Charm theory

Hadronic physics of CP-violation

1. A. C. D. M.

Table of Contents:

Charming CP-violation
Charming New Physics
Charming conclusion

Alexey A. Petrov University of South Carolina • Burt Richter and Sam Ting discovered J/ ψ state in November of 1974

The Arrival of Charm¹

Jonathan L. Rosner

Enrico Fermi Institute and Department of Physics University of Chicago 5640 S. Ellis Avenue, Chicago IL 60637

Abstract. Some of the theoretical motivations and experimental developments leading to the discovery of charm are recalled.

hep-ph/9811359

• At 50, charm quark continue to churn out surprises!

1. Introduction: charming results

- At 50, charm quark continue to churn out surprises!
 - spectroscopy:

- D-mixing and CP-violation in decays (soon: in mixing?)
- Interpretation of the results of observations depends on our understanding of low-energy hadronic physics

Alexey A Petrov (USC)

BEACH 2024 (Charleston) 3-7 June 2024

- How can CP-violation be observed in charm system?
 - can be observed by comparing CP-conjugated decay rates in various ways, both with and w/out time dependence

$$a_{\rm CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})},$$

• can manifest itself in charm ΔC=1 transitions (direct CP-violation)

$$\Gamma(D \to f) \neq \Gamma(CP[D] \to CP[f])$$
 dcpv

• or in $\Delta C=2$ transitions (indirect CP-violation): mixing $|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D^0}\rangle$

$$R_m^2 = |q/p|^2 = \left|\frac{2M_{12}^* - i\Gamma_{12}^*}{\Delta m - (i/2)\Delta\Gamma}\right|^2 = 1 + A_m \neq 1 \qquad \text{CPVmix}$$

• or in the interference b/w decays ($\Delta C=1$) and mixing ($\Delta C=2$)

$$\lambda_f = \frac{q}{p} \frac{A_f}{A_f} = R_m e^{i(\phi + \delta)} \left| \frac{A_f}{A_f} \right|$$
CPVint
Amplitudes?

Alexey A Petrov (USC)

Introduction: nonleptonic charm decays?

Direct CP-violation in charm: realities of life

★IDEA: consider the DIFFERENCE of decay rate asymmetries: $D \rightarrow \pi\pi$ vs $D \rightarrow KK!$ For each final state the asymmetry

D°: no neutrals in the final state!

$$a_{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} \longrightarrow a_{f} = a_{f}^{d} + a_{f}^{m} + a_{f}^{i}$$

direct mixing interference

★ A reason: $a^{m}_{KK}=a^{m}_{\pi\pi}$ and $a^{i}_{KK}=a^{i}_{\pi\pi}$ (for CP-eigenstate final states), so, ideally, mixing asymmetries cancel $(r_{f}=P_{f}/A_{f})!$

$$a_f^d = 2r_f \sin\phi_f \sin\delta_f$$

 \star ... and the resulting DCPV asymmetry is $\Delta a_{CP} = a_{KK}^d - a_{\pi\pi}^d \approx 2a_{KK}^d$ (double!)

$$A_{KK} = \frac{G_F}{\sqrt{2}} \lambda \left[(T + E + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$
$$A_{\pi\pi} = \frac{G_F}{\sqrt{2}} \lambda \left[(-(T + E) + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$

★ ... so it is doubled in the limit of $SU(3)_F$ symmetry

SU(3) is badly broken in D-decays

Alexey A Petrov (USC)

- Experimental results
 - Result 1: an observation of CP-violation in the difference...

$$\Delta a_{CP}^{dir} = a_{CP}(K^-K^+) - a_{CP}(\pi^-\pi^+) = (-15.4 \pm 2.9) \times 10^{-4}$$
 LHCb 2019

• Result 2: the individual CPV asymmetry in $D^0 \rightarrow K^+ K^-$ channel

$$a_{CP}(K^-K^+) = (7.7 \pm 5.7) \times 10^{-4}$$
LHCb 2022
2209.03179v2

• Result 3: LHCb combined the above results to obtain the CPV asymmetry in $D^0 \to \pi^+\pi^-$ channel

$$a_{CP}(\pi^{-}\pi^{+}) = (23.2 \pm 6.1) \times 10^{-4}$$
LHCb 2022
2209.03179v2

- Wishlist: obtain the CPV asymmetries in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ channels independently to check consistency of Δa_{CP}^{dir}
- Need confirmation from other experiments (Belle II)
- What do those results mean? New Physics? Standard Model?

- Check SU(3) symmetry: only need U-spin (interchange $s \leftrightarrow d$)
 - Branching ratios: $\Gamma(D^0 \to K^+ K^-) = \Gamma(D^0 \to \pi^+ \pi^-)$

$$\frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to \pi^+ \pi^-)} = 2.81 \pm 0.06$$

• CPV asymmetries: $a_{CP}(D^0 \rightarrow \pi^+\pi^-) = -a_{CP}(D^0 \rightarrow K^+K^-)$

$$\frac{a_{CP}(D^0 \to \pi^+ \pi^-)}{a_{CP}(D^0 \to K^+ K^-)} = 3.01^{+0.95}_{-5.95}$$

- In both cases: appearance of badly-broken symmetry. Also: wrong sign!
- U-spin sum rule:

$$\frac{a_{CP}(D^0 \to \pi^+ \pi^-)}{a_{CP}(D^0 \to K^+ K^-)} \frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to \pi^+ \pi^-)} = -1$$

... but it appears that experimentally $= +0.93^{+0.62}_{-0.41}$

S. Schacht, JHEP 03 (2023) 205

ΔA_{CP} within the Standard Model and beyond

Mikael Chala, Alexander Lenz, Aleksey V. Rusov and Jakub Scholtz

Institute for Particle Physics Phenomenology, Durham University, DH1 3LE Durham, United Kingdom

Implications on the first observation of charm CPV at LHCb

Hsiang-nan Li^{1*}, Cai-Dian Lü^{2†}, Fu-Sheng Yu^{3‡}

¹Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

The Emergence of the $\Delta U = 0$ Rule in Charm Physics

Yuval Grossman^{*} and Stefan Schacht[†]

Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA

Revisiting *CP* violation in $D \rightarrow PP$ and *VP* decays

Hai-Yang Cheng Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, ROC

Cheng-Wei Chiang Department of Physics, National Taiwan University, Taipei, Taiwan 10617, ROC

- Effective Hamiltonian for singly Cabibbo-suppressed (SCS) decays
 - drop all "penguin" operators (Q_i for i \geq 3) as C_i are small, $\lambda_q = V_{uq}V_{cq}^*$,

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{q=d,s} \lambda_q \left(C_1 \mathcal{Q}_1^q + C_2 \mathcal{Q}_2^q \right) - \lambda_b \sum_{\substack{i=2,\dots,6,8g\\ q}} C_i \mathcal{Q}_i \right] \\ \mathcal{Q}_1^q = \left(\bar{u} \Gamma_\mu q \right) \left(\bar{q} \Gamma^\mu c \right), \qquad \mathcal{Q}_2^q = \left(\bar{q} \Gamma_\mu q \right) \left(\bar{u} \Gamma^\mu c \right)$$

• recall that $\sum_{q=d,s,b} \lambda_q = 0$ or $\lambda_d = -(\lambda_s + \lambda_b)$ and $\mathcal{O}^q \equiv \frac{G_F}{\sqrt{2}} \sum_{i=1,2} C_i \mathcal{Q}_i^q$, with q = d, s.

without QCD

with QCD

- A_{CP}: need to compute/fit/derive hadronic decay amplitudes
 - matrix elements of 4-fermion operators (factorization?)

$$\begin{split} A_{\pi\pi} &= \langle \pi^+ \pi^- | \mathcal{H} | D^0 \rangle \\ &= \frac{G_F}{\sqrt{2}} V_{ud} V_{cd}^* \langle \pi^+ \pi^- | (\bar{u}d)_L (\bar{d}c)_L | D^0 \rangle \\ &\sim \frac{G_F}{\sqrt{2}} V_{ud} V_{cd}^* \langle \pi^+ | (\bar{u}d)_L 0 \rangle \langle \pi^- | (\bar{d}c)_L | D^0 \rangle \\ &\sim \sim \frac{G_F}{\sqrt{2}} V_{ud} V_{cd}^* f_\pi F_{D \to \pi} m_D^2 \end{split}$$
 No imaginary part?

- need a better approach (but can retain some elements)! Recall $R_{DCS/CF}$

E.I. M. AAD

WSU-HEP-0102 AMES-HET hep-ph/mmddnnn 5 July 2002

CP Violation in Charm Decays

Eugene Golowich¹ Department of Physics, University of Massachusetts Ames, IA 50011

Alexey A. Petrov² Department of Physics and Astronomy, Wayne State University Detroit, MI 48201

Abstract

We address several topics relevant to CP-violating phenomena in charm meson decays. The influence of nearby resonances on the generation CP-violating asymmetries in D decays is studied. Then, CP-violating asymmetries arising from interference between resonances occurring in the final state of D decays are considered. Finally, a classification according to the $1/N_c$ expansion of final state interactions in the charm region is performed.

• I was going through a pile of old papers...

Resonance enhancement of decay amplitudes

- A_{CP}: need to compute/fit/derive hadronic decay amplitudes
 - parameterize $D \rightarrow KK$ and $D \rightarrow \pi\pi$ decay amplitudes
 - use isospin decomposition, as possible nearby resonances are classified according to isospin, etc.

Schacht, Soni PLB 825 (2022) 136855

$$A(D^{0} \to \pi^{+}\pi^{-}) = \frac{1}{\sqrt{6}} \lambda_{sd} A^{\pi\pi}_{\frac{3}{2},2} + \frac{1}{\sqrt{3}} \left(\lambda_{sd} A^{\pi\pi}_{\frac{1}{2},0} - \frac{\lambda_{b}}{2} B^{\pi\pi}_{\frac{1}{2},0} \right)$$

$$A(D^{0} \to K^{+}K^{-}) = \frac{1}{2} \lambda_{sd} A^{KK}_{\frac{3}{2},1} + \frac{1}{2} \left(\lambda_{sd} A^{KK}_{\frac{1}{2},1} - \frac{\lambda_{b}}{2} B^{KK}_{\frac{1}{2},1} \right) + \frac{1}{2} \left(\lambda_{sd} A^{KK}_{\frac{1}{2},0} - \frac{\lambda_{b}}{2} B^{KK}_{\frac{1}{2},0} \right)$$

... and similarly for other D-decays, where $\lambda_{sd} = (\lambda_s - \lambda_d)/2$ and $A_{\Delta I I}^{ff}$ ($B_{\Delta I I}^{ff}$) are CP-even (CP-odd)

- Resonance enhancement of decay amplitudes (model)
 - choose model and resonances that provide enhancement (I=0): f_0 states

$$A_{\frac{1}{2},0}^{ff} = g_{f_0 \to ff} M_{f_0}^{sd} R(m_{f_0}, \Gamma_{f_0}, m_D, ...)$$
$$B_{\frac{1}{2},0}^{ff} = g_{f_0 \to ff} M_{f_0}^b R(m_{f_0}, \Gamma_{f_0}, m_D, ...)$$

- Resonance enhancement of decay amplitudes (model)
 - choose model and resonances that provide enhancement (I=0): f_0 states

$$\begin{split} A^{ff}_{\frac{1}{2},0} &= g_{f_0 \to ff} M^{sd}_{f_0} R(m_{f_0},\Gamma_{f_0},m_D,\ldots) \\ B^{ff}_{\frac{1}{2},0} &= g_{f_0 \to ff} M^b_{f_0} R(m_{f_0},\Gamma_{f_0},m_D,\ldots) \end{split} \qquad \text{possible interference} \\ \text{among different } f_0 \text{ states} \end{split}$$

– ...where $g_{f_0 \rightarrow ff}$ describes f_0 coupling to KK or $\pi\pi$ and

$$M_{f_0}^{sd} = \langle f_0 | \mathcal{O}_{sd}^{\Delta I = 1/2} | D^0 \rangle \qquad M_{f_0}^b = \langle f_0 | \mathcal{O}_b^{\Delta I = 1/2} | D^0 \rangle$$

- there are nearby f_0 resonances

Schacht, Soni PLB 825 (2022) 136855

Employed experimental data for scalar unflavored resonances close to the D^0 mass.

Resonance	$I^G(J^{PC})$	mass <i>m</i> [MeV]	Γ [MeV]	Ref.
$f_0(1710)$ $f_0(1790)$	0 ⁺ (0 ⁺⁺) 0 ⁺ (0 ⁺⁺)	$\begin{array}{c} 1704 \pm 12 \\ 1790^{+40}_{-30} \end{array}$	$\begin{array}{c} 123\pm18 \\ 270^{+60}_{-30} \end{array}$	[5] [53,54]

Note: other f_0 states? E.g., $f_0(2020)$: $m_{f_0(2020)} = 1982^{+54.1}_{-3.0}$ MeV, $\Gamma_{f_0(2020)} = 436 \pm 50$ MeV

• Resonance enhancement of decay amplitudes (model)

 Note: compatibility of the result depends on how many resonances are included in the fit

- Resonance enhancement of decay amplitudes is a model!
 - there is ample experimental data on $\pi\pi(KK)$ scattering at $s \approx m_D^2$!
 - coupled-channel unitarity

$$S = \begin{pmatrix} D \to D & D \to \pi\pi & D \to KK & \cdots \\ \pi\pi \to D & \pi\pi \to \pi\pi & \pi\pi \to KK & \cdots \\ KK \to D & KK \to \pi\pi & KK \to KK & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \equiv \begin{pmatrix} 1 & -i(T)^T \\ -i\operatorname{CP}(T) & S_S \end{pmatrix},$$

Franco, Mishima, Silvestrini JHEP 05 (2012) 140 Pich, Solomonidia, Silva arXiv: 2305.11951

- two-channel approximation (
$$\pi\pi, KK$$
)

$$\begin{pmatrix} \mathcal{A}_0^{\pi} \\ \mathcal{A}_0^{K} \end{pmatrix} = \begin{pmatrix} \eta e^{2i\delta_1} & \pm i\sqrt{1-\eta^2} e^{i(\delta_1+\delta_2)} \\ \pm i\sqrt{1-\eta^2} e^{i(\delta_1+\delta_2)} & \eta e^{2i\delta_2} \end{pmatrix} \begin{pmatrix} (\mathcal{A}_0^{\pi})^* \\ (\mathcal{A}_0^{K})^* \end{pmatrix}$$

Note 1: inelasticity η and strong phases $\delta_{1,2}$ can be obtained from the low-energy experiments Note 2: some other two-body ($\eta\eta$) and multi-body (4π) intermediate states have large branching ratios: could potentially change predictions in a two-body approximation!

- Idea: expand all charm decay amplitudes in terms of a universal set
 - need to select a basis: flavor SU(3), unbroken (for now)

$$\mathcal{H}_{\rm CF} = \frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^*(\bar{u}d)(\bar{s}c) + \text{h.c.}$$

- Light quarks transform as triplets: $\overline{3} \times 3 \times \overline{3} = \overline{15} + 6 + \overline{3} + \overline{3}$
 - concentrate on CF decays for now: only $\overline{15}$ and 6 contribute

$$\mathcal{H}_{\rm CF} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \left(A \, \mathcal{O}_{\frac{2}{3},1,-1}^{(\overline{\mathbf{15}})} + C \, \mathcal{O}_{\frac{2}{3},1,-1}^{(\mathbf{6})} \right) + \text{h.c.}$$

- ME: need to couple \mathscr{H}_{CF} to the initial (triplet) and final 8×8 states
 - final state: $[(8+1) \times (8+1)]_{PP} = (8 \times 8)_{sym} + (8 \times 1) + 1$,

$$= \mathbf{27} + \mathbf{8_{8 \times 8}} + \mathbf{8_{8 \times 1}} + \mathbf{1_{8 \times 8}} + \mathbf{1}$$

- initial state: $|\mathcal{H}|D\rangle$ contains 27 (from $\overline{15} \times 3$) and 8 (from $\overline{15} \times 3$ and 6×3)

• Basis of reduced ME: $A_{27} = \langle \mathbf{27} | \mathcal{O}^{\overline{\mathbf{15}}} | \mathbf{3} \rangle$, $A_8 = \langle \mathbf{8} | \mathcal{O}^{\overline{\mathbf{15}}} | \mathbf{3} \rangle$, $C_8 = \langle \mathbf{8} | \mathcal{O}^{\mathbf{6}} | \mathbf{3} \rangle$

- Select a basis, expand decay amps (CF decays only), include η and η'
 - assume mixing angle $\theta = \arcsin(1/3)$, but can do independent fit

Decay	${ m SU}(3)_F$ Amplitude
$D^0 \rightarrow K^- \pi^+$	$\frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \ \frac{1}{5} \left(\sqrt{2} A_{27} + \sqrt{2} A_8 - \sqrt{5} C_8 \right)$
$D^0 \to \overline{K}^0 \pi^0$	$rac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \; rac{1}{10} \left(3A_{27} - 2A_8 + \sqrt{10}C_8 ight)$
$D^0 \to \overline{K}^0 \eta$	$\frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \frac{1}{15\sqrt{3}} \left(3\sqrt{2}A_{27} + \sqrt{2}(\sqrt{5}-2)A_8 - \sqrt{5}(\sqrt{5}-2)C_8 \right)$
$D^0 o \overline{K}^0 \eta'$	$\frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \frac{1}{30\sqrt{3}} \left(3A_{27} - 2(1 + 4\sqrt{5})A_8 + \sqrt{10}(1 + 4\sqrt{5})C_8 \right)$
$D^+ \to \overline{K}^0 \pi^+$	$rac{G_F}{\sqrt{2}}V_{ud}V^*_{cs}\;rac{1}{\sqrt{2}}A_{27}$
$D_s^+ \to \overline{K}^0 K^+$	$\frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \frac{1}{5} \left(\sqrt{2}A_{27} + \sqrt{2}A_8 + \sqrt{5}C_8 \right)$
$D_s^+ \to \pi^+ \eta$	$\frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \frac{1}{15\sqrt{3}} \left(6\sqrt{2}A_{27} - \sqrt{2}(4+\sqrt{5})A_8 - \sqrt{5}(4+\sqrt{5})C_8 \right)$
$D_s^+ \to \pi^+ \eta'$	$\frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \frac{1}{15\sqrt{3}} \left(3A_{27} + 2(2\sqrt{5} - 1)A_8 + \sqrt{10}(2\sqrt{5} - 1)C_8 \right)$

- there are 8 decays and 5 parameters: $|A_{D\to PP}| = \sqrt{\frac{8\pi\hbar m_D^2 B_{D\to PP}}{\tau_D p^*}}$

Amplitudes: flavor SU(3) analysis

• Fit to experimental data...

Meson	Decay	Branching Ratio (%)
D^0	$K^{-}\pi^{+}$	3.950 ± 0.031
	$\overline{K}^0\pi^0$	2.480 ± 0.044
	$\overline{K}^0\eta$	1.018 ± 0.012
	$\overline{K}^0\eta^\prime$	1.898 ± 0.064
D^+	$\overline{K}^0\pi^+$	3.124 ± 0.062
D_s^+	$\overline{K}^0 K^+$	2.95 ± 0.14
	$\pi^+\eta$	1.70 ± 0.09
	$\pi^+\eta'$	3.94 ± 0.25

• ... yields poor fit results

$$\chi^2_{
m min}/{
m dof} = 7477/3, \ A_{27} = (0.279 \pm 0.002) \ {
m GeV}^3, \ A_8 = (0.840 \pm 0.008) \ e^{(59\pm1)^\circ i} \ {
m GeV}^3, \ C_8 = (0.17 \pm 0.02) \ e^{(-58\pm2)^\circ i} \ {
m GeV}^3.$$

• What can be done to improve the fit?

B. Bhattacharya, A. Datta, AAP, J. Waite, JHEP 10 (2021) 024

- How to improve the quality of fit?
 - drop some of the assumptions [not enough data]: include SCS decays
 - new reduced MEs (\mathcal{H} now contains triplets)

Recent: B. Bhattacharya, A. Datta, AAP, J. Waite, JHEP 10 (2021) 024

Pirtskhalava, Uttayarat (2012) Hiller, Jung, Schacht (2013), ...

- take into account SU(3) breaking [not enough data]: include SCS decays

- new reduced MEs
$$\ \Delta {\cal L}_{QCD} = -m_s ar{\psi} \lambda^8 \psi$$

$$\mathcal{H} = \left(\overline{3} + 6 + \overline{15}\right) \times \left(1 + \epsilon \ 8 + \mathcal{O}(\epsilon^2)\right)$$
$$\supset \overline{3} + 6 + \overline{15} + \epsilon \left(\overline{3}_i + 6_i + \overline{15}_1 + \overline{15}_2 + \overline{15}_3^2 + \overline{15}_3^2 + \overline{24}_3 + \overline{42}_3 + \dots\right),$$

- there are now 13 parameters (no η/η'):

$$\begin{array}{ll} \langle 1|3_{(i)}|3\rangle = G_{(i)}, \\ \langle 8|3_{(i)}|3\rangle = F_{(i)}, \\ \langle 8|6_{(i)}|3\rangle = S_{(i)}, \\ \langle 8|\overline{15}_{(i)}^{(\alpha)}|3\rangle = E_{(i)}^{(\alpha)}, \end{array} \begin{array}{ll} \langle 27|\overline{15}_{(i)}^{(\alpha)}|3\rangle = T_{(i)}^{(\alpha)}, \\ \langle 27|\overline{24}_{(i)}|3\rangle = H_{(i)}, \\ \langle 27|\overline{42}_{(i)}|3\rangle = J_{(i)}. \end{array}$$

- need to assume dominance of some MEs over others...

 Topological flavor-flow diagrams could be used to deal with hadronic uncertainties
 B. Bhattacharya J. Waite, 2107.13

B. Bhattacharya, A. Datta, AAP, J. Waite, 2107.13564 Bhattacharya, Rosner, ...

• Fit many decay modes, assume SM weak phase!

- Select a basis, expand decay amps (CF decays only), include η and η'
 - assume mixing angle $\theta = \arcsin(1/3)$, but can do independent fit
 - there are 8 decays and 7 parameters: $|A_{D \to PP}| = \sqrt{\frac{8\pi\hbar m_D^2 B_{D \to PP}}{\tau_D p^*}}$

Decay	Diagrammatic Amplitude	
$D^0 \to K^- \pi^+$	$\frac{G_F}{\sqrt{2}}V_{ud}V_{cs}^* \ (T+E)$	
$D^0 \to \overline{K}{}^0 \pi^0$	$rac{G_F}{\sqrt{2}}V_{ud}V_{cs}^* \; rac{1}{\sqrt{2}}(C-E)$	
$D^0 \to \overline{K}^0 \eta$	$rac{G_F}{\sqrt{2}}V_{ud}V_{cs}^* \; rac{1}{\sqrt{3}}C$	•
$D^0 \to \overline{K}^0 \eta'$	$\frac{G_F}{\sqrt{2}} V_{ud} V_{cs}^* \left(-\frac{1}{\sqrt{6}} \right) \left(C + 3E \right)$	2
$D^+ \to \overline{K}{}^0 \pi^+$	$\frac{G_F}{\sqrt{2}}V_{ud}V_{cs}^* \ (C+T)$	$\chi^{z}_{ m mir}$
$D_s^+ \to \overline{K}^0 K^+$	$rac{G_F}{\sqrt{2}}V_{ud}V_{cs}^* \ (C+A)$	
$D_s^+ \to \pi^+ \eta$	$rac{G_F}{\sqrt{2}}V_{ud}V^*_{cs}\;rac{1}{\sqrt{3}}(T-2A)$	
$D_s^+ \to \pi^+ \eta'$	$rac{G_F}{\sqrt{2}}V_{ud}V_{cs}^* \; rac{2}{\sqrt{6}}(T+A)$	

• Fit to experimental data...

$$\chi^2_{
m min}/
m dof = 1.36/1 \,,$$

 $T = (0.366 \pm 0.003) \,
m GeV^3 \,,$
 $C = (0.298 \pm 0.002) \, e^{i(-151.0 \pm 0.4)^\circ} \,
m GeV^3 \,,$
 $E = (0.201 \pm 0.004) \, e^{i(119.3 \pm 0.8)^\circ} \,
m GeV^3 \,,$
 $A = (0.04 \pm 0.01) \, e^{i(63 \pm 9)^\circ} \,
m GeV^3 \,.$

• ... appears to be excellent! There are still issues for SCS decays...

- All SCS decays can be written in terms of the set of flavor flow diagrams
 - provided SU(3)-breaking is accounted for "phenomenologically"

	Mode	Representation
D^0	$\pi^+\pi^-$	$\lambda_d(0.96T + E_d) + \lambda_p(P_p + PE_p + PA_p)$
	$\pi^0\pi^0$	$\frac{1}{\sqrt{2}}\lambda_d(-0.78C + E_d) + \frac{1}{\sqrt{2}}\lambda_p(P_p + PE_p + PA_p)$
	$\pi^0\eta$	$-\lambda_d(E_d)\cos\phi - rac{1}{\sqrt{2}}\lambda_s(1.28C)\sin\phi + \lambda_p(P_p + PE_p)\cos\phi$
	$\pi^0\eta'$	$-\lambda_d(E_d)\sin\phi + rac{1}{\sqrt{2}}\lambda_s(1.28C)\cos\phi + \lambda_p(P_p + PE_p)\sin\phi$
	$\eta\eta$	$\frac{1}{\sqrt{2}}\lambda_d(0.78C + E_d)\cos^2\phi + \lambda_s(-\frac{1}{2}1.08C\sin 2\phi + \sqrt{2}E_s\sin^2\phi) + \frac{1}{\sqrt{2}}\lambda_p(P_p + PE_p + PA_p)\cos^2\phi$
	$\eta\eta^\prime$	$\frac{1}{2}\lambda_d(0.78C + E_d)\sin 2\phi + \lambda_s(\frac{1}{\sqrt{2}}1.08C\cos 2\phi - E_s\sin 2\phi) + \frac{1}{2}\lambda_p(P_p + PE_p + PA_p)\sin 2\phi$
	K^+K^-	$\lambda_s(1.27T + E_s) + \lambda_p(P_p + PE_p + PA_p)$
	$K^0 \overline{K}^0$	$\lambda_d(E_d) + \lambda_s(E_s) + 2\lambda_p(PA_p)$
D^+	$\pi^+\pi^0$	$rac{1}{\sqrt{2}}\lambda_d(0.97T+0.78C)$
	$\pi^+\eta$	$\frac{1}{\sqrt{2}}\lambda_d(0.82T + 0.93C + 1.19A)\cos\phi - \lambda_s(1.28C)\sin\phi + \sqrt{2}\lambda_p(P_p + PE_p)\cos\phi$
	$\pi^+\eta'$	$\frac{1}{\sqrt{2}}\lambda_d(0.82T + 0.93C + 1.61A)\sin\phi + \lambda_s(1.28C)\cos\phi + \sqrt{2}\lambda_p(P_p + PE_p)\sin\phi$
	$K^+\overline{K}^0$	$\lambda_d(0.85A) + \lambda_s(1.28T) + \lambda_p(P_p + PE_p)$
D_s^+	$\pi^+ K^0$	$\lambda_d(1.00T) + \lambda_s(0.84A) + \lambda_p(P_p + PE_p)$
	$\pi^0 K^+$	$\frac{1}{\sqrt{2}}\left[-\lambda_d(0.81C) + \lambda_s(0.84A) + \lambda_p(P_p + PE_p)\right]$
	$K^+\eta$	$\frac{1}{\sqrt{2}}\lambda_p[0.92C\delta_{pd} + 1.14A\delta_{ps} + P_p + PE_p]\cos\phi - \lambda_p[(1.31T + 1.27C + 1.14A)\delta_{ps} + P_p + PE_p]\sin\phi$
	$K^+\eta'$	$\frac{1}{\sqrt{2}}\lambda_p[0.92C\delta_{pd} + 1.14A\delta_{ps} + P_p + PE_p]\sin\phi + \lambda_p[(1.31T + 1.27C + 1.14A)\delta_{ps} + P_p + PE_p]\cos\phi$

H.-Y. Cheng, C.W. Chiang Phys.Rev.D 100 (2019) 9, 093002

• Fits to experimental data in SCS and CF results in

Decay Mode	$\mathcal{B}_{_{\mathrm{SU}(3)}}$	$\mathcal{B}_{_{ m SU(3)-breaking}}$	$\mathcal{B}_{ ext{expt}}$
$D^0 \to \pi^+\pi^-$	2.28 ± 0.02	1.47 ± 0.02	1.455 ± 0.024
$D^0 \to \pi^0 \pi^0$	1.50 ± 0.03	0.82 ± 0.02	0.826 ± 0.025
$D^0 \to \pi^0 \eta$	0.83 ± 0.02	0.92 ± 0.02	0.63 ± 0.06
$D^0 \to \pi^0 \eta'$	0.75 ± 0.02	1.36 ± 0.03	0.92 ± 0.10
$D^0 \to \eta \eta$	1.52 ± 0.03	1.82 ± 0.04	2.11 ± 0.19
	1.52 ± 0.03	2.11 ± 0.04	
$D^0 ightarrow \eta \eta^\prime$	1.28 ± 0.05	0.69 ± 0.03	1.01 ± 0.19
	1.28 ± 0.05	1.63 ± 0.08	
$D^0 \to K^+ K^-$	1.91 ± 0.02	4.03 ± 0.03	4.08 ± 0.06
	1.91 ± 0.02	4.05 ± 0.05	
$D^0 \to K_S K_S$	0	0.141 ± 0.007	0.141 ± 0.005
	0	0.141 ± 0.007	
$D^+ \to \pi^+ \pi^0$	0.89 ± 0.02	0.93 ± 0.02	1.247 ± 0.033
$D^+ \to \pi^+ \eta$	1.90 ± 0.16	4.08 ± 0.16	3.77 ± 0.09
$D^+ \to \pi^+ \eta'$	4.21 ± 0.12	4.69 ± 0.08	4.97 ± 0.19
$D^+ \to K^+ K_S$	2.29 ± 0.09	4.25 ± 0.10	3.04 ± 0.09
$D_s^+ \to \pi^+ K_S$	1.20 ± 0.04	1.27 ± 0.04	1.22 ± 0.06
$D_s^+ \to \pi^0 K^+$	0.86 ± 0.04	0.56 ± 0.02	0.63 ± 0.21
$D_s^+ \to K^+ \eta$	0.91 ± 0.03	0.86 ± 0.03	1.77 ± 0.35
$D_s^+ \to K^+ \eta'$	1.23 ± 0.06	1.49 ± 0.08	1.8 ± 0.6

H.-Y. Cheng, C.W. Chiang Phys.Rev.D 100 (2019) 9, 093002 but see also: B. Bhattacharya, A. Datta, AAP, J. Waite, JHEP 10 (2021) 024

Individual asymmetries:

$$a_{CP}^{\text{dir}}(\pi^{+}\pi^{-}) = (0.80 \pm 0.22) \times 10^{-3},$$

$$a_{CP}^{\text{dir}}(K^{+}K^{-}) = \begin{cases} (-0.33 \pm 0.14) \times 10^{-3} & \text{Solution II}, \\ (-0.44 \pm 0.12) \times 10^{-3} & \text{Solution III}. \end{cases}$$

Consistent with experiment?

• Asymmetry differences

$$\Delta a_{CP}^{\rm dir} = \begin{cases} (-1.14 \pm 0.26) \times 10^{-3} & \text{Solution I,} \\ (-1.25 \pm 0.25) \times 10^{-3} & \text{Solution II.} \end{cases}$$

Consistent with Standard Model?

U-spin instead?

- Some of the results can be obtained using U-spin analysis
 - note: while the analysis could be simpler, U-spin-breaking effects are expected to be as large as in general SU(3) analysis (minus E/M effects)

$$A(D^{0} \to \pi^{+}\pi^{-}) = -\lambda_{sd} \left(t_{0} + s_{1} + \frac{1}{2}t_{2} \right) - \lambda_{b} \left(p_{0} - \frac{1}{2}p_{1} \right)$$
$$-\lambda_{sd}t_{0} \left(1 + \tilde{s}_{1} + \frac{1}{2}\tilde{t}_{2} \right) - \lambda_{b} \left(\tilde{p}_{0} - \frac{1}{2}\tilde{p}_{1} \right)$$

Schacht JHEP03(2023)205

$$A(D^{0} \to K^{+}K^{-}) = \lambda_{sd} \left(t_{0} - s_{1} + \frac{1}{2}t_{2} \right) - \lambda_{b} \left(p_{0} + \frac{1}{2}p_{1} \right)$$
$$\lambda_{sd}t_{0} \left(1 - \tilde{s}_{1} + \frac{1}{2}\tilde{t}_{2} \right) - \lambda_{b} \left(\tilde{p}_{0} + \frac{1}{2}\tilde{p}_{1} \right)$$

... and similarly for other D-decays, with $\lambda_{sd} = (\lambda_s - \lambda_d)/2$, including subleading $\Delta U = 1$ contributions

- fitting to several branching ratios and A_{CP} for $\pi^+\pi^-$ and K^+K^- ...

$$\frac{|\tilde{p}_1|}{2\,|\tilde{p}_0|} = 173^{+85}_{-74}\% \qquad \qquad \text{U-spin anomaly?}$$

Theoretical troubles

★ These asymmetries are notoriously difficult to compute

\star In the Standard Model

- need to estimate size of penguin/penguin contractions vs. tree

- SU(3) breaking analyses of $D \rightarrow PV, VV$
- constant (but slow) lattice QCD progress in $D \rightarrow \pi\pi$, $\pi\pi\pi$ Hansen, Sharpe

- Recipe for calculation of CPV asymmetry
 - prepare decay amplitudes (and using $\lambda_d = -(\lambda_s + \lambda_b)$)

$$A(D^{0} \to \pi^{-}\pi^{+}) = \lambda_{d} \langle \pi^{-}\pi^{+} | \mathcal{O}^{d} | D^{0} \rangle + \lambda_{s} \langle \pi^{-}\pi^{+} | \mathcal{O}^{s} | D^{0} \rangle$$
$$A(D^{0} \to K^{-}K^{+}) = \lambda_{s} \langle K^{-}K^{+} | \mathcal{O}^{s} | D^{0} \rangle + \lambda_{d} \langle K^{-}K^{+} | \mathcal{O}^{d} | D^{0} \rangle$$

• add and subtract $\ \lambda_b \ \langle \pi^-\pi^+ | {\cal O}^s | D^0
angle$, put in a new form

$$A(D^{0} \to \pi^{-}\pi^{+}) = -\lambda_{s}\mathcal{A}_{\pi\pi} \left[1 + \frac{\lambda_{b}}{\lambda_{s}} \left(1 + r_{\pi} \exp(i\delta_{\pi}) \right) \right]$$
$$A(D^{0} \to K^{-}K^{+}) = -\lambda_{s}\mathcal{A}_{KK} \left[1 - \frac{\lambda_{b}}{\lambda_{s}} r_{K} \exp(i\delta_{K}) \right]$$

define things we cannot compute (extract from branching ratios)

$$\mathcal{A}_{\pi\pi} = \langle \pi^{-}\pi^{+} | \mathcal{O}^{d} | D^{0} \rangle - \langle \pi^{-}\pi^{+} | \mathcal{O}^{s} | D^{0} \rangle$$
$$\mathcal{A}_{KK} = \langle K^{-}K^{+} | \mathcal{O}^{s} | D^{0} \rangle - \langle K^{-}K^{+} | \mathcal{O}^{d} | D^{0} \rangle$$

• ... and things we can $\mathcal{P}_{\pi\pi}^s = \langle \pi^- \pi^+ | \mathcal{O}^s | D^0 \rangle$, $\mathcal{P}_{KK}^d = \langle K^- K^+ | \mathcal{O}^d | D^0 \rangle$

 $r_{\pi} = \left| \frac{\mathcal{P}_{\pi\pi}^{s}}{\mathcal{A}_{\pi\pi}} \right| , \quad r_{K} = \left| \frac{\mathcal{P}_{KK}^{d}}{\mathcal{A}_{KK}} \right|$ (CH 2024 (Charleston) 3-7 June 2024)

- Evaluate (leading) diagrams contributing to the correlation function
 - calculate OPE in terms of known LC DAs Khodjamirian, AAP: PLB774 (2017) 235

- extract $A_{\pi\pi}$ and A_{KK} amplitudes from measured branch. fractions

$$|\mathcal{A}_{\pi\pi}| \simeq \lambda_s^{-1} |A(D \to \pi^- \pi^+)| = (2.10 \pm 0.02) \times 10^{-6} \text{ GeV},$$

 $|\mathcal{A}_{KK}| \simeq \lambda_s^{-1} |A(D \to K^- K^+)| = (3.80 \pm 0.03) \times 10^{-6} \text{ GeV}.$

LCSR: predictions

• As a result... $\langle \pi^+\pi^- | \widetilde{\mathcal{Q}}_2^s | D^0 \rangle = (9.50 \pm 1.13) \times 10^{-3} \exp[i(-97.5^o \pm 11.6)] \,\text{GeV}^3$ $\langle K^+K^- | \widetilde{\mathcal{Q}}_2^d | D^0 \rangle = (13.9 \pm 2.70) \times 10^{-3} \exp[i(-71.6^o \pm 29.5)] \,\text{GeV}^3$

• Thus,
$$r_{\pi} = \frac{|\mathcal{P}_{\pi\pi}^{s}|}{|\mathcal{A}_{\pi\pi}|} = 0.093 \pm 0.011$$
, $r_{K} = \frac{|\mathcal{P}_{KK}^{d}|}{|\mathcal{A}_{KK}|} = 0.075 \pm 0.015$

and with $\Delta a_{CP}^{dir} = -2r_b \sin \gamma (r_K \sin \delta_K + r_\pi \sin \delta_\pi)$

• Phases of $r_{\pi\pi(KK)}$ are given by the phases of $\mathcal{P}^{s(d)}_{\pi\pi(KK)}$?

	$\left a_{CP}^{dir}(\pi^{-}\pi^{+})\right < 0.012 \pm 0.001\%,$		$a_{CP}^{dir}(\pi^{-}\pi^{+}) = -0.011 \pm 0.001\%,$
No:	$\left a_{CP}^{dir}(K^-K^+)\right < 0.009 \pm 0.002\%,$	Yes:	$a_{CP}^{dir}(K^-K^+) = 0.009 \pm 0.002\%.$
	$\left \Delta a_{CP}^{dir}\right < 0.020 \pm 0.003\%.$		$\Delta a_{CP}^{dir} = 0.020 \pm 0.003\%$.

Khodjamirian, AAP: PLB774 (2017) 235

• ... seems to be too small to explain the experimental results?

- Experimental results
 - Result 1: an observation of CP-violation in the difference...

$$\Delta a_{CP}^{dir} = a_{CP}(K^-K^+) - a_{CP}(\pi^-\pi^+) = (-15.4 \pm 2.9) \times 10^{-4}$$
 LHCb 2019

• Result 2: the individual CPV asymmetry in $D^0 \rightarrow K^+ K^-$ channel

$$a_{CP}(K^-K^+) = (7.7 \pm 5.7) \times 10^{-4}$$
LHCb 2022
2209.03179v2

• Result 3: LHCb combined the above results to obtain the CPV asymmetry in $D^0 \to \pi^+\pi^-$ channel

$$a_{CP}(\pi^{-}\pi^{+}) = (23.2 \pm 6.1) \times 10^{-4}$$
LHCb 2022
2209.03179v2

• Unaccounted for hadronic effects? New Physics? Experiment?

- Can New Physics explain CPV data in $\pi\pi$ and KK?
 - note: large $\Delta U = 1$ contributions: any New Physics operators contributing to $\Delta U = 1$ contributions? Yes, in models with generationdependent couplings.

Two is better than one: The U-spin-CP anomaly in charm

Rigo Bause,¹,^{*} Hector Gisbert,¹,[†] Gudrun Hiller,¹,[‡] Tim Höhne,¹,[§] Daniel F. Litim,²,[¶] and Tom Steudtner¹,^{**} ¹TU Dortmund University, Department of Physics, Otto-Hahn-Str.4, D-44221 Dortmund, Germany ²Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, U.K.

Computation of charm decay amplitudes and A_{CP} is a difficult task

- no obvious model-independent/perturbative technique
- SU(3)/flavor flow fits need theory input/better exp data
- Computation of charm mixing amplitudes is a difficult task
 - no dominant heavy dof, as in beauty decays
 - light dofs give no contribution in the flavor SU(3) limit
 - "hadronic" techniques need to sum over large number of intermediate states, AND cannot use current experimental data on D-decays
 - "hadronic" techniques currently neglect some sources of SU(3) breaking
- Philosophy: does exclusive approach to mixing constitute a prediction?

"Charm physics" *Eur. Phys. J. ST* 233 (2024) 2, 439-456

→ More philosophy: CP-violation in $D \rightarrow \pi \pi/KK$

Theory 🗙	Theory 🗙
Experiment 🗙	Experiment 🗸
Not a very interesting case	SM wins again?
Theory 🗸	Theory 🗸
Experiment 🗙	Experiment 🗸
SM wins again!	New Physics!

Chala, Lenz, Rusov, Scholtz: JHEP 1907 (2019) 161 Lenz, Piscoppo, Rusov: JHEP 03 (2024) 151

* Main goal of the exercise: understand physics at the most fundamental scale

 \star It is important to understand relevant energy scales for the problem at hand

* How can one tell that a process is dominated by long-distance or short-distance?

★ To start, mass and lifetime differences of mass eigenstates...

$$x_D = \frac{M_2 - M_1}{\Gamma_D}, \ y_D = \frac{\Gamma_2 - \Gamma_1}{2\Gamma_D}$$

 \star ...can be calculated as real and imaginary parts of a correlation function

$$y_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Im} \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle$$

bi-local time-ordered product

$$x_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Re} \left[2\langle \overline{D^0} | H^{|\Delta C|=2} | D^0 \rangle + \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle \right]$$

local operator
(b-quark, NP): small?

★ ... or can be written in terms of hadronic degrees of freedom...

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle \right]$$

* How can one tell that a process is dominated by long-distance or short-distance?

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle \right]$$

 \star It is important to remember that the expansion parameter is $1/E_{released}$

★ In the heavy-quark limit $m_c \rightarrow \infty$ we have $m_c \gg \sum m_{intermediate quarks}$, so $E_{released} \sim m_c$

- the situation is similar to B-physics, where it is "short-distance" dominated
- one can consistently compute pQCD and 1/m corrections

 \star But wait, m_c is NOT infinitely large! What happens for finite m_c???

- how is large momentum routed in the diagrams?
- are there important hadronization (threshold) effects?

* How can one tell that a process is dominated by long-distance or short-distance?

- ★ Let's look at how the momentum is routed in a leading-order diagram
 - injected momentum is $p_c \sim m_c$
 - thus, $p_1 \sim p_2 \sim m_c/2 \sim O(\Lambda_{QCD})$?

p₂

Still OK with OPE, signals large nonperturbative contributions

★ For a particular example of the lifetime difference, have hadronic intermediate states

- -let's use an example of KKK intermediate state
- in this example, $E_{released} \sim m_D 3 m_K \sim O(\Lambda_{QCD})$

★ Similar threshold effects exist in B-mixing calculations

- but $m_b \gg \sum m_{intermediate quarks}$, so $E_{released} \sim m_b$ (almost) always
- quark-hadron duality takes care of the rest!

Let's saturate correlators by hadronic states

Alexey A Petrov (USC)

* LD calculation: saturate the correlator by hadronic states, e.g.

If every Br is known up to O(1%)

$$y = \frac{1}{2\Gamma} \sum_{n} \rho_n \left[\langle D^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | \overline{D}^0 \rangle + \langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle \right]$$

... with n being all states to which D⁰ and $\overline{D^0}$ can decay. Consider $\pi\pi$, πK , KK intermediate states as an example...

$$y_2 = Br(D^0 \to K^+K^-) + Br(D^0 \to \pi^+\pi^-)$$
 L. Wolfenstein
P. Colangelo et. al.

$$2\cos\delta\sqrt{Br(D^0\to K^+\pi^-)Br(D^0\to\pi^+K^-)}$$
 H.Y. Cheng and C. Chiang

cancellation expected

The result here is a series of large numbers with alternating signs, <u>SU(3) forces 0</u>

If experimental data on Br is used, are we only sensitive to exit. uncertainties?

* Need to "repackage" the analysis: look at complete multiplet contribution

$$y = \sum_{F_R} y_{F,R} \ Br(D^0 \to F_R) = \sum_{F_R} y_{F,R} \frac{1}{\Gamma} \sum_{n \in F_R} \Gamma(D^0 \to n)$$

Falk, Grossman, Ligeti, Nir. A.A.P. Phys.Rev. D69, 114021, 2004 Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

the result is expected to be O(1%)!

* What if we insist on using experimental data anyway?

★ Ex., one can employ Factorizaton-Assisted Topological Amplitudes

in units of 10-3

Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(FAT)$	Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(FAT)$	Modes	$\mathcal{B}(\exp)$	$\mathcal{B}(FAT)$
$\pi^0 \overline{K}^0$	24.0 ± 0.8	24.2 ± 0.8	$\pi^0 \overline{K}^{*0}$	37.5 ± 2.9	35.9 ± 2.2	$\overline{K}^0 \rho^0$	$12.8^{+1.4}_{-1.6}$	13.5 ± 1.4
$\pi^+ K^-$	39.3 ± 0.4	39.2 ± 0.4	$\pi^{+}K^{*-}$	54.3 ± 4.4	62.5 ± 2.7	$K^- \rho^+$	111.0 ± 9.0	105.0 ± 5.2
$\eta \overline{K}^0$	9.70 ± 0.6	9.6 ± 0.6	$\eta \overline{K}^{*0}$	9.6 ± 3.0	6.1 ± 1.0	$\overline{K}^{0}\omega$	22.2 ± 1.2	22.3 ± 1.1
$\eta' \overline{K}^0$	19.0 ± 1.0	19.5 ± 1.0	$\eta' \overline{K}^{*0}$	< 1.10	0.19 ± 0.01	$\overline{K}^0 \phi$	$8.47\substack{+0.66\\-0.34}$	8.2 ± 0.6
$\pi^+\pi^-$	1.421 ± 0.025	1.44 ± 0.02	$\pi^+ \rho^-$	5.09 ± 0.34	4.5 ± 0.2	$\pi^- \rho^+$	10.0 ± 0.6	9.2 ± 0.3
K^+K^-	4.01 ± 0.07	4.05 ± 0.07	K^+K^{*-}	1.62 ± 0.15	1.8 ± 0.1	K^-K^{*+}	4.50 ± 0.30	4.3 ± 0.2
$K^0\overline{K}^0$	0.36 ± 0.08	0.29 ± 0.07	$K^0 \overline{K}^{*0}$	0.18 ± 0.04	0.19 ± 0.03	$\overline{K}^0 K^{*0}$	0.21 ± 0.04	0.19 ± 0.03
$\pi^0\eta$	0.69 ± 0.07	0.74 ± 0.03	$\eta \rho^0$		1.4 ± 0.2	$\pi^0 \omega$	0.117 ± 0.035	0.10 ± 0.03
$\pi^0\eta'$	0.91 ± 0.14	$1.08{\pm}0.05$	$\eta' \rho^0$		0.25 ± 0.01	$\pi^0 \phi$	1.35 ± 0.10	1.4 ± 0.1
$\eta\eta$	1.70 ± 0.20	$1.86{\pm}0.06$	$\eta\omega$	2.21 ± 0.23	2.0 ± 0.1	$\eta\phi$	0.14 ± 0.05	0.18 ± 0.04
$\eta\eta^\prime$	1.07 ± 0.26	$1.05{\pm}0.08$	$\eta'\omega$		0.044 ± 0.004			
$\pi^0\pi^0$	0.826 ± 0.035	0.78 ± 0.03	$\pi^0 \rho^0$	3.82 ± 0.29	4.1 ± 0.2			
$\pi^0 K^0$		$0.069 {\pm} 0.002$	$\pi^0 K^{*0}$		0.103 ± 0.006	$K^0 \rho^0$		0.039 ± 0.004
$\pi^- K^+$	0.133 ± 0.009	$0.133 {\pm} 0.001$	$\pi^{-}K^{*+}$	$0.345\substack{+0.180\\-0.102}$	0.40 ± 0.02	$K^+ \rho^-$		0.144 ± 0.009
ηK^0		$0.027 {\pm} 0.002$	ηK^{*0}		0.017 ± 0.003	$K^0\omega$		0.064 ± 0.003
$\eta' K^0$		$0.056 {\pm} 0.003$	$\eta' K^{*0}$		0.00055 ± 0.00004	$K^0\phi$		0.024 ± 0.002

Jiang, Yu, Qin, Li, and Lu, 2017

 \star ... but it appears to yield a smaller result, $y_{PP+PV} = (0.21 \pm 0.07)\%$.

★ Exclusive approach to $D^0 - \overline{D}^0$ mixing: use data!

★ Possible additional contributions?

- each intermediate state has a finite width, i.e. is not a proper asymptotic state
- within each multiplet widths experience (incomplete) SU(3) cancelations
- this effect already happens for the simplest intermediate states!

* Consider, for illustration, a set of single-particle intermediate states:

$$-\Sigma_{p_D}(p_D)\Big|_{\text{tot}}^{\text{res}} = \frac{1}{2m_D}\sum_R Re \; \frac{\langle D_L | \mathcal{H}_W | R \rangle \langle R | \mathcal{H}_W^{\dagger} | D_L \rangle}{m_D^2 - m_R^2 + i\Gamma_R m_D} \quad - \quad (D_L \to D_S)$$

$$D^{0} - H_{w} - H_{w} - H_{w} - H_{w} - D^{0} = \overline{D}^{0} = \overline{D}^$$

 \star Each resonance contributes to $\Delta\Gamma$ only because of its finite width!

* Multiplet effects for (single-particle) intermediate states

- in this simple example: heavy pion, kaon and eta/eta'
- each single-particle intermediate state has a rather large width

$$\Delta \Gamma_D|_{\text{octet}}^{\text{res}} = \Delta \Gamma_D^{(K_H)} - \frac{1}{4} \Delta \Gamma_D^{(\pi_H)} - \frac{3\cos^2\theta_{\text{H}}}{4} \Delta \Gamma_D^{(\eta_H)} - \frac{1\sin^2\theta_{\text{H}}}{4} \Delta \Gamma_D^{(\eta'_H)}$$
where for each state $\Delta \Gamma^{\text{res}} = -Cf^2 - \frac{\mu_R \gamma_R}{4}$ with $\mu_R = m_R^2/m_D^2$

- where for each state $\Delta \Gamma_D^{\text{res}} = -C f_R^2 \frac{\mu_R \gamma_R}{(1-\mu_R)^2 + \gamma_R^2}$ with $\begin{array}{c} \mu_R = m_R/m_D \\ \gamma_R = \Gamma_R/m_D \end{array}$

– ... and a model calculation gives $\,C\,\equiv\,2m_D(G_Fa_2f_D\xi_d/\sqrt{2})^2$

- SU(3) forces cancellations: a new SU(3) breaking effect due to widths!

	Table: Magnitudes of Pseudoscalar Resonance Contributions.				
Resonance	$ \Delta m_D \times 10^{-16} \text{ (GeV)}$	$ \Delta\Gamma_D \times 10^{-16} \text{ (GeV)}$			
$\overline{K(1460)}$	$\sim 1.24 \ (f_{K(1460)}/0.025)^2$	$\sim 0.88 \ (f_{K(1460)}/0.025)^2$			
$\eta(1760)$	$(0.77 \pm 0.27) \ (f_{\eta(1760)}/0.01)^2$	$(0.43 \pm 0.53) \ (f_{\eta(1760)}/0.01)^2$			
$\pi(1800)$	$(0.13 \pm 0.06) \ (f_{\pi(1800)}/0.01)^2$	$(0.41 \pm 0.11) \ (f_{\pi(1800)}/0.01)^2$			
K(1830)	$\sim 0.29 \; (f_{K(1830)}/0.01)^2$	$\sim 1.86 \ (f_{K(1830)}/0.01)^2$			

E. Golowich and A.A.P. PLB427 (1998) 172-178

★ Let us take another look at those one-body contributions

- the width of each excited light quark state $\Gamma_R = \Gamma(R \to P_1 P_2) + \Gamma(R \to P_1 P_2 P_3) + \dots$
- ... which is equivalent to accounting for resonant FSI in 2-body intermediate state!

Since we shall be using experimental data to compute 2-body contributions, this effect will be taken into account automatically!

It's consistent to omit 1-body IntSt if experimental data is used

★ Let us apply similar logic to two-body contributions

- consider contributions from the stable (wrt strong interactions) octet of pions, kaons, etas

observed value of y

★ What about other two body contributions (PV, SP, SS, etc.)?

- can use similar techniques to evaluate contribution to mixing as above 2BIS...
- ... but V, P', S states are not good asymptotic states!
- we get new SU(3)-breaking contribution from the widths of those states!

Since we are to use experimental data, use Dalitz plot analyses to get at these contributions

A.A.P.. arXiv:even.tually [hep-ph]

Experimental analysis from LHCb

★ Since we are comparing rates for D⁰ and anti-D⁰: need to tag the flavor at production

 $D^{*+} \rightarrow D^0 \pi_s^+$ "D*-trick" -- tag the charge of the slow pion (or muon for D's produced in B-decays)

 \star The difference Δa_{CP} is also preferable experimentally, as

★ D* production asymmetry and soft pion asymmetries are the same for KK and $\pi\pi$ final states-- they cancel in $\Delta a_{CP}!$

★ Integrate over time,

$$a_{CP, f} = \int_0^\infty a_{CP}(f; t) D(t) dt = a_f^d + \frac{\langle t \rangle}{\tau} a_f^{ind}$$

distribution of proper decay time

★ Viola! Report observation!

Alexey A Petrov (USC)

BEACH 2024 (Charleston) 3-7 June 2024

Khodjamirian, NPB 605 (2001) 558

- Use modified light-cone QCD Sum Rule (LCSR) method
 - start with the correlation function ($j_5^{(D)} = im_c \bar{c} \gamma_5 u$ and $j_{\alpha 5}^{(\pi)} = \bar{d} \gamma_{\alpha} \gamma_5 u$)

$$F_{\alpha}(p,q,k) = i^{2} \int d^{4}x e^{-i(p-q)x} \int d^{4}y e^{i(p-k)y} \langle 0| T \left\{ j_{\alpha 5}^{(\pi)}(y) \mathcal{Q}_{1}^{s}(0) j_{5}^{(D)}(x) \right\} |\pi^{+}(q)\rangle$$
$$= (p-k)_{\alpha} F((p-k)^{2}, (p-q)^{2}, P^{2}) + \dots,$$

• use dispersion relation in (p-k) and (p-q), perform Borel transform, extract matrix element: Khodjamirian, Mannel, Melic, PLB571 (2003) 75

$$\langle \pi^{-}(-q)\pi^{+}(p)|\mathcal{Q}_{1}^{s}|D^{0}(p-q)\rangle = \frac{-i}{\pi^{2}f_{\pi}f_{D}m_{D}^{2}} \int_{0}^{s_{0}^{\pi}} ds e^{-s/M_{1}^{2}} \int_{m_{c}^{2}}^{s_{0}^{D}} ds' e^{(m_{D}^{2}-s')/M_{2}^{2}} \operatorname{Im}_{s'}\operatorname{Im}_{s}F(s,s',m_{D}^{2})$$

- perform LC expansion of F(s, s' m_D²) to get $\mathcal{P}_{\pi\pi}^{s}$
- note that $C_1 \mathcal{Q}_1^s + C_2 \mathcal{Q}_2^s = 2C_1 \widetilde{\mathcal{Q}}_2^s + \left(\frac{C_1}{3} + C_2\right) \mathcal{Q}_2^s$ with $\widetilde{\mathcal{Q}}_2^s = \left(\bar{s}\Gamma_\mu \frac{\lambda^a}{2}s\right) \left(\bar{u}\Gamma^\mu \frac{\lambda^a}{2}c\right)$

thus
$$\mathcal{P}^s_{\pi\pi}=rac{2G_F}{\sqrt{2}}\;C_1\langle\pi^+\pi^-|\widetilde{\mathcal{Q}}^s_2|D^0
angle$$

Alexey A Petrov (USC)

Error budget: parameter uncertainties

Parameter values	Parameter rescaled
and references	to $\mu = 1.5~{ m GeV}$
$lpha_s(m_Z) = 0.1181 \pm 0.0011$ [6]	0.351
$\bar{m}_c(\bar{m}_c) = 1.27 \pm 0.03 \text{ GeV} [6]$	$1.19~{ m GeV}$
$\bar{m}_s(2{ m GeV}) = 96^{+8}_{-4}{ m MeV}~[6]$	$105 { m ~MeV}$
$\langle \bar{q}q \rangle (2{ m GeV}) = (-276^{+12}_{-10}{ m MeV})^3[6]$	$(-268{ m MeV})^3$
$\langle ar{s}s angle = (0.8\pm 0.3)\langlear{q}q angle ~~[21]$	$(-249 {\rm ~MeV})^3$
$a_2^{\pi}(1{ m GeV}) = 0.17\pm 0.08~~[22]$	0.14
$a_4^{\pi}(1{ m GeV}) = 0.06 \pm 0.10~[22]$	0.045
$\mu_{\pi}(2{ m GeV}) = 2.48 \pm 0.30{ m GeV}~[6]$	$2.26{ m GeV}$
$f_{3\pi}(1{ m GeV}) = 0.0045 \pm 0.015{ m GeV}^2$ [19]	$0.0036{ m GeV^2}$
$\omega_{3\pi}(1{ m GeV}) = -1.5\pm 0.7~[19]$	-1.1
$a_1^K(1{ m GeV}) = 0.10\pm 0.04~~[23]$	0.09
$a_2^K(1{ m GeV}) = 0.25 \pm 0.15~[19]$	0.21
$\mu_K(2{ m GeV}) = 2.47^{+0.19}_{-0.10}~{ m GeV}~[6]$	2.25
$f_{3K}=f_{3\pi}$	$0.0036{ m GeV^2}$
$\omega_{3K}(1{ m GeV}) = -1.2\pm0.7[19]$	-0.99
$\lambda_{3K}(1{ m GeV}) = 1.6 \pm 0.4$ [19]	1.5