

Status of the MUon Scattering Experiment (MUSE) at PSI

Haley Reid

On behalf of the MUSE collaboration

June 6, 2024

1

,

OUTLINE

- Introduction
 - Motivation: the proton radius puzzle
- MUSE experimental set up
- Analysis: event reconstruction
- Projected sensitivities and conclusions

THE PROTON RADIUS PUZZLE

- 1st proton radius measurement from muonic hydrogen spectroscopy published in 2010
 - 10x more precise than previous measurements
- Significantly smaller and not in agreement with previous measurements
- $r_p = 0.84184(67) \, \text{fm}$
- Confirmation of muonic hydrogen measurement in 2013

rp	Electron	Muon	
Spectroscopy	0.8758 (77) fm	0.8409 (4)	
Scattering	0.8790 (70) fm	N/A	

THE PUZZLE IN 2024: MORE RADIUS MEASUREMENTS

CODATA value Electron-proton scattering Muonic hydrogen spectroscopy Atomic hydrogen spectroscopy

4		
0.89	0.9	

- New experiments proposed, as well as data from past experiments reanalyzed
- More information needed to resolve the puzzle and understand its origin

r _p	Electron	Muon
Spectroscopy	Inconsistent	0.8409 (4)
Scattering	Inconsistent	N/A

CAPABILITIES OF MUSE

Radiative correction effects

Two photon exchange

Beyond the standard model - violation of lepton universality

Effects much smaller in muons \rightarrow compare with electrons

Both polarities make two photon contribution accessible

Simultaneous look at electrons and muons \rightarrow direct comparison of cross sections

THE MUON SCATTERING EXPERIMENT (MUSE)

- MUSE aims to
 - Simultaneously measure ep and μp elastic scattering cross sections
 - Directly compare ep and μp scattering at sub-percent level precision

MUSE: BEAMLINE

- Secondary beam line from 590 MeV proton beam
- Produces electrons, pions, and muons in secondary beam

Cline, E. *et al*. (2017). arXiv1709.09753

PiM1 beam line at PSI

Quantity	Coverage	
Beam Momenta (MeV/c)	115, 160, 210	
Scattering Angle Range (degrees)	20 - 100	
Q^2 range for electrons (GeV ²)	0.0016 - 0.0820	
Q^2 range for muons (GeV ²)	0.0016 - 0.0799	

Gilman, R. et al. (2017). arXiv1709.09753

MUSE: BEAMLINE

- Secondary beam line from 590 MeV proton beam
- beam

Cline, E. et al. (2017). arXiv1709.09753

PiM1 beam line at PSI

Produces electrons, pions, and muons in secondary

BEACH 2024

MUSE: EXPERIMENTAL SETUP

- Need beam line particle identification (PID) and tracking
- Large acceptance angle: 20°-100°
- No magnetic spectrometer

DETECTORS FOR MUSE: INCOMING PARTICLES

- Beam Hodoscope
 - Precise timing
 - Incident particle ID

Incident particle tracking

DETECTORS FOR MUSE: VETOING PARTICLES

Veto

- Particle decay events
- **Beam Monitor**
 - Moller and Bhabha scattering
- Calorimeter
 - Hard photon emission

DETECTORS FOR MUSE: SCATTERED PARTICLES

- Straw Tube Tracker
 - Tracking for scattered particles
- Scattered Particle Scintillator
 - Timing for scattered particles reaction ID

LIQUID HYDROGEN TARGET SYSTEM

Components

- Target ladder with 5 different target positions
- Lifting mechanism
- Cryocooler and condenser
- Vacuum chamber
- Target Chamber Post Vetos (TCPVs)
- Slow control system monitors temperature, position, and pressure of the system

P. Roy, et al. (2019). A Liquid Hydrogen Target for the MUSE Experiment at PSI, NIMA

TARGET LADDER

- Vertical ladder attached to condenser system
- 5 positions on ladder
- Beam focusing monitor used for beam characterization
- Bulls-eye added to bottom of ladder for precise monitoring with camera system

 LH_2 cell

Empty cell

Rod target

BFM

P. Roy, et al. (2019). A Liquid Hydrogen Target for the MUSE Experiment at PSI, NIMA

Counts

TRIGGERING ON SCATTERED EVENTS

(e OR μ) AND (scatter) AND (NOT veto)

TCPVs Target Veto Calorimeter BM

BLINDING FOR MUSE

Bernauer, J.C. et al. (2023) arXiv:2310.11469v1

- Blinding implemented at the tracking level
 - Each scattered track has an independent blinding value
 - Blinding scheme introduces structure to cross section
- Blinding probability:

$$p_{sup} = \frac{0.2}{3} (A_i + 0.3 \cos B_i \theta') (3.0 - \theta')$$

BEACH 2024

VERTEX RECONSTRUCTION

- Vertex calculated from incoming and scattered particle tracks
 - Must have coordinates within the target region
 - These coordinates used to calculate the incoming distance and scattered distance

Background subtraction: $N_{H_2} = N_{full} - N_{empty}$

VERTEX RECONSTRUCTION

Vertex reconstruction for hydrogen target at -115 MeV/c

BEACH 2024

REACTION IDENTIFICATION: MUON DECAYS IN FLIGHT

PROJECTED SENSITIVITIES FOR MUSE

- PRad data
- PRad fit
- Here Mainz data
- – Mainz fit
- Mainz fit uncertainty
- ---- Mainz fit, forced $r_p = 0.841$ fm
- ----- Arrington 07
 - ---- Alarcón 19, $r_p = 0.841$ fm
 - \dashv MUSE data uncertainty on G_E
 - Projected MUSE uncertainty

MUSE can help clarify the tension between the Mainz and new PRad data.

PRad-II will bring a factor of 4 improvement over PRad.

SUMMARY

- MUSE currently taking data
 - ~5 months of data taking
 - Will continue taking data through 2025
- In the process of extracting blinded, preliminary cross sections
- Will unblind and publish results after the data is analyzed fully

BACK UP SLIDES

MUSE: KINEMATICS

Gilman, R. et al. (2017). arXiv1709.09753

- Scattering events for both muons and electrons
 - Allows for testing lepton universality
- Measuring both charge polarities
 - Access to two photon exchange effects

P, MeV/c	Polarity	e (%)	μ (%)	π (%)
115	+	96.7	2.1	0.9
153	+	63.0	12.0	25.0
210	+	12.1	8.0	79.9
115	_	98.5	0.9	0.6
153	_	89.9	3.2	6.8
210	_	47.0	4.0	49.0

5

RADIATIVE CORRECTIONS

- Radiative event generator not yet implemented in simulation
 - Total effects can be up to a 25% correction
- Studies done to determine size of effects for different parameters
 - Most of radiative tail can be removed by vetoing on hard ISR in the calorimeter
 - Limit radiative corrections on cross section to 7% at most
 - Uncertainty less than 0.5%

L. Li et al., Eur. Phys. J. A 60:8 (2024)

