Aspects of the Physics Program at Jefferson Lab's Halls A, B, and C

- General Overview and Instrumentation
- Physics Highlights from Halls A, B, and C
- J/ψ Near-Threshold Production in Hall B
- Strangeness Production in Hall B
- Hypernuclear Physics in Hall C

Patrick Achenbach Jefferson Lab

June 2024

Complementing the talks of

- Lubomir Pentchev: Threshold charmonium production at Jlab

- Yordanka Ilieva: Hyperon physics at JLab

Aspects of Physics at Jefferson Lab's Hall A, B, and C

June 2024 P Achenbach, JLab

Spectrometers and Instruments in Halls A, B, and C

Aspects of Physics at Jefferson Lab's Hall A, B, and C

June 2024 P Achenbach, JLab

Hall A

Hall A: High-Resolution and BigBite Spectrometers

- Two identical QQDQ High-Resolution spectrometers: Right and Left HRS
 - Δp/p = 10⁻⁴, ΔΩ = 6 msr
 - Angular range $\theta = 12.5^\circ 150^\circ$
 - Dipole septa to access $\theta < 12.5^{\circ}$
- Luminosity up to 10³⁹ cm⁻² s⁻¹
- LH2, LD2 targets, solid and gas targets

- **SuperBigBite** Spectrometer
- Dipole magnet, 1.7 T-m - $\Delta\Omega$ = 70 msr
- Proton/neutron separation
- BigBite Spectrometer
- Indexed dipole magnet
- $-\Delta p/p = 1-2\%$
- $-\Delta\Omega = 15 40 \text{ msr}$

June 2o24

P Achenbach, JLab

Hall A: Highlights from Experiments

- Precise Determination of the Nucleon F₂ⁿ/F₂^p at Large x_B
 Electron DIS from mirror nuclei ³H and ³He gives unique access to neutron/proton ratio
- Testing predictions of variety of QCD

Collaboration), Phys. Rev. Lett. 128, 132003 (2022)]

- From Nuclei to Neutron Stars
- **Parity-violating electron scattering** measurement of neutron skins in comparison to nuclear models and ab-initio calculations
- Models used in calculation of neutron star mass limits

- Test of State-of-the-Art Ab-Initio 3-Nucleon Calculations
 ³H,³He(*e,e'p*) three-body
 breakup reaction cross sections
- Sensitive to QE scatttering

- Ratio of iso-scalar cross section measurements to theory validated up to $p_{miss} = 0.5 \text{ GeV/}c$

[R. Cruz-Torres *et al.* (Jefferson Lab Hall A Tritium Collaboration), Phys. Rev. Lett. 124, 212501 (2020)]

Aspects of Physics at Jefferson Lab's Hall A, B, and C

P Achenbach, JLab

Hall A: Highlights from Experiments

 PbF₂ calorimeter to detect photons in coincidence with electrons in LHRS for measurement of helicity-dependent cross sections in **deeply virtual Compton scattering** to extract GPDs

 RHRS Rosenbluth separation measurement of proton magnetic form factor, G_M, up to momentum transfers of Q² = 16 (GeV/c)²

- Difference to polarization data attributed to hard two-photon exchange (TPE) effects

[M. E. Christy et al., Phys. Rev. Lett. 128, 102002 (2022), <u>https://arxiv.org/abs/2103.01842</u>]

Hall A: Highlights from Experiments

 Measurement of neutron electric form factor, G_E, by beam-target asymmetry

$$A_N=rac{\sigma_+-\sigma_-}{\sigma_++\sigma_-}$$

- Beam polarization 85% and currents up to 50 μA
- Target length 60 cm and polarization 45–55%

Use high luminosity + open geometry + GEM detectors

Accessing Nucleon Form Factors at Large Q²

- **Proton G_M** published from data with H target
- **Neutron** G_M data taken in Fall 2021 with D target
- **Neutron G_E** completed in Fall 2023 with He target
- **Proton G_E** to run in fall 2024

Hall A: Future MOLLER Experiment

Aspects of Physics at Jefferson Lab's Hall A, B, and C

P Achenbach, JLab

Hall A: SoLID - The QCD Intensity Frontier

- **SoLID** will have the *unique* capability to **explore** QCD landscape while **complementing** other key facilities
- 3D momentum imaging of a relativistic strongly interacting confined system - TMDs (<u>nucleon spin</u>)
- Superior sensitivity to the differential electro- and photo-production cross section of J/ψ near threshold (gluon field and proton mass)
- Pushing the phase space in the search of new physics and of hadronic physics

Large Acceptance Full azimuthal ϕ coverage

Hall B

Hall B: The CLAS12 Spectrometer for 12 GeV

Beam Torus & 85% longitudinally pol. electrons Forward Max. luminosity: $10^{35} \text{ s}^{-1} \text{ cm}^{-2}$ Detecto Energies: 6.5 / 7.5 / ~10.6 GeV Solenoid & Central Detector beam

[V.D. Burkert et al., Nucl. Inst. and Meth. A 959, 163419 (2020)]

Targets (org. by Run Groups)

- Proton (RG-A/K)
- Deuteron (RG-B)
- Nuclei (RG-M/D/E)
- Long. pol. NH₃/ND₃ (RG-C)

Magnetic Field

Large-acceptance multi-purpose spectrometer

Hall B: Side View of The CLAS12 Spectrometer

Hall B: Highlights from Experiments

First measurement of time-like Compton scattering processes

 Test of GPD universality via beam spin asymmetry that is sensitive to imaginary part of the Compton form factors

> Qualitatively New Steps in Studying the 3D Structure of the Proton

 Access to real part of Compton form factors via forward/backward asymmetry and thus to *D*-term in parametrization of GPDs that links to the mechanical properties of the proton

[P. Chatagnon et al. (CLAS Collaboration), Phys. Rev. Lett. 127, 262501 (2021)]

Hall B: Highlights from Experiments

Exploratory measurement of beam-spin asymmetries to access transition GPDs in $N \rightarrow \Delta$ processes:

First Measurement of a Transition GPD in the N to Δ ++ Reaction

• $ep \rightarrow e'p \pi^{-}(\pi^{+})$

[S. Diehl et al. (CLAS Collaboration), Phys. Rev. Lett. 131, 021901 (2023)]

Hall B: Highlights from Experiments

1.5

X (fm)

Hall C

Hall C: Small Acceptance Spectrometers for High Luminosity

Parameter	HMS Design	SHMS Design
Range of Central Momentum	0.4 to 7.4 GeV/c	2 to 11 GeV/c
Momentum Acceptance δ	$\pm 10\%$	-10% to $+22%$
Momentum Resolution	0.1% - 0.15%	0.03% - 0.08%
Scattering Angle Range	10.5 to 90 degrees	5.5 to 40 degrees
Horizontal Angle Acceptance	±32 mrad	±18 mrad
Vertical Angle Acceptance	±85 mrad	±50 mrad
Solid Angle Acceptance	8.1 msr	> 4 msr
Horizontal Angle Resolution	0.8 mrad	0.5 – 1.2 mrad
Vertical Angle Resolution	1.0 mrad	0.3 – 1.1 mrad
Target resolution (ytar)	0.3 cm	0.1 - 0.3 cm
Maximum Event Rate	2 kHz	10 kHz
Max. Flux within Acceptance	\sim 5 MHz	$\sim 5 \text{ MHz}$

Aspects of Physics at Jefferson Lab's Hall A, B, and C

June 2024 P Achenbach, JLab

Hall C: Neutral Particle Spectrometer (NPS)

- 1080 PbWO₄ crystals
- 0.6 Tm sweeping magnet
- F250ADC sampling electronics
- Large opening angle beam pipe
- SHMS as carriage for rotation

Simplest process: $e + p \rightarrow e' + p + \gamma$ (DVCS)

E12-13-010 DVCS measurements follow up on measurements in Hall A:

- Scaling of the Compton Form Factor
- Rosenbluth-like separation of DVCS: $\sigma = |BH|^2 + \operatorname{Re}\left[DVCS^{\perp} BH\right] + |DVCS|^2$ $\sim E_{hom}^2$
- > L/T separation of π^0 production

E12-13-007 goal: Measure the basic SIDIS cross sections of π° production off the proton, including a map of the P_T dependence (P_T ~ Λ < 0.5 GeV), to validate^(*) flavor decomposition and the k_T dependence of (unpolarized) up and down quarks

Hall C: Hypernuclear Experimental Setup

	Updated	Beam	Energy E_e [/(GeV)]	2.240
Experimental Hall	Hall-C		Energy stability $\Delta E_e/E_e$	3×10^{-5}
Beam Energy [/(GeV)]	2.240	PCS + HES	Central momentum $P_e \left[/(\text{GeV}/c)\right]$	0.744
Electron spectrometer	HES		Central angle $\theta_{e,e'}$ [/(deg)]	8
Bending direction	Horizontal		Solid angle $\Delta \Omega_{e'}$ [/(msr)]	3.4
Contral momentum $[/(CoV/c)]$	0.74		Momentum resolution $\Delta P_{e'}/P_{e'}$	4.4×10^{-4}
Ve en en estrement en [/ (Gev / C)]		PCS + HKS	Central momentum $P_K \left[/ (\text{GeV}/c) \right]$	1.200
Kaon spectrometer	пкз		Central angle $\theta_K \ [/(\text{deg})]$	15
Bending direction	Horizontal		Solid angle $\Delta \Omega_K [/(\text{msr})]$	8.3
Central momentum $[/(\text{GeV}/c)]$	1.20		Momentum resolution $\Delta P_K/P_K$	$2.9 imes 10^{-4}$

Hall C: Highlights from Experiments

 No Sign of Color Transparency for Protons Traversing Nuclei

- Unique prediction of QCD that hadrons are produced as point-like configurations in nuclei experiencing little interactions

- Color Transparency seen in other reactions, but ruled out for protons

Phys. Rev. Lett. 126, 082301 (2021)]

- Constraining PDFs at Large x_B
- Measurement of F_2 for H, D
- Significant impact on valence PDFs in global fits

[D. Biswas et al. (for the Hall C Collaboration)]

J/ψ Near-Threshold Production in Hall B

J/ψ Near-Threshold Production off the Proton and Neutron

(RG-B)

CLAS12 took data on J/ψ near-threshold photoproduction off a proton and a deuterium target:

- $e p \rightarrow e' J/\psi p \rightarrow (e') l+l-p$ (RG-A)
- $e p_{\text{bound}} \rightarrow e' J/\psi p \rightarrow (e') l+l-p$ (RG-B)
- $e \ n_{\text{bound}} \rightarrow e! \ J/\psi \ n \rightarrow (e') \ l+l-n$

- First measurement on bound neutron and proton in deuteron
- New constraints on open-charm contributions to cross section
- Testing the isospin invariance of production mechanism

See talk by Lubomir Pentchev on GFF extraction from first moments of GPDs by relating the scattering amplitude to the gluon GPDs

[Du et al. EPJ C80, 1053 (2020)]

Aspects of Physics at Jefferson Lab's Hall A, B, and C

June 2024 P Achenbach, JLab

Strangeness Production in Hall B

Electroproduction of the Very Strangest Baryons

Study of S = -2 and -3 baryons with the CLAS12 detector

- Ω baryon is unique but simple *I* = 0 system of 3 strange quarks: place to study internal structure of baryons
- Little known of excited Ω and Ξ baryons
 - Only 2 Ω and 6 Ξ states well-established
 - Even fewer spin-parity assignments
 - SU(3) flavor multiplets are incomplete

Strategies to Access Multi-Strange Baryons

Production processes:

 $ep \rightarrow e'K^+K^+ \Xi^{-(*)}$ $ep \rightarrow e'K^+K^+K^0 \Omega^-$

• **Decay** processes:

$$\Omega^{-} \rightarrow (\Lambda \rightarrow p\pi -)K^{-}, \Xi^{0}\pi - \Xi^{*} \rightarrow \Xi\pi$$

- $\Xi \rightarrow (\Lambda \rightarrow p\pi -)\pi$
- Multiparticle charged final states:
 - High efficiency
 - Good kaon PID

Cross sections small, background high:

Displaced vertices

[V. Ziegler, in progress]

June 2024 P Achenbach, JLab

Identification of Weak Decays

[V. Ziegler, in progress]

Aspects of Physics at Jefferson Lab's Hall A, B, and C

June 2024 P Achenbach, JLab

Strangeness and Multi-Strangeness Production

- Search for excited E states
- Measurement of quantum numbers and mass splittings of Ξ doublets
- Study of beam polarization transfer and induced polarization of ground state Ξ
- Experiments at JLab complementary with J-PARC Expectroscopy experiments

Hypernuclear Physics in Hall C

Study of Light and Medium-Mass Hypernuclei

Target	CH_2	⁶ Li	⁹ Be	$^{11}\mathrm{B}$	$^{12}\mathrm{C}$	$^{27}\mathrm{Al}$	^{40}Ca	^{48}Ca
Hyperon/Hypernucleus	Λ	$^6_{\Lambda}{ m He}$	$^9_{\Lambda}{ m Li}$	$^{11}_{\Lambda}{ m Be}$	$^{12}_{\Lambda}{ m B}$	$^{27}_{\Lambda}{ m Mg}$	$^{40}_{\Lambda}{ m K}$	$^{48}_{\Lambda}{ m K}$
Target thickness $[/(mg/cm^2)]$	500	150	150	150	150	150	150	150
Cross section $[/(nb/sr)]$	1000	10	10	30	90	60	50	50
Beam intensity $[/(\mu A)]$	2	50	50	50	50	50	50	50
Yield (g.s.) $[/(/h)]$	8.6	1.5	1.0	2.5	6.8	2.0	1.1	0.9
Acc. BG $[/(/MeV/h)]$	0.03	0.86	0.84	0.96	1.2	1.8	2.4	1.9

Study of YN Isospin-Dependence

Current experimental information in this mass region cannot provide ANY information on the possible **isospin dependence** of hypernuclear forces

Study of Heavy Hypernuclei

Due to extended region of constant density and large neutron excess **heavy hypernuclei** provide best available proxy of neutron star matter

Heavy hypernuclei provide an environment, in which three-body interactions are expected to play an important role

Hyperfragment Decay-Pion Spectroscopy with Electron Beams

Aspects of Physics at Jefferson Lab's Hall A, B, and C

June 2024

P Achenbach, JLab

... can be studied in mirror nuclei after correcting for Coulomb effects

- ... is dominated by electromagnetic effects
- ... nuclear part very small, ~ 80 keV in case of ${}^{3}H {}^{3}He$
- ... is well understood and reproduced by theory using ρ^0 - ω mixing

[[]R. Machleit et al., Phys. Rev. C 63, 034005 (2001)]

Charge Symmetry Breaking in Hypernuclei

[F. Schulz et al. (A1 Collab.), NPA 954, 149 (2016)]

- Is CSB in the A = 4 system a feature of spin-dependent interactions?
- Is CSB a general feature of SU(3) interactions in light systems?

Answers can only be found in systematic studies across different nuclei

Study of Hypernuclear Isospin Multiplets

Reaction	Target thickness $[/(g/cm^2)]$	Beam current $(/\mu A)$	Assumed cross section [/(nb/sr)]	Yield per day
${}^{6}\mathrm{Li}(e,e'K^{+})^{6}_{\Lambda}\mathrm{He}$			10	24
$^{9}\mathrm{Be}(e,e'K^{+})^{9}_{\Lambda}\mathrm{Be}$	100	50	7.6	12
${}^{11}\mathrm{B}(e,e'K^+)^{11}_{\Lambda}\mathrm{B}$			30	39

Genuine Hypernuclear States

States in Triaxially Deformed Hypernuclei

Summary

General Overview and Instrumentation

JLab hosts existing or planned new equipment at the luminosity frontier

• **Physics Highlights** from Halls A, B, and C

At CEBAF a groundbreaking experimental program has been developed

J/ψ Near-Threshold Production in Hall B

First measurement with CLAS12 on the bound proton and bound neutron

• Strangeness Production in Hall B

CLAS12 aims for first observation of Ω baryon in electroproduction

• Hypernuclear Physics in Hall C

Study of isospin dependence and charge symmetry breaking in hypernuclei uniquely reveals features of nuclear interactions