

New BABAR studies of high-order radiation and the new landscape of data-driven hadronic vacuum polarization predictions of the muon g-2

BEACH 2024

XV International Conference on Beauty, Charm, Hyperons in Hadronic Interactions

Charleston, SC, USA

June 6, 2024

HVP Hadronic Vacuum Polarisation

Georges Vasseur

georges.vasseur@cea.fr

on behalf of the BABAR Collaboration

Outline

- Data-driven prediction for g-2
- Cross section measurements at BABAR
- Study of high-order radiation by BABAR
- New landscape of HVP prediction for g-2

Introduction to data-driven HVP evaluations for g-2

The g-2 puzzle

- Lepton anomalous magnetic moment: $a_l = \frac{1}{2}(g - 2)_l$
- Precise test of the Standard Model
- Long-standing discrepancy between theory and experiment for the muon (g-2)

g-2 Calculation

Georges Vasseur - BEACH 2024

Dispersive approach

Calculation of leading order hadronic vacuum polarization

- Calculation needs experimental inputs: hadronic cross sections
- Low energy data contribute most

Hadronic cross sections and g-2

- At low energy total hadronic cross section determined from finite sum of exclusive modes
- $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$ mode most important
 - Dominant contribution to the value (73%) of $a_{\mu}^{\ had}$ and to its uncertainty squared (70%)
 - Discrepancy between various measurements

Hadronic cross section measurements in BABAR

Detector and data sample

- Photon emitted from e⁺ or e⁻ as Initial State Radiation (ISR).
 - allows to measure cross sections at low energy.
- Hadronic system boosted and back to back with photon.
 - Good detection even at threshold.
 - In detector acceptance: fully reconstructed.

Cross sections from BABAR

- Comprehensive program of hadronic cross section measurements in BABAR
- Many modes measured for the first time
- Contributions to a_µ from channels not directly measured but estimated from isospin symmetry
 - 0.87 ± 0.15 % (DEHZ 2003)
 - 0.69 ± 0.07 % (DHMZ 2010)
 - 0.09 ± 0.02 % (DHMZ 2017)
 - 0.016 ± 0.016 % (DHMZ 2019)

Mass [GeV]

Additional radiation

Measurement of additional radiation in the initial-state-radiation processes $e^+e^- \rightarrow \mu^+\mu^-\gamma$ and $e^+e^- \rightarrow \pi^+\pi^-\gamma$ at BABAR, BABAR Collaboration, Phys. Rev. D 108, L11103 (2023)

Data samples

- Analysis on the full BABAR dataset: 468 fb⁻¹
 - 424 fb⁻¹ on Y(4S) peak, 44 fb⁻¹ off peak
- MC signal samples: $e^+e^- \rightarrow \mu\mu\gamma(\gamma)$, $\pi\pi\gamma(\gamma)$
 - Phokhara9.1: full NLO ISR (10 x data stat)
 - Including large angle ISR and ISR-FSR interference
 - AfkQED: NLO + NNLO ISR (1/2 x data stat)
 - Collinear approximation for ISR $\boldsymbol{\gamma}$
- MC background samples
 - Phokhara9.1/AfkQED : K K γ / $\pi^+ \pi^- \pi^0 \gamma$, $\pi^+ \pi^- 2\pi^0 \gamma$, ...
 - JETSET: $q \overline{q}$
 - KK2f: $\tau^+ \tau^-$

'NLO' fits

- Two tracks
 - Opposite charge
- ISR photon
 - Largest $E_v^* > 4 \text{ GeV}$
 - 0.35<θ<2.4 rad
- Two 'NLO' kinematic fits
 - Small angle (SA): γ fitted assuming collinear approximation
 - Large angle (LA): γ detected, 0.35< θ <2.4 rad
- Three categories
 - NLO SA sample: $E_{\gamma SA}^* > 200 \text{ MeV}, \chi^2_{SA} < \chi^2_{LA}$
 - NLO LA sample: $E_{\gamma LA} > 200 \text{ MeV}, \chi^2_{LA} < \chi^2_{SA}$
 - LO sample: other events with no γ above threshold

 e^+

'NLO' LA fit results

Good agreement with MC

'NLO' SA fit results

- Excess of SA events in Phokhara
 - Especially at lower energies
 - Even with zero-constraint (0C) (no collinear assumption)
- AfkQED consistent with data

'NNLO' fits

- Three 'NNLO' fits
 - 2SA, SA+LA, 2 LA
 - Events assigned to a category if χ² smaller than any other category
- Significant NNLO signal observed
 - With a fraction of about 3.5%
 - 2SA category dominant

Category	$\mu\mu$	$\pi\pi$
	$m_{\pi\pi} < 1.4 \mathrm{GeV}/c^2$	$0.6 < m_{\pi\pi} < 0.9 \mathrm{GeV}/c^2$
LO	0.7716(4)(14)	0.7839(5)(12)
NLO SA-ISR	0.1469(3)(36)	0.1401(2)(16)
NLO LA-ISR	0.0340(2)(9)	0.0338(2)(9)
NLO ISR	0.1809(4)(35)	0.1739(3)(20)
NLO FSR	0.0137(2)(7)	0.0100(1)(16)
NNLO ISR a	0.0309(2)(38)	0.0310(2)(39)
NNLO FSR b	0.00275(6)(9)	0.00194(12)(50)
NNLO 2LA c	0.00103(3)(1)	0.00066(4)(4)

 a NNLO ISR = 2SA-ISR or SA-ISR + LA-ISR

 b NNLO FSR = SA-ISR + LA-FSR

^cNNLO 2LA = 2LA-ISR, LA-ISR + LA-FSR or 2LA-FSR

'NNLO' 2 SA fit results

- Higher $E_{\gamma}^* > 200$ Mev, lower $E_{\gamma}^* > 100$ MeV
- Good agreement in E_{v}^{*} shape with AfkQED up to 2.3 GeV

NNLO correction to 'NLO' SA results

- Correct for migration between categories
 - NNLO 2 SA from same beam not distinguishable from NLO SA
- Better agreement in shape but still excess of 25% in Phokhara

Consequences

- How does this affect current e⁺e⁻→π⁺π⁻(γ) cross sections measurements?
- BABAR analysis essentially unaffected
 - Performed with loose selection
 - Using $\pi\pi/\mu\mu$ ratio
 - Efficiencies obtained with data
 - The effect of Phokhara excess on acceptance is (0.03±0.01)% well below the quoted systematic uncertainty of 0.5%
- Other ISR results relying on Phokhara might be affected
 - Larger systematics?

New landscape of data-driven HVP predictions for g-2

Tensions in $e^+e^- \rightarrow \pi^+ \pi^-(\gamma)$ measurements: the new landscape of datadriven hadronic vacuum polarization predictions for the muon g-2, M. Davier, A. Hoecker, A.M. Lutz, B. Malaescu, and Z. Zhang, arXiv:2312.02053 (2023)

$e^+ e^- \rightarrow \pi^+\pi^$ cross sections

- Dominant channel for g-2 prediction (value and uncertainty)
- Long-standing tension between KLOE and BABAR
- Recent CMD3 results

Average

SND20

Average

0.8

0.8

0.8

0.9

0.9

0.9

√s [GeV]

√s [GeV]

√s [GeV]

CMD3

Tensions in $e^+ e^- \rightarrow \pi \pi$ cross sections and impact on g-2 prediction

Significance of differences between BABAR, KLOE and CMD3

- 2.5 σ below experiment
 - compatible with BMW

Upcoming $e^+ e^- \rightarrow \pi^+\pi^-$ analyses

- New results expected in the near future from many experiments: SND, CMD3, KLOE, BESSIII, BABAR and Belle II
- In BABAR, new analysis will
 - Increase data sample: 232 fb⁻¹ \rightarrow 468 fb⁻¹
 - Replace PID requirement (and associated momentum cut) with new technique based on angular distributions
 - Larger statistics : effective gain by a factor 7
 - Smaller systematics

Summary

- Recent progress on g-2 in all directions
 - Direct measurement
 - Lattice calculation
 - Data-driven prediction
 - Cross section measurements
 - Study of high-order radiation
 - Study of impact of $\pi^+\pi^-$ inputs
- May lead to a reduced discrepancy between experiment and theory for the muon g-2
- Expect new measurements by next year