Status and Prospects of Neutrinoless Double Beta Experiments

Yury Kolomensky UC Berkeley/LBNL BEACH-2024, Charleston, SC June 7, 2024

Disclaimer

- Many exciting developments: impossible to cover all
- Will focus on the future
 - My apologies for any omissions !

Many thanks: S. Biller, G. Benato, M. Dolinski, C. Grant. G. Gratta, J. Gruszko, K. Han, A. McDonald, Y. Mei, H. Ma, G.D. Orebi Gann, M. Sorel, N. Xu and others

2

Neutrino Physics Landscape

- Compelling evidence for Neutrino flavor-changing oscillations (therefore) finite neutrino masses Mixing angles are well measured • Open questions in ν Physics:
- How many neutrinos?
 - Sterile neutrinos ?
- What is absolute scale of v mass?
- How are masses arranged ?
- Are neutrinos responsible for matter-antimatter asymmetry ?
- Majorana or Dirac neutrinos ?
- □ Is Lepton Number conserved ?

06/07/2024

3

At least one v has m > 55 meV

Dirac vs Majorana Neutrinos

- Dirac
- Requires new fundamental global symmetry $U(1)_{lepton number}$
 - Solution New physics ?
 - ^SMatter and antimatter are fundamentally different

- Majorana
- Cannot be explained by "standard" Higgs Yukawa coupling
 - ^{CP} Lepton number violated: New Physics !
 - Potentially sensitive to very high mass scales (see-saw mechanism)
 - ^C Can generate matter⇔antimatter transitions

Dirac vs Majorana Neutrinos

- Dirac
- Requires new fundamental global symmetry $U(1)_{lepton number}$
 - Solution New physics ?
 - ^SMatter and antimatter are fundamentally different

- Majorana
- Cannot be explained by "standard" Higgs Yukawa coupling
 - ^{CP} Lepton number violated: New Physics !
 - Potentially sensitive to very high mass scales (see-saw mechanism)
 - ^C Can generate matter⇔antimatter transitions

Neutrinoless Double-Beta Decay

5

Neutrinoless Double-Beta Decay

- Observation of $0\nu\beta\beta$ would mean
 - Lepton number violation
 - Neutrinos are Majorana particles

□ Rate related to (effective) electron neutrino mass

$$G(Q,Z)|M_{nucl}|^2|m_{\beta\beta}|^2$$

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

6

NB: simplest interpretation (3 light neutrinos). Sterile neutrinos or heavy new physics could change the interpretation² dramatically !

Opportunities for the fundamental discovery

Phys. Rev. **D96**, 053001 (2017)

06/07/2024

Opportunities for the fundamental discovery

M. Agostini, G. Benato, J. Detwiler, Phys. Rev. **D96**, 053001 (2017)

8

06/07/2024

Phys. Rev. **D96**, 053001 (2017)

06/07/2024

Yury Kolomensky: 0νββ

M. Agostini, G. Benato, J. Detwiler, Phys. Rev. **D96**, 053001 (2017)

06/07/2024

M. Agostini, G. Benato, J. Detwiler, Phys. Rev. **D96**, 053001 (2017)

06/07/2024

Phys. Rev. **D96**, 053001 (2017)

06/07/2024

n

06/07/2024

Phys. Rev. **D96**, 053001 (2017)

 $F = G_F^2 \Phi(Q,Z) |M_{0v}|^2 m_e^2 [y^{-1}]$

19 towers is complete

Practical challenge: very rare process !

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	cur
10 ²⁷ years	~5	nex
10 ²⁸ years	~0.5	nex

rent gen kt gen xt-next gen

Experimental challenge -- sensitivity scaling: Non-zero backgrounds (most current experiments):

$$\left[T_{1/2}^{0\nu}\right] \propto \varepsilon \cdot I_{\text{abundance}} \cdot \sqrt{\frac{\text{Mass} \cdot \text{Time}}{\text{Bkg} \cdot \Delta E}}$$

11

Practical challenge: very rare process !

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	curi
10 ²⁷ years	~5	nex
10 ²⁸ years	~0.5	nex

rent gen t gen t-next gen

Experimental challenge -- sensitivity scaling:

Non-zero backgrounds (most current experiments):

 $\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix} \propto \varepsilon \cdot I_{\text{abundance}} \cdot \sqrt{\frac{\text{Mass}}{\text{Bkg}} \cdot \Delta E}$

06/07/2024

11

Practical challenge: very rare process !

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	cur
10 ²⁷ years	~5	nex
10 ²⁸ years	~0.5	nex

rent gen kt gen xt-next gen

Experimental challenge -- sensitivity scaling: Non-zero backgrounds (most current experiments):

$$\left[T_{1/2}^{0\nu}\right] \propto \varepsilon \cdot I_{\text{abundance}} \cdot \sqrt{\frac{\text{Mass} \cdot \text{Time}}{\text{Bkg} \cdot \Delta E}}$$

11

Practical challenge: very rare process !

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	curre
10 ²⁷ years	~5	next
10 ²⁸ years	~0.5	next-

ent gen gen -next gen

Experimental challenge -- sensitivity scaling:

Non-zero backgrounds (most current experiments):

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix} \propto \varepsilon \cdot I_{\text{abundance}} \cdot \sqrt{\frac{\text{Mass} \cdot \text{Time}}{\text{Bkg} \cdot \Delta E}} \leftarrow$$

11

Practical challenge: very rare process !

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	cur
10 ²⁷ years	~5	nex
10 ²⁸ years	~0.5	nex

rent gen kt gen xt-next gen

Experimental challenge -- sensitivity scaling: Non-zero backgrounds (most current experiments):

$$\left[T_{1/2}^{0\nu}\right] \propto \varepsilon \cdot I_{\text{abundance}} \cdot \sqrt{\frac{\text{Mass} \cdot \text{Time}}{\text{Bkg} \cdot \Delta E}}$$

11

Practical challenge: very rare process !

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	curre
10 ²⁷ years	~5	next
10 ²⁸ years	~0.5	next

ent gen gen -next gen

Experimental challenge -- sensitivity scaling:

Non-zero backgrounds (most current experiments):

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix} \propto \varepsilon \cdot \boxed{I_{\text{abundance}}} \cdot \sqrt{\frac{\text{Mass}}{\text{Bkg}}} \frac{\text{Time}}{\Delta E}$$

11

Practical challenge: very rare process !

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	cur
10 ²⁷ years	~5	nex
10 ²⁸ years	~0.5	nex

rent gen kt gen xt-next gen

Experimental challenge -- sensitivity scaling: Non-zero backgrounds (most current experiments):

$$\left[T_{1/2}^{0\nu}\right] \propto \varepsilon \cdot I_{\text{abundance}} \cdot \sqrt{\frac{\text{Mass} \cdot \text{Time}}{\text{Bkg} \cdot \Delta E}}$$

11

Practical challenge: very rare process !

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	curr
10 ²⁷ years	~5	nex
10 ²⁸ years	~0.5	nex

t gen t-next gen

Experimental challenge -- sensitivity scaling: Non-zero backgrounds (most current experiments):

06/07/2024

11

ent gen

Recent Results: CUORE

Array of 988 TeO₂ crystals

- 19 towers suspended in a cylindrical structure (13 levels, 4 crystals each)
- 5x5x5 cm³ (750g each); ¹³⁰Te: 34.1% natural isotope abundance

750 kg TeO₂ => 206 kg ¹³⁰Te

- Pulse tube refrigerator and cryostat
- Radio-purity techniques and high resolution: low backgrounds
- Joint venture between Italy (INFN) and US (DOE, NSF) at LN
- Data taking since 2017, now >2.5 ton-years of TeO₂ exposure c

https://doi.org/10.1016/j.ppnp.2021.103902

2

Γ_{0v} [10⁻²⁶ yr⁻¹]

06/07/2024

Energy (keV)

130**Te**

• No evidence for $0\nu\beta\beta$ decay

 $T_{1/2}^{0\nu} > 3.8 \times 10^{25}$ years (90 % CI)

- Interpretation in context of light Majorana neutrino exchange
 - $m_{\beta\beta} < 70 240 \text{ meV}$ arXiv:2404.04453

 $\sigma_{bkg,ch}(E) = R(E)\sigma_{261}$

 $\sigma_{bkg,ch}(E) = \sqrt{\delta_{bkg,ch}^2 + R(E)}$

Detector Performance Parameters

Background Index

Half-life limit for $0\nu\beta\beta$ decay in ¹³⁰Te cts/kg/keV/yr $T_{1/2}^{0\nu} > 3.6$ karactori stochevy HM ΔE at $\Omega\beta\beta_7^2$

7.53^{+1.45}_{-1.15} keV

Recent Results: KamLAND-Zen

C. Grant

N. Kawada: Neutrino 2022

KamLAND-Zen Results with ~1 ton-year of ¹³⁶Xe exposure

06/07/2024

15

136 Xe

Next-Generation Program, AKA ton-scale (US view)

Goal: $0\nu\beta\beta$ discovery if $m_{\beta\beta}$ is above ~10-20 meV in the next decade

Complemented by a world-wide suite of efforts developing technologies for ton-scale and beyond, with comparable scientific sensitivities

17

Next Generation: LEGEND (LNGS)

Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay

Phased ⁷⁶Ge-based $0\nu\beta\beta$ program with discovery potential at a half-life beyond 10²⁸ years

Enriched ⁷⁶Ge diodes (HPGe detectors): best energy resolution

LEGEND combines the best aspects of GERDA and MJD:

- Ultra-low background materials, FEE (MJ)
- Low-Z active veto (GERDA)

LEGEND-200

- Use existing GERDA infrastructure at LNGS
- Up to 200 kg
- BG goal: 1/5 of GERDA
- Started in 2021

LEGEND-1000

- LNGS or SNOLab
- UG LAr
- Phased implementation
- BG goal: 1/100 of GERDA (0.025 c/FWHM t y)

LEGEND-200 (LNGS)

142 kg of enriched HPGe detectors submerged in LAr Mesh shroud around detector towers to protect from ⁴²K Science data taking since 2023; expect new results at Neutrino 2024 Low background index $4.1^{+11.4}_{-1.5} \times 10^{-4}$ counts/kg/keV/year $T_{1/2}^{0\nu} > 1.5 \times 10^{27}$ yr (90% C.L.)

 p^+ electrode Image: C. Wiesinger

06/07/2024

nEXO (SNOLab)

06/07/2024

Large monolithic LXe TPC 5000 kg of liquid ¹³⁶Xe (90% enrichment) Resolution $\sigma_{\rm E}/\rm E \sim 0.8\%$

Self-shielding, active background discrimination (topology, vertex reconstruction) Multi-dimensional fit to constrain backgrounds

NLDBD Beyond Ton-Scale Experiments

- Long-term world-wide experimental effort
- Discovery reach of the next-generation experiments covers IO region of (light) neutrino masses
- Next-next generation:
 - In case of discovery: precision measurements of NLDBD mechanism
 - □ If no discovery: probe NO region
- Vibrant R&D towards next-next generation experiments

Going Beyond the Inverted Hierarchy

Half-life	Expected Signal (counts/tonne-year)	
10 ²⁶ years	~50	current g
10 ²⁷ years	~5	next gen
10 ²⁸ years	~0.5	next-nex

Detectors need to be:

- Bigger (more isotope)
- Better (lower backgrounds, higher resolution, topological info)

gen

t gen

Large Bolometric Detector: CUPID-1T

CUPID Baseline

Li₂MoO₄ crystals 250 kg of ¹⁰⁰Mo CUORE cryostat Sensitivity: $T_{1/2} > 1.5 \times 10^{27}$ years (IH)

Li₂MoO₄ crystals 1000 kg of ¹⁰⁰Mo New cryostat or 4 CUORE-sized Sensitivity: $T_{1/2} > 9.2 \times 10^{27}$ years (NH)

24

¹⁰⁰Mo

Possible Multi-Site Deployment

- China JinPing Underground Laboratory (CJPL) -Jinping, China
- Gran Sasso National Laboratories (LNGS)* Assergi, AQ, Italy
- Kamioka Observatory Hida, Japan
- Sanford Underground Research Facility (SURF) - Lead, SD, USA
- SNOLAB Sudbury, Canada
- Stawell Underground Physics Laboratory (SUPL) - Stawell, Australia
- Yangyang Underground Laboratory (Y2L) -South Korea

*Home of CUORE/CUPID

Danielle Speller, CUPID-1T Quantum Calorimetry, RF4 Town Hall

Leverage worldwide interest in NLDBD physics, R&D opportunities, and complementarity with QIS Multi-isotope deployment possible: key in case of a discovery

¹⁰⁰Mo and other isotopes

Possible Multi-Site Deployment

- China JinPing Underground Laboratory (CJPL) -Jinping, China
- Gran Sasso National Laboratories (LNGS)* Assergi, AQ, Italy
- Kamioka Observatory Hida, Japan
- Sanford Underground Research Facility (SURF) – Lead, SD, USA
- SNOLAB Sudbury, Canada
- Stawell Underground Physics Laboratory (SUPL) - Stawell, Australia
- Yangyang Underground Laboratory (Y2L) -South Korea

*Home of CUORE/CUPID

Danielle Speller, CUPID-1T Quantum Calorimetry, RF4 Town Hall

Leverage worldwide interest in NLDBD physics, R&D opportunities, and complementarity with QIS Multi-isotope deployment possible: key in case of a discovery

¹⁰⁰Mo and other isotopes

Next Idea: High-Pressure ¹³⁶Xe TPC

NEXT (Spain): Electro-luminescence HPXe TPC

Key features:

- suppression, kinematics)
- Background: 4×10⁻³ counts/ (ton*keV*year)

Demonstrator (NEXT-100): ~2024 at Canfranc Ton-scale: NEXT-HD. Projected sensitivity (90% C.L.): $T_{1/2}>2.7\times10^{27}$ years (m_{\beta\beta}=8-45 meV) NEXT-BOLD concept with barium tagging

Tracking

Pressure

vessel

planes

• Event topology (background • Energy resolution: 0.5% FWHM

Yury Kolomensky: 0vββ

Barium Tagging ¹³⁶Xe Decays

Tagging $^{136}Xe \rightarrow ^{136}Ba++$ transition with high efficiency would eliminate all non-DBD backgrounds Significant improvement in sensitivity

Vibrant R&D effort for over 20 years, major recent breakthroughs Demonstrated tagging single atoms in both LXe and GXe Next steps: Ba capture and transport, scalability

Laser-based ID in solid Xe for nEXO, Nature 569, 203-207 (2019)

Cryoprobe-based extraction for nEXO

Fluorescent molecule-based ID for NEXT, ACS Sens. 2021, 6, 1, 192–202 (2021)

J. Gruszko

RF carpet-based transport for NEXT, arXiv:2111.11091 (2021)

Large Hybrid Detector: Theia

- Hybrid Cherenkov / scintillation detector improves background rejection via PID and event topology
- Scalable, ultra-clean liquid detector
- Potential to deploy a 25-kton THEIA module at LBNF, in a Module of Opportunity
- Mass sensitivity of ~4—22 meV
- Broad program of other physics

Background reduction via ^E ^(α, n) event imaging: _{External γ} PID, multi-site, directionality

R&D into next-gen LS detectors

Builds on critical developments by KLZ & SNO+ collaborations

¹³⁰Te ¹³⁶Xe

G.D. Orebi Gann

$T_{1/2} > 1.5 \text{ x } 10^{28} \text{ yrs (Te)}$ $T_{1/2} > 2.7 \text{ x } 10^{28} \text{ yrs (Xe)}$ (90% CL) $m_{\beta\beta} < 5.4 (4.8) \text{ meV Te (Xe)}$

Тe

Future $0\nu\beta\beta$ Discovery Potential

G. Benato, YGK Methodology from Phys. Rev. **D96**, 053001 (2017)

Inverted Ordering

Conclusions and Outlook

- Neutrinoless Double Beta Decay: discovery science
 - Lepton Number Violation from low to high mass scales
 - Current generation of experiments are approaching Inverted Ordering region.
 - Some results this decade: AMORE, CUORE, KamLAND-Zen, LEGEND-200, SNO+
 - □ Next-generation (ton-scale) projects will improve half-life sensitivity by 1-2 orders, probe IO region $m_{\beta\beta} \sim 10 \text{ meV}$
 - Active R&D for beyond ton-scale experiments

Exciting future ahead !

Backup

Yury Kolomensky: 0**ν**ββ

Discovery Sensitivity

Light Majorana neutrino exchange (dim 5):

32

Future Experiments: Discovery Probability

Bayesian probability for $3\sigma 0\nu\beta\beta$ discovery, folding current prior on m_{$\beta\beta$}

33

06/07/2024

Normal Hierarchy Inverted Hierarchy