Characterizing the charm-quark showering and hadronization via charm-jet studies with ALICE

- **On behalf of the ALICE collaboration**
 - **University of California, Berkeley**

Preeti Dhankher

- **BEACH 2024**
 - 06/03/2024

Jet probe a wide range of Q²

High energy

Hadronization/Confinement

Flavor dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than guarkinitiated showers

Flavor dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than guarkinitiated showers

Mass effects

A harder fragmentation is expected in low energy heavy-quark initiated showers due to the presence of the dead-cone effect

Flavor dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than guarkinitiated showers

Mass effects

A harder fragmentation is expected in low energy heavy-quark initiated showers due to the presence of the dead-cone effect

Mass effects are dominant at low p_T

A Large Ion Collider Experiment

ALICE has excellent capabilities of heavy-flavor physics down at low p_T

A Large Ion Collider Experiment

Time-Of-Flight (TOF): PID via time of flight

ALICE has excellent capabilities of heavy-flavor physics down at low p_T

Inner Tracking System (ITS): tracking and vertexing

Time Projection Chamber (TPC): tracking and PID via d*E*/dx

High energy

Hadronization/Confinement

- and PID on decay daughters.
- 2. Charm-tagged jet reconstruction using anti- k_{T} algorithm.

11

- and PID on decay daughters.
- 2. Charm-tagged jet reconstruction using anti- k_{T} algorithm.

subtraction technique in invariant mass distribution.

1. Charm meson(D⁰)/baryon(Λ_c^+) reconstruction and selection by topological cuts

- and PID on decay daughters.
- 2. Charm-tagged jet reconstruction using anti- k_{T} algorithm.

subtraction technique in invariant mass distribution.

1. Charm meson(D⁰)/baryon(Λ_c^+) reconstruction and selection by topological cuts

- and PID on decay daughters.
- 2. Charm-tagged jet reconstruction using anti- k_{T} algorithm.

14

subtraction technique in invariant mass distribution.

1. Charm meson(D⁰)/baryon(Λ_c^+) reconstruction and selection by topological cuts

- 1. Charm meson(D⁰)/baryon(Λ_c^+) reconstruction and selection by topological cuts and PID on decay daughters.
- 2. Charm-tagged jet reconstruction using anti- k_{T} algorithm.
- subtraction technique in invariant mass distribution.
- 4. Efficiency correction: Charm(D⁰/ Λ_c^+)-tagged jet reconstruction efficiency correction

- 1. Charm meson(D⁰)/baryon(Λ_c^+) reconstruction and sele $\frac{q}{q}^{0.4}$ and PID on decay daughters.
- 2. Charm-tagged jet reconstruction using anti- k_{T} algorith
- 3. Subtract combinatorial background from fake daughte subtraction technique in invariant mass distribution.
- . Efficiency correction: Charm(D⁰/ Λ_c^+)-tagged jet reconstruction efficiency correction

 - and selection efficiency in narrow $D^0 p_T$ intervals

• Efficiency of the D⁰ cut selections is strongly dependent on D⁰-meson p_{T} sideband-subtracted distributions are corrected by the D⁰ reconstruction

- 1. Charm meson(D⁰)/baryon(Λ_c^+) reconstruction and selection by topological cuts and PID on decay daughters.
- 2. Charm-tagged jet reconstruction using anti- k_{T} algorithm.
- subtraction technique in invariant mass distribution.
- 4. Efficiency correction: Charm(D⁰/ Λ_c^+)-tagged jet reconstruction efficiency correction
- using POWHEG + PYTHIA simulations

3. Subtract combinatorial background from fake daughter pairs using sideband

5. Estimating B $\rightarrow D^0/\Lambda_c^+$ decays: Evaluate and subtract feed-down contribution

<u>Contribution from $B \rightarrow D^0$ decays: Feed-down</u>

18

- 1. Charm meson(D⁰)/baryon(Λ_c^+) reconstruction and selection by topological cuts and PID on decay daughters.
- 2. Charm-tagged jet reconstruction using anti- k_{T} algorithm.
- subtraction technique in invariant mass distribution.
- 4. Efficiency correction: Charm(D⁰/ Λ_c^+)-tagged jet reconstruction efficiency correction
- using POWHEG + PYTHIA simulations

3. Subtract combinatorial background from fake daughter pairs using sideband

5. Estimating B $\rightarrow D^0/\Lambda_c^+$ decays: Evaluate and subtract feed-down contribution

6. Detector effects correction: Correcting for detector effects using unfolding

20

21

Jet Angularities

Jet axes distribution

Groomed *z*_g and R_g

Fragmentation function *z*_{||}

Challenges of Measurement:

 Determining the dynamic direction of heavy-quark throughout the shower

Challenges of Measurement:

 Determining the dynamic direction of heavy-quark throughout the shower

Solution:

 use declustering procedure with Cambridge/Aachen algorithm

Challenges of Measurement:

 Determining the dynamic direction of heavy-quark throughout the shower

Solution:

 use declustering procedure with Cambridge/Aachen algorithm

Cambridge/Aachen clusters constituents based solely on their angular distance from one another

 \rightarrow matches QCD

Challenges of Measurement:

 Determining the dynamic direction of heavy-quark throughout the shower

Solution:

 use declustering procedure with Cambridge/Aachen algorithm

Cambridge/Aachen clusters constituents based solely on their angular distance from one another

 \rightarrow matches QCD

Declustring: Follow the branch with the D meson to identify the c-branch

ratio of the splitting angle (θ) distribution for D^0 -tagged vs. inclusive jets, vs. E_{Radiator}

) =	1	$dn^{D^0 jets}$, 1	dn ^{inclusive} jets	
	N^{D^0jets}	$dln(1/\theta)$	Ninclusive jets	$dln(1/\theta)$	$k_{\rm T}, E_{\rm Radiator}$

PYTHIA v.8

SHERPA SHERPA LQ/inclusive no dead-cone limit

- ALICE data PYTHIA v.8 LQ/inclusive no dead-cone limit PYTHIA v.8
- SHERPA SHERPA LQ/inclusive no dead-cone limit

28

29

Jet axes distribution

Groomed *z*_g and R_{g}

Fragmentation function *z*_{||}

$$\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

A. J. Larkoski et al., JHEP 1405 (2014) 146

$$\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

A. J. Larkoski et al., JHEP 1405 (2014) 146

$$\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

A. J. Larkoski et al., JHEP 1405 (2014) 146

 $\circ c \rightarrow$ cg splittings have fewer symmetric splittings compared to splittings of light quarks and gluons

 $\circ c \rightarrow$ cg splittings have fewer symmetric splittings compared to splittings of light quarks and gluons

 \rightarrow dead cone of the charm quark

35

$\circ c \rightarrow cg$ splittings are narrower than splittings of the light quarks and gluons sample

 \rightarrow larger Casimir color factor for gluons

 $\circ c \rightarrow cg$ splittings are narrower than splittings of the light quarks and gluons sample

$$\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

A. J. Larkoski et al., JHEP 1405 (2014) 146

o Charm quarks have fewer perturbative emissions compared to light quarks and gluons

_	1
_	J.
	1
_	ļ
	ļ
_	ł
	J
	1
_	ļ
	ļ
_	ł
	J
_	1
_	J
	1
	ł
	I
_	ł
	J
	1
_	ļ
	ļ
_	ł
	1
_	ļ
	ļ
_	ł
	J
_	1
_	J
	1
	ł
	I
_	١
_	J
	1
_	ļ
	ļ
_	ł
	J
	1
_	J
	1
_	ł
	ļ
_	ł
_	J
	1
	ļ
	ļ
_	ł
	J
_	1
_	ļ
	ļ
_	ł
	J
	1
_	J
	ļ
_	ł
	J
_	1
	J
	1
_	1
_	-
_	

39

Jet axes distribution

Groomed *z*_g and R_g

Fragmentation function *z*_{||}

Fraction of longitudinal jet momentum carried by the charm hadron

$$z_{||}^{ch} = \frac{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{D^0}}{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{ch jet}}$$

\overrightarrow{p}_{D^0} is the D⁰-meson momentum

 $\vec{p}_{ch jet}$ is the total jet momentum

$$z_{||}^{ch} = \frac{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{D^0}}{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{ch jet}}$$

\vec{p}_{D^0} is the D⁰-meson momentum

 $\vec{p}_{ch jet}$ is the total jet momentum 20

41

$$z_{||}^{ch} = \frac{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{D^0}}{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{ch jet}}$$

\overrightarrow{p}_{D^0} is the D⁰-meson momentum

 $\vec{p}_{ch jet}$ is the total jet momentum

$$z_{||}^{ch} = \frac{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{D^0}}{\overrightarrow{p}_{ch jet} \cdot \overrightarrow{p}_{ch jet}}$$

\overrightarrow{p}_{D^0} is the D⁰-meson momentum

 $\vec{p}_{ch jet}$ is the total jet momentum 20

Increasing R	$1/N_{jets} dN/dz_{ll}^{ch}$	$\begin{array}{cccccccc} & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & $	ALICE charge 5 < p p_{T, D^0} F
	AL	I-P	UB-5

• Hint of a softer fragmentation in data with respect to model predictions for low $p_{T,ch jet}$ and larger R.

20

- Hint of a softer fragmentation in data with respect to model predictions for low $p_{T,ch jet}$ and larger *R*.
- For R = 0.2 and low $p_{T,ch jet}$, D⁰ carries a large fraction of $\overrightarrow{p}_{ch jet}$ \rightarrow the core of the jet is dominated $\frac{2}{2}$ by the HF hadron.

20

- Hint of a softer fragmentation in data with respect to model predictions for low $p_{T,ch jet}$ and larger R.
- For R = 0.2 and low $p_{T,ch jet}$, D⁰ carries a large fraction of $\overrightarrow{p}_{ch jet}$ \rightarrow the core of the jet is dominated $\frac{2}{3}$ by the HF hadron.
- At large angles (R > 0.2) the charm quark emissions are recovered

Phys. Rev. D 109 (2024) 072005

Phys. Rev. D 109 (2024) 072005

Jet axes distribution

Groomed *z*_g and R_g

Fragmentation function *z*_{||}

51

 $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

53

 $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$ α

i∈jet

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$ α

56

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

Jet Angularities : $\lambda_{\alpha} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}} \right) \left(\frac{\Delta R_{jet,i}}{R_{jet}} \right)$

- charm distribution shifted to lower values of $\lambda_{\alpha=1}$
 - →Dead-cone/mass
 - effects

58

59

Jet axes distribution

Groomed *z*_g and R_g

Fragmentation function *z*_{||}

Jet axes distribution: $\Delta R_{D^0,jet}$

- $\Delta R_{D^{0},iet}$ is difference between jet axis and D^{0}
- different sensitivity to soft radiation can be obtained by exploiting different definitions of the jet axis

Jet axes distribution: $\Delta R_{D^0,iet}$

Standard jet (STD):

The jet axis resulting from a D⁰-tagged sample of jets, clustered with anti- $k_{\rm T}$ algorithm, R = 0.4.

- $\Delta R_{D^0,iet}$ is difference between jet axis and D^0
- different sensitivity to soft radiation can be obtained by exploiting different definitions of the jet axis

Jet axes distribution: $\Delta R_{D^0,iet}$

Standard jet (STD):

The jet axis resulting from a D⁰-tagged sample of jets, clustered with anti- $k_{\rm T}$ algorithm, R = 0.4.

Winner-Take-all jet (WTA):

Original jet reclustered with Cambridge-Aachen algorithm and recombined using WTA recombination scheme.

- $\circ \Delta R_{D^0,iet}$ is difference between jet axis and D^0
- different sensitivity to soft radiation can be obtained by exploiting different definitions of the jet axis

Jet axes distribution: $\Delta R_{D^0,iet}$

Standard jet (STD):

64

The jet axis resulting from a D⁰-tagged sample of jets, clustered with anti- $k_{\rm T}$ algorithm, R = 0.4.

Winner-Take-all jet (WTA):

Original jet reclustered with Cambridge-Aachen algorithm and recombined using WTA recombination scheme.

Winner-Take-all jet (WTA) is more strongly aligned with D^o

- $\circ \Delta R_{D^0,iet}$ is difference between jet axis and D^0
- different sensitivity to soft radiation can be obtained by exploiting different definitions of the jet axis

• $\Delta R_{D^0,jet}$ vs $\Delta R_{\Lambda_c^+,jet}$ to access possible modifications of the hadronization.

• $\Delta R_{D^0,jet}$ vs $\Delta R_{\Lambda_c^+,jet}$ to access possible modifications of the hadronization.

• $\Delta R_{D^0,jet}$ vs $\Delta R_{\Lambda_c^+,jet}$ to access possible modifications of the hadronization.

Baryons produced **less collimated** than **mesons** w.r.t. the direction of the jet?

• $\Delta R_{D^0,jet}$ vs $\Delta R_{\Lambda_c^+,jet}$ to access possible modifications of the hadronization.

Baryons produced **less collimated** than **mesons** w.r.t. the direction of the jet? Would be Interesting to look at with the Run 3 data!

Summary

• Jets are excellent probes for QCD at all energy scales.

Many open question still need to be addressed with Run 3 data.

- Push experimental tests of pQCD with higher precision charm-jet studies.
- ^o Extend the studies to beauty-tagged jets and to higher jet $p_{\rm T}$
- Systematically probe non-perturbative effects such as hadronization
- Extension of program to heavy-ion collisions to characterize in-medium interactions in the quarkgluon plasma formed in heavy-ion collisions and distinguish the QGP behavior from the in-vacuum QCD dynamics

- Comparing charm-tagged jets with inclusive jets elucidates the flavor dependence of QCD showers.

