anomalous muon
magnetic moment a,, becomes:
Up  He(H) My ge
a);a(Tr) pe(H) pe me 2

Known literature values

Wq

a, =

a,(FNAL; Run-2/3) = 0.00 116 592 057(25) [215 ppb]

[ppb] Run-1 Run-2/3 Ratio
Stat. 434 201 2.2
Syst. 157 70 2.2

Near-equal improvement; we are still statistically
dominated

» The systematic uncertainty of 70 ppb surpasses our

goal of 100 ppb!
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SYSTEMATIC IMPROVEMENTS: FIELD STABILITY

= From Run 1 to Run 2/3, improvement in temperature stability has made the magnetic field more stable
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SYSTEMATIC IMPROVEMENTS: FIELD TRANSIENTS

* |mprovements systematic studies incident Light Potaizing Beam

Fiber Splitter Cube 1

Summer 2022 vs. Fall 2020 Noise Level Comparison

reduced the uncertainties in field iy )
kicker transient corrections and ——
guadrupole transient corrections Ll .
— Fast kicker magnets generate “
eddy currents, which give rise '
to transient magnetic field Lo Fiber §32 ; /g"e""sureme”t
- During muon fills, the ESQs Polarizing Beam o 05 1 Measutement;; 3
vibrate mechanically, and ! e
introduce oscillating magnetic Fiber-based Faraday magnetometer
fields -y for measuring kicker transients

Tt (left); measured transient field after

improving vibration damping (right)

I1.

I ""aé‘:
il i
Iﬂ. |||H||l|||g a

',i,vr i
! |

ESQ transients were measured at
i P I O T .
100 500 more locations for Run 2/3

i | Laboratory isa AZi m Uth ( d eg )
() ENERGY JLtimiiastainte, 25 Argonne &
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SYSTEMATIC IMPROVEMENTS:
ANALYSIS IMPROVEMENTS

= 2 positrons arriving at same time can be mistaken  1¢s.
for 1 which can bias w,

Run-2 Data
—— Run-1 Clustering
—— Run-2/3 Clustering

For example:

= Reduce uncertainty with:
— Better pileup reconstruction 10% g
— Improved correction algorithm Decay end p0|nt/§

| —

102

Pile-up

0 1000 2000 3000 4000 5000 6000
Energy [MeV]

! U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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WHAT’S NEXT?

LI '| T T 1T 1 T 1T 7T [ LI '| T 1T 1 '|' LI L [ LI
: — BNL
= By the end of Run 6, exceeded the 21 x BNL TDR goal :
: o | FNAL Run-1
= Analysis for the dataset Run 4-6 ongoing. Expect to publish
the full dataset in 2025 i FNAL Run-2/3
— On track to reach and slightly surpass final precision —e—+t FNAL Run-1 + 2/3
gpal of ]j40 ppb o ——t Exp. average
— Likely still statistics limited
_ —t Expect. FNAL 1-6
= Other analyses include Muon EDM and BSM searches RN T S S T T
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MUON g-2 COLLABORATION

=K
Boston

—  Cornell

- lllincis

— James Madison

—  Kentucky

— Massachusetts

- Michigan

— Michigan State

— Mississippi

— North Central

— Northern lllinois

- Regis
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— Washington
USA National Labs

— Argonne
— Brookhaven
— Fermilab

182 collaborators
33 Institutions
7 countries
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China
— Shanghai Jiao Tong
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—  Frascati
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— Roma Tor Vergata

— Trieste
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Russia
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E34 AT J-PARC

Photo credit: Reidar Hahn, Fermilab

£34 @ IPARC e ——

Beam Ultra-cold muon beam (p = 300 MeV/c) Magic-momentum (p = 3.094 GeV/C)
Polarization Prax = 50% P=97%

Magnet MRI-like solenoid (I e = 33cm) Storage ring (7m radius)
B-field 3 Tesla 1.45 Tesla

B-field gradients Small gradients for focusing Try to eliminate

E-field None Electrostatic quadrupole
Current sensitivity goal ~400 ppb (possibly 100 ppb) 140 ppb

al Laboratory s @
R 31 Argonne &
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MAGNETIC FIELD ANALYSIS

calibration > field maps tracking muon weighting transients Wy,

ap = fcalib

Calibration Volume
/ PT1000 macor support  aluminum shield macor support

—

electronics RF coil support RF coil  water sample plastic support

254 mm >

Trolley “

~ Plunging Probe

* Trolley probes are absolutely calibrated using a plunging
probe with a cylindrical water sample

= Swapping the probes to measure the magnetic field in
the same calibration volume

ﬁ‘”‘”‘”‘viﬁ nal Laboratory i< o
AN ENERGY g dby Sehe g S Argon boralﬁrcy. 32
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MAGNETIC FIELD ANALYSIS
calibration >> field maps >> tracking >

fa)zlj(ny' d); t) ’

muon weighting transients Wy,

ap = fcalib

= The magnetic moment multipoles are

extracted from the trolley and fixed Trolley run 1
probe measurements
" wy(x,y,¢;t) around the storage ring at /
any given time is then interpolated,
each multiple independently 0
» The magnetic field is then azimuthally ¢ | °
2 0] §
averaged 2% ;
543000

Trolley run 2
(Some periods are
bound by single side)

Interpolated
“virtual trolley run”




MAGNETIC FIELD ANALYSIS

calibration > field maps

> tracking >> muon weighting > transients

/

t) - M(x,y,¢; t)dV

51,9 = fcalib

___(ppm)

T (1

X (mm)

field maps w, (x, y, ¢; t)

 M(x,y,¢; )av

Run-2 and Run-3a

Run-3b: upgraded kickers

X (mm)

X (mm)

muon distribution M (x, y, ¢; t) from trackers +
simulation to extrapolate from two stations to the whole ring

= Muon Weighting extracts the relevant magnet field for the muons

rgonne National La
U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.
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MAGNETIC FIELD ANALYSIS

calibration > field maps > tracking >> muon weighting >> transients >>c’6;,

J t) - M(x,y,¢; t)dv

0, = - 1+ B B
Wp featib fM(x,y,gb;t)dV ( T b + CI)

= There are transient magnetic fields from kickers and electrostatic quadrupoles (components to keep
the muons in the storage ring)
— Very short-term behaviors on the order of sub-milliseconds to a few tens of milliseconds
— Corrections and associated systematic uncertainties were obtained from dedicated studies

= Significantly reduced uncertainties in Run 2/3 (2019-2020)
— Kicker transients: 37 ppb = 13 ppb
— Quadrupole transients: 92 ppb = 20 ppb
— Total field systematic uncertainty in Run 2/3 is 52 ppb (TDR goal 70 ppb)

35 Argonne &
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